A Finite Volume Method Solution to the Two-Assets Generalized Black-Scholes Equation
Main Article Content
Abstract
The aim of this paper is to present a finite volume method (FVM) for solving numerically the two-assets generalized Black-Scholes equation. It it well-known that FVM is well-suited for solving problems involving hyperbolic and/or conservative laws mainly encountered in transport-diffusion and fluid dynamics problems. In this work, we attempt to use FVM for solving problems arising from market finance domain, in particular, the generalized multi-assets Black-Scholes problem. The discretization details and steps are presented for the two-assets problem. Then, numerical experiments are conducted on two main examples and show satisfactory results.
Article Details
References
- F. Black, M. Scholes, The Pricing of Options and Corporate Liabilities