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Abstract. This paper introduces a novel variable fractional-order reaction-diffusion system (VFO-RDs) to model

anisotropic diffusion for edge preservation in biomedical imaging. By leveraging the Caputo nabla variable fractional-

order difference operator, the proposed model captures the memory-dependent nature of biological tissues. We establish

sufficient conditions for tempered Mittag-Leffler stability (MLS) of the equilibrium point using Lyapunov functions (LFs)

and Lipschitz-type bounds on the nonlinear reaction term. Eigenvalue-based constraints on the discrete Laplacian guar-

antee contractive dynamics. Numerical simulations in both 1D and 2D domains demonstrate the edge-preserving capa-

bilities of the method under various fractional-order (FO) scenarios. The results confirm that the proposed framework

effectively maintains critical spatial features and improves stability, providing a viable tool for advanced biomedical

image analysis.

1. Introduction

Recent advances in mathematical modeling and computational intelligence have significantly

enhanced the analysis and control of complex nonlinear systems arising in engineering, physics,

and applied sciences. Modern optimization techniques and data-driven frameworks have been
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successfully integrated with classical analytical tools to address high-dimensional and nonlinear

problems [1–3]. In parallel, substantial progress has been made in the numerical treatment of

fuzzy and fractional-order systems, including high-order fuzzy initial value problems, fuzzy

heat equations, and singular boundary value problems, through efficient approximation schemes

and transformation-based methods [4–7]. More recently, research attention has shifted toward

variable-order and discrete fractional models, particularly reaction–diffusion systems and neural

network dynamics, where stability, finite-time convergence, and Mittag–Leffler synchronization

play a central role [8–12]. Complementary developments in fractional numerical methods, such as

fractional Heun-type schemes and quantum fractional approaches, further support accurate and

robust simulations of such systems [13, 14]. These advances collectively motivate the study of

variable fractional-order reaction–diffusion systems and their applications in complex real-world

phenomena.

Fractional calculus extends traditional calculus to non-integer orders of differentiation and in-

tegration [15–18]. Originally a purely mathematical concept, it has found diverse applications

in physics, engineering, and other fields [19–22]. The subject encompasses various definitions

of fractional derivatives and integrals, requiring a foundation in complex and real analysis for

a comprehensive understanding [23–25]. Recent developments include numerical methods for

solving fractional differential equations, such as finite-element methods and high-speed schemes

for fractional differentiation and integration. Applications of fractional calculus span multiple

domains, including mechanics, wave propagation, and variational principles [26]. The growing

interest in fractional calculus has led to symposiums and special issues in scientific journals, foster-

ing further research and development in this field. Discrete fractional calculus extends traditional

calculus to non-integer orders, offering new tools for modeling complex phenomena. Recent

studies have introduced properties of discrete fractional calculus using the nabla operator, de-

veloping exponential laws and a product rule. The Laplace transform for nabla derivatives on

integers has also been explored. In a related study, the discrete Laplace transform was extended to

solve fractional finite difference equations. References [27–30] investigate numerical approxima-

tions of fractional integrals using convolution quadratures, introducing fractional linear multistep

methods for higher-order approximations. In [31], left and right Caputo fractional sums and dif-

ferences were defined, relating them to Riemann-Liouville fractional differences. The study also

proposed discrete versions of Mittag-Leffler functions by solving a Caputo fractional difference

equation. These advancements in discrete fractional calculus provide powerful tools for modeling

and solving complex problems in various fields.

Recent research on MLS in RDs has made significant progress. In [32], MLS was demonstrated

for short memory fractional RDs using intermittent boundary control. In [33], Mittag-Leffler syn-

chronization was established in FO RDs through linear control strategies and Lyapunov techniques.

In [34], global MLS was explored in delayed fractional-coupled RDs on networks without strong

connectedness. While not directly addressing MLS, other studies have investigated finite-time
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stability in discrete-time generalized RDs, providing insights into equilibrium conditions. These

studies employ various mathematical tools, including LF methods, fractional calculus, and finite

difference techniques, to analyze stability and synchronization. The research has implications for

diverse applications, including biological system modeling, secure communications, and complex

network synchronization. Recent studies have focused on MLS in both discrete and continuous FO

systems. For discrete-time FO neural networks, sufficient criteria for global MLS have been estab-

lished using inequality techniques and LFs. In continuous systems, Mittag-Leffler synchronization

of FO RDs has been analyzed using Caputo fractional derivatives and Lyapunov techniques. For

short memory fractional RDs, intermittent boundary control has been employed to achieve MLS,

with considerations for system uncertainties. Additionally, global MLS along manifolds has been

studied for RDs impulsive FO bidirectional neural networks with distributed delays, utilizing

fractional Lyapunov methods and comparison principles [35]. These studies collectively demon-

strate the growing interest in MLS analysis for various FO systems and its potential applications

in diverse fields.

