Variable Fractional-Order Reaction-Diffusion System for Edge Preservation in Biomedical Imaging
Main Article Content
Abstract
This paper introduces a novel variable fractional-order reaction-diffusion system (VFO-RDs) to model anisotropic diffusion for edge preservation in biomedical imaging. By leveraging the Caputo nabla variable fractional-order difference operator, the proposed model captures the memory-dependent nature of biological tissues. We establish sufficient conditions for tempered Mittag-Leffler stability (MLS) of the equilibrium point using Lyapunov functions (LFs) and Lipschitz-type bounds on the nonlinear reaction term. Eigenvalue-based constraints on the discrete Laplacian guarantee contractive dynamics. Numerical simulations in both 1D and 2D domains demonstrate the edge-preserving capabilities of the method under various fractional-order (FO) scenarios. The results confirm that the proposed framework effectively maintains critical spatial features and improves stability, providing a viable tool for advanced biomedical image analysis.
Article Details
References
- M.A. Al-Betar, M.S. Braik, Q.Y. Shambour, G. Al-Naymat, T. Porntaveetus, Ameliorated Elk Herd Optimizer for Global Optimization and Engineering Problems, Artif. Intell. Rev. 58 (2025), 360. https://doi.org/10.1007/s10462-025-11360-1.
- A.S. Hussain, M. Qousini, R.N. Abbas, E.A. Az-Zo'bi, M.A. Tashtoush, Flexible Distributional Modeling with the ACT-G Family Using Recurrent Neural Networks and Firefly Optimization, Int. J. Robot. Control Syst. 5 (2025), 3318–3349.
- A.S. Al-Bahtiti, B.A. Tayeh, A. Baghdadi, W.S. Alaloul, Y.I. Abu Aisheh, Drivers for Adopting Augmented Reality and Virtual Reality Technologies in the Construction Project Management in Gaza City, J. Asian Arch. Build. Eng. (2025). https://doi.org/10.1080/13467581.2025.2507235.
- A.F. Jameel, N.R. Anakira, M.M. Rashidi, A.K. Alomari, A. Saaban, M.A. Shakhatreh, Differential Transformation Method for Solving High Order Fuzzy Initial Value Problems, Ital. J. Pure Appl. Math. 39 (2018), 194–208.
- A.F. Jameel, N. Anakira, A.K. Alomari, I. Hashim, S. Momani, A New Approximation Method for Solving Fuzzy Heat Equations, J. Comput. Theor. Nanosci. 13 (2016), 7825–7832. https://doi.org/10.1166/jctn.2016.5784.
- N.R. Anakira, A.K. Alomari, I. Hashim, Numerical Scheme for Solving Singular Two-Point Boundary Value Problems, J. Appl. Math. 2013 (2013), 468909. https://doi.org/10.1155/2013/468909.
- A. Jameel, N.R. Anakira, A.K. Alomari, I. Hashim, M.A. Shakhatreh, Numerical Solution of Nth Order Fuzzy Initial Value Problems by Six Stages, J. Nonlinear Sci. Appl. 09 (2016), 627–640. https://doi.org/10.22436/jnsa.009.02.26.
- N. Anakira, I. H. Jebri, I. M. Batiha, M. S. Hijazi, T. Sasa, Criteria for Finite-Time Convergence in Discrete Variable-Order Fractional Fitzhugh–Nagumo Reaction–Diffusion Systems, Eur. J. Pure Appl. Math. 18 (2025), 7005. https://doi.org/10.29020/nybg.ejpam.v18i4.7005.
- O. Ogilat, I.H. Jebril, I.M. Batiha, N. Anakira, T. Sasa, Distributed Control for Mittag–Leffler Synchronization of Variable‐Order Fractional Gierer–Meinhardt Reaction‐Diffusion Systems, J. Math. 2025 (2025), 6554797. https://doi.org/10.1155/jom/6554797.
- I.H. Jebril, I.M. Batiha, S. Momani, A. Biswas, Control Strategies for Mittag-Leffler Synchronization in Variable-Order Fractional Fitzhugh-Nagumo Reaction-Diffusion Networks, Contemp. Math. 6 (2025), 6414–6443. https://doi.org/10.37256/cm.6520257613.
- S. Momani, I.M. Batiha, N. Djenina, A. Ouannas, Analyzing the Stability of Caputo Fractional Difference Equations with Variable Orders, Prog. Fract. Differ. Appl. 11 (2025), 139–151. https://doi.org/10.18576/pfda/110110.
- I.H. Jebril, I. Bendib, A. Ouannas, I.M. Batiha, J. Oudetallah, et al., Finite-Time Synchronization of the Discrete Reaction-Diffusion Fitzhugh–Nagumo Model, AIP Conf. Proc. 3338 (2025), 040025. https://doi.org/10.1063/5.0295065.
- O. Aljabari, S. Momani, I.M. Batiha, M. Odeh, Comparative Study of Fractional Heun’s Method and Fractional q-Heun's Method for Solving Fractional Differential Equations, Prog. Fract. Differ. Appl. 12 (2026), 37–56. https://doi.org/10.18576/pfda/120103.
- I.M. Batiha, H.O. Al-Khawaldeh, I.H. Jebril, N. Anakira, A. Bataihah, et al., A Novel Numerical Approach for Handling Fractional Quantum Initial-Value Problems, Int. J. Fuzzy Log. Intell. Syst. 25 (2025), 416–430. https://doi.org/10.5391/ijfis.2025.25.4.416.