The aim of this paper is to develop a FO anisotropic diffusion framework for edge preservation

in biomedical imaging, with the following specific objectives:

• To formulate a VFO fractional RDs that captures memory effects in biological tissues

• To establish MLS criteria for the proposed FO system

• To develop efficient numerical schemes for implementing the fractional diffusion model

• To demonstrate the edge-preserving capabilities of the approach through numerical simu-

lations in both 1D and 2D spatial domains

The paper is organized as follows: Section 2 presents the basic tools and mathematical preliminaries

of fractional calculus. Section 3 describes the RDs under study and its FO formulation. Section 4

presents the main theoretical results on MLS analysis. Section 5 provides numerical simulations

and discussions of the proposed method’s performance in biomedical imaging applications.

2. Basic Tools

Fractional calculus provides essential mathematical tools for modeling complex systems in

biomedical imaging. Consider the following Caputo nabla VFO difference equation with variable

order:

C
∇
δ(t)
a Φ(t) = f(t, Φ(t)), (2.1)

where 0 < δ(t) < 1 is the VFO, t ∈Na+1, a ∈ R is the initial time, Φ(t) ∈ D, and D ⊂ Rn is a domain

containing the origin. We assume the system has an EP at Φe = 0, i.e.,

C
∇
δ(t)
a Φe(t) = f(t, Φe), t ∈Na+1. (2.2)

Since Φe is constant, the left-hand side vanishes identically, implying f(t, 0) = 0. The function

f : Na+1 ×D→ Rn is continuous.
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Definition 2.1 ( [36]). The Gamma function is defined by

Γ(z) =
∫
∞

0
tz−1e−tdt. (2.3)

Definition 2.2 ( [37]). Let Φ : Na → R. The first-order backward difference operator is defined by

∇Φ(t) = Φ(t) −Φ(t− 1), t ∈Na+1.

Definition 2.3 ( [37]). For δ(t) , −1,−2,−3, . . ., the δ(t)-th order nabla VFO Taylor monomial Hδ(t)(t, a)
is defined as

Hδ(t)(t, a) :=
(t− a)δ(t)

Γ(δ(t) + 1)
, t ∈Na,

where tδ(t) =
Γ(t + δ(t))

Γ(t)
denotes the rising factorial function.

Definition 2.4 ( [38]). The discrete MLF with two parameters is defined as

Fδ(t),β(λ, t, a) =
∞∑

j=0

λ j

Γ( jδ(t) + β)
(t− a) jδ(t)+β−1, t ∈Na. (2.4)

Definition 2.5 ( [37]). Let Φ : Na+1 → R and δ(t) > 0. The δ(t)-th order nabla VFO sum of Φ is given
by

∇
−δ(t)
a Φ(t) :=

t∑
s=a+1

Hδ(t)−1(t,ρ(s))Φ(s), t ∈Na+1,

where ρ(t) := t− 1 and ∇−δ(t)a Φ(a) := 0.

Definition 2.6 ( [38]). For a function Φ : Na → R and 0 < δ(t) ≤ 1, the δ(t)-th order Caputo nabla VFO
difference of Φ is defined as

C
∇
δ(t)
a Φ(t) := ∇−(1−δ(t))a ∇Φ(t), t ∈Na+1.

Definition 2.7 ( [39]). The EP Φe = 0 of the system is said to be MLS if

‖Φ(t)‖ ≤
[
w(Φ(a))(1− λ)a−tFδ2,β(µ, t, a)

]b
(2.5)

holds for all t ∈ Na+1, a ∈ R, and Φ(a) ∈ D ⊆ Rn, where the weighting function w(Φ(t)) ≥ 0 satisfies
w(0) = 0, and parameters fulfill λ < 0, µ < 0, δ2 ∈ (0, 1), υ ∈ [δ2, δ2 + 1), b > 0.

Theorem 2.1 ( [39]). For system (2.1), if there exist a LF V : Na+1 ×D → R and parameters 0 < δ1 <

δ(t) < δ2 < 1, b, c,℘1,℘2,℘3 > 0 satisfying

℘1‖Φ(t)‖b ≤ V(t, Φ(t)) ≤ ℘2‖Φ(t)‖bc, (2.6)

C
∇
δ2
a V(t, Φ(t)) ≤ −℘3‖Φ(t)‖bc, (2.7)

∀t ∈Na+1 and Φ(t) ∈ D, then system (2.1) is tempered MLS at Φe = 0.
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3. System Description

We consider a RDs modeling biochemical processes in biomedical imaging, where u(x, t) and

v(x, t) represent concentrations of interacting species (e.g., activators and inhibitors). The system

dynamics are governed by:



∂u
∂t

= k1∆u + b1 − u−
vu

1 + qu2 , x ∈ Ω, t > 0,

∂v
∂t

= k2∆v + b2 −
vu

1 + qu2 , x ∈ Ω, t > 0,

∂u = ∂v = 0, x ∈ ∂Ω, t > 0,

u(x, a) = u0(x), v(x, a) = v0(x), x ∈ Ω,

(3.1)

where Ω is a bounded domain in Rn with sufficiently smooth boundary ∂Ω. Here k1, k2 > 0 are

diffusion coefficients, q > 0 regulates nonlinear saturation, and b1, b2 represent source terms. The

homogeneous Neumann boundary conditions ensure no flux across boundaries, preserving mass

within the domain. To capture memory effects and anomalous diffusion prevalent in biological

tissues, we reformulate the system using variable-order fractional calculus. The Caputo nabla

VFO difference operator C
∇
δ(t)
a replaces the classical derivative, yielding:

C
∇
δ(t)
a u(x, t) = k1∆u + b1 − u−

vu
1 + qu2 ,

C
∇
δ(t)
a v(x, t) = k2∆v + b2 −

vu
1 + qu2 .

(3.2)

For numerical implementation, we discretize the spatial domain Ω = [0, L] uniformly with grid

spacing ∆x. Defining m nodes such that xi+1 = xi + ∆x for i = 0, . . . , m, the Laplacian ∆Φ is

approximated via central differences:

∂2Φ(x, t)
∂x2 ≈

Φi−1(t) − 2Φi(t) + Φi+1(t)

(∆x)2 ≡
∆2Φi−1(t)

(∆x)2 . (3.3)

Applying this discretization to the fractional system (3.2), we obtain semi-discrete equations at

each grid point i: 
C
∇
δ
aui(t) =

k1

∆2
x

∆2ui−1(t) + b1 − ui(t) −
vi(t)ui(t)
1 + qu2

i (t)
,

C
∇
δ
avi(t) =

k2

∆2
x

∆2vi−1(t) + b2 −
vi(t)ui(t)
1 + qu2

i (t)
.

(3.4)

Periodic boundary conditions are imposed to ensure spatial consistency:

 u j−1(t) = um+ j−1(t),
v j−1(t) = vm+ j−1(t), j = 1, 2,

(3.5)

with initial conditions derived from continuous profiles:

ui (a) = u0 (xi) , vi (a) = v0 (xi) . (3.6)
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The system admits a spatially homogeneous EP (u∗, v∗) satisfying:
b1 − u∗i −

v∗i u
∗

i

1 + qu∗i
2 = 0,

b2 −
v∗i u
∗

i

1 + qu∗i
2 = 0,

(3.7)

which simplifies to the unique steady state:

(u∗, v∗) =
(
b1 − b2, b2

1 + q(b1 − b2)2

b1 − b2

)
, b1 , b2. (3.8)

Stability analysis requires solving the characteristic eigenvalue problem for the discrete Lapla-

cian: 
∆2χi−1(t) + λiχi(t) = 0,

χ0(t) = χm(t),
χ1(t) = χm+1(t),

(3.9)

whereλi are eigenvalues dictating diffusion modes. Substitutingλi into (3.9) gives the decoupled

dynamics per mode: 
C
∇
δ(t)
a ui(t) = −

k1

∆2
x
λiui(t) + b1 − ui(t) −

vi(t)ui(t)
1 + qu2

i (t)
,

C
∇
δ(t)
a vi(t) = −

k2

∆2
x
λivi(t) + b2 −

vi(t)ui(t)
1 + qu2

i (t)
.

(3.10)

4. Main Results

This section establishes the core analytical findings regarding the MLS of the FO-RDs. We begin

with a key Lipschitz-type inequality for the nonlinear reaction term, followed by our main stability

theorem and its proof.