- F. Mainardi, Fractional Calculus: Theory and Applications, Mathematics 6 (2018), 145. https://doi.org/10.3390/math6090145.
- S. Kempfle, I. Schäfer, H. Beyer, Fractional Calculus via Functional Calculus: Theory and Applications, Nonlinear Dyn. 29 (2002), 99–127. https://doi.org/10.1023/a:1016595107471.
- K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York, 1974.
- D. del-Castillo-Negrete, Fractional Calculus: Basic Theory and Applications, Lecture Notes, Institute of Mathematics, UNAM, Mexico City, 2005.
- S.S. Ray, A. Atangana, S.C.O. Noutchie, M. Kurulay, N. Bildik, et al., Fractional Calculus and Its Applications in Applied Mathematics and Other Sciences, Math. Probl. Eng. 2014 (2014), 849395. https://doi.org/10.1155/2014/849395.
- J.A. Tenreiro Machado, M.F. Silva, R.S. Barbosa, I.S. Jesus, C.M. Reis, et al., Some Applications of Fractional Calculus in Engineering, Math. Probl. Eng. 2010 (2009), 639801. https://doi.org/10.1155/2010/639801.
- D. Kumar, D. Baleanu, Editorial: Fractional Calculus and Its Applications in Physics, Front. Phys. 7 (2019), 81. https://doi.org/10.3389/fphy.2019.00081.
- V. Tarasov, On History of Mathematical Economics: Application of Fractional Calculus, Mathematics 7 (2019), 509. https://doi.org/10.3390/math7060509.
- I. Petras, Special Issue: Fractional Calculus and Its Applications, Risk Decis. Anal. 7 (2018), 1–3. https://doi.org/10.3233/RDA-180138.
- B. Ross, The Development of Fractional Calculus 1695–1900, Hist. Math. 4 (1977), 75–89. https://doi.org/10.1016/0315-0860(77)90039-8.
- M.H. Annaby, Z.S. Mansour, q-Fractional Calculus and Equations, Springer, Berlin, 2012. https://doi.org/10.1007/978-3-642-30898-7.
- T.M. Atanacković, S. Pilipović, B. Stanković, D. Zorica, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes, Wiley, 2014. https://doi.org/10.1002/9781118577530.
- C. Lubich, Discretized Fractional Calculus, SIAM J. Math. Anal. 17 (1986), 704–719. https://doi.org/10.1137/0517050.
- R. Gorenflo, Fractional Calculus, in: Fractals and Fractional Calculus in Continuum Mechanics, Springer, Vienna, 1997: pp. 277–290. https://doi.org/10.1007/978-3-7091-2664-6_6.
- M. Chen, W. Deng, Discretized Fractional Substantial Calculus, ESAIM: Math. Model. Numer. Anal. 49 (2015), 373–394. https://doi.org/10.1051/m2an/2014037.
- S. Pooseh, R. Almeida, D.F. Torres, Discrete Direct Methods in the Fractional Calculus of Variations, Comput. Math. Appl. 66 (2013), 668–676. https://doi.org/10.1016/j.camwa.2013.01.045.
- T. Abdeljawad, On Riemann and Caputo Fractional Differences, Comput. Math. Appl. 62 (2011), 1602–1611. https://doi.org/10.1016/j.camwa.2011.03.036.
- X. Li, K. Wu, X. Liu, Mittag–Leffler Stabilization for Short Memory Fractional Reaction-Diffusion Systems via Intermittent Boundary Control, Appl. Math. Comput. 449 (2023), 127959. https://doi.org/10.1016/j.amc.2023.127959.
- I. Bendib, A. Ouannas, M. Dalah, Mittag–Leffler Synchronization of Fractional‐order Reaction–Diffusion Systems, Asian J. Control. (2025). https://doi.org/10.1002/asjc.3702.
- Y. Cao, Y. Kao, J.H. Park, H. Bao, Global Mittag–Leffler Stability of the Delayed Fractional-Coupled Reaction-Diffusion System on Networks Without Strong Connectedness, IEEE Trans. Neural Netw. Learn. Syst. 33 (2022), 6473–6483. https://doi.org/10.1109/tnnls.2021.3080830.
- G. Stamov, I. Stamova, C. Spirova, Reaction-Diffusion Impulsive Fractional–Order Bidirectional Neural Networks with Distributed Delays: Mittag–Leffler Stability Along Manifolds, AIP Conf. Proc. 2172 (2019), 050002. https://doi.org/10.1063/1.5133521.
- R.A. Askey, R. Roy, Gamma Function, in: NIST Handbook of Mathematical Functions, Cambridge University Press, pp. 135–148, 2010.
- C. Goodrich, A.C. Peterson, Discrete Fractional Calculus, Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-25562-0.
- D. Luo, Z. Luo, Uniqueness and Novel Finite-Time Stability of Solutions for a Class of Nonlinear Fractional Delay Difference Systems, Discret. Dyn. Nat. Soc. 2018 (2018), 8476285. https://doi.org/10.1155/2018/8476285.
- Y. Wei, Y. Chen, Y. Wei, X. Zhao, Lyapunov Stability Analysis for Nonlinear Nabla Tempered Fractional Order Systems, Asian J. Control. 25 (2022), 3057–3066. https://doi.org/10.1002/asjc.3003.