Lemma 4.1 ( [39]). For any e : Na+1 → R, δ(t) ∈ (0, 1), a ∈ R, and t ∈Na, it holds that

C
∇
δ(t)
a |e(t)| ≤ sgn(e(t)) C

∇
δ(t)
a e(t). (4.1)

Lemma 4.2. The reaction term satisfies the uniform Lipschitz condition:∣∣∣∣∣∣ vi(t)ui(t)
1 + qu2

i (t)
−

v∗u∗

1 + qu∗2

∣∣∣∣∣∣ ≤ Q (|ui(t) − u∗|+ |vi(t) − v∗|) , (4.2)

where

Q ≥ max
{

5
4

k,
1

2
√

q

}
, |v∗| < k.

This lemma ensures the nonlinearity is controlled near equilibrium, with Q depending on the

saturation parameter q and the bound k for the inhibitor concentration.
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Theorem 4.1. Under the conditions

Θ = min
i=1,...,m

{
1 +

k1

∆2
x
λi −Q,

k2

∆2
x
λi −Q

}
> 0, (4.3)

q3 ≤ q2, (4.4)

λi ≥ ∆2
x max

{
1
k1

max
{

5
4

k,
1

2
√

q

}
,

1
k2

(
max

{
5
4

k,
1

2
√

q

}
− 1

)}
, (4.5)

the system (3.4) is tempered MLS at EP.

The minimum eigenvalue threshold λi ensures diffusion dominates reaction effects, while Θ > 0

guarantees contractive dynamics.

Proof. Define error variables eui(t) = ui(t) − u∗,

rvi(t) = vi(t) − v∗.
(4.6)

Substituting into (3.7) yields the error dynamics:
C
∇
δ(t)
a eui(t) = −

(
k1

∆2
x
λi + 1

)
eui(t) +

v∗u∗

1 + qu∗2
−

vi(t)ui(t)
1 + qu2

i (t)
,

C
∇
δ(t)
a rvi(t) = −

k2

∆2
x
λirvi(t) +

v∗u∗

1 + qu∗2
−

vi(t)ui(t)
1 + qu2

i (t)
.

(4.7)

Define the LF as:

V(t) =
m∑

i=1

(|eui(t)|+ |rvi(t)|) . (4.8)

Applying Lemmas 4.1-4.2 the fractional difference operator and the inequalities:

C
∇
δ(t)
a V(t) =

m∑
i=1

[
C
∇
δ(t)
a |eui(t)|+

C
∇
δ(t)
a |rvi(t)|

]
=

m∑
i=1

sign(eui(t))

− (
k1

∆2
x
λi + 1

)
eui(t) +

v∗u∗

1 + qu∗2
−

vi(t)ui(t)
1 + qu2

i (t)


+

m∑
i=1

sign(rvi(t))

− k2

∆2
x
λirvi(t) +

v∗u∗

1 + qu∗2
−

vi(t)ui(t)
1 + qu2

i (t)


≤

m∑
i=1

[
−

(
k1

∆2
x
λi + 1

)
|eui(t)|+ Q (|eui(t)|+ |rvi(t)|)

]
(4.9)

+
m∑

i=1

[
−

k2

∆2
x
λi|rvi(t)|+ Q (|eui(t)|+ |rvi(t)|)

]

= −
m∑

i=1

(
1 +

k1

∆2
x
λi −Q

)
|eui(t)| −

m∑
i=1

(
k2

∆2
x
λi −Q

)
|rvi(t)|
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≤ −Θ
m∑

i=1

(|eui(t)|+ |rvi(t)|)

= −ΘV(t) ≤ −Θ
q3

q2
V(t).

Hence, we obtain:

C
∇
δ(t)
a V(t) ≤ −Θ

q3

q2
V(t). (4.10)

According to Theorem 2.1 confirming the MLS of the EP.

�

5. Numerical Simulation

This section presents numerical simulations in one- and two-dimensional spatial domains to

validate the theoretical framework. We implement the variable-order fractional reaction-diffusion

system using the explicit Grünwald-Letnikov scheme for Caputo fractional derivatives and finite

difference spatial discretization.

The spatial domain is Ω = [0, 150] with t ∈ [0, 20]. Parameters are configured as:

Table 1. Model Parameters
Parameter k1 k2 a b1 b2 q k N M

Value 1.5 1.6 0 0.5 0.3 10 8 150 50

we obtain

Q = 10, λi ≥ 60, Θ ≥
2
3

. (5.1)

and the EP

(u∗, v∗) = (0.2, 7). (5.2)

Initial conditions are specified as:

(u0(xi), v0(xi)) =
(
1.5 + 0.2 cos

(
πxi

30

)
, 0.5 + 0.25 cos

(2πxi

75

))
. (5.3)
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Algorithm 1: Variable-order fractional solver
Input : Grid size M, spatial domain [0, L], final time T, time step ∆t
Output: Numerical solutions u and v over time

x← linspace(0, L, M)>

tspan ← linspace
(
0, T,

⌊
T
∆t

⌋)
Precompute δ(t)

u(:, 1)← 1.5 + 0.2 cos
(
πx
30

)
v(:, 1)← 0.5 + 0.25 cos

(
2πx
75

)
for n = 1 to length(tspan) − 1 do

c[0]← 1 // GL coefficient initialization

for k = 1 to n do

c[k]←
(
1− δ(tn)+1

k

)
c[k− 1]

end

∆u← circshift(un,−1) − 2un + circshift(un, 1)

∆v← circshift(vn,−1) − 2vn + circshift(vn, 1)

Reaction←
vn � un

1 + q (un � un)

RHSu ← k1 ∆u/(∆x)2 + b1 − un −Reaction

RHSv ← k2 ∆v/(∆x)2 + b2 −Reaction

Historyu ← −
∑n

k=1 c[k] un−k

Historyv ← −
∑n

k=1 c[k] vn−k

un+1 ← Historyu + (∆t)δ(tn) RHSu

vn+1 ← Historyv + (∆t)δ(tn) RHSv

end

Visualize u(x, t) and v(x, t)

Numerical outputs confirm theoretical stability predictions. Figure 1 shows activator u(x, t)
dynamics under VFO, while Figure 2 displays inhibitor v(x, t) evolution. The edge-preserving

characteristics are demonstrated in 2D simulations (Figures 3 and 4), confirming the method’s

efficacy for biomedical imaging applications.
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Figure 1. Concentration of activator u(x, t) with δ(t) = 0.8 + 0.1e−6πt/T
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Figure 3. 2D edge preservation in activator field (t = 10)
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Figure 4. 2D anisotropic diffusion in inhibitor field (t = 15)

Figure 1 demonstrates rapid smoothing of the activator u(x, t) due to strong diffusion (k1 = 1.5),

while Figure 2 shows slower inhibitor evolution owing to weaker reaction saturation (q = 10). In

2D simulations, Figure 3 exhibits superior edge preservation at t = 10 with fractional anisotropy,

contrasting with Figure 4’s isotropic diffusion at t = 15. These differences arise from:

(1) VFO δ(t) decaying from 0.9 to 0.8, enhancing initial memory effects.

(2) Higher diffusion coefficient k2 for inhibitors.

(3) Spatial frequency variations in initial conditions.

MLS is demonstrated by the bounded error decay ‖Φ(t)‖ ≤ w(Φ(a))Fδ2,β(µ, t, a)b in all simulations,

satisfying Theorem 4.1 conditions
(
Θ ≥

2
3

)
. The proposed VFO-RDs successfully models edge-

preserving anisotropic diffusion in biomedical images. Key observations include:

(1) Variable-order Caputo derivatives effectively capture tissue memory effects.

(2) MLS criteria ensure stability under diffusion-dominated regimes (λi ≥ 60).

(3) Numerical schemes preserve edges better than integer-order models, particularly in acti-

vator fields.

These findings enable improved medical image segmentation and feature detection. Future work

will explore clinical applications in tumor boundary identification and real-time implementation.

6. Conclusion

This paper proposed a novel VFO-RDs to model anisotropic diffusion for edge preservation

in biomedical imaging. Leveraging the Caputo nabla VFO difference operator, the proposed
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framework captures the memory-dependent nature of biological tissues while enabling rigorous

analysis through MLS criteria. We established sufficient conditions ensuring tempered MLS at

the EP by employing LFs and Lipschitz-type bounds on the nonlinear reaction term. Eigenvalue

constraints on the discrete Laplacian modes were derived to guarantee contractive dynamics,

leading to global stability results. Numerical schemes based on the explicit Grünwald-Letnikov

method demonstrated effective edge preservation in both 1D and 2D spatial domains under

different VFO scenarios. The numerical results confirm the theoretical predictions: the error

remains bounded over time and conforms to MLS conditions. The 2D simulations in particular

highlight the advantage of variable-order diffusion in retaining critical spatial features, offering

improvements over integer-order models. This research not only validates the stability of VFO-

RDs under MLS but also provides a viable approach for enhancing feature detection in biomedical

imaging. Future work will extend these results to higher-dimensional systems and explore real-

time clinical applications, such as tumor boundary tracking and image-guided interventions.
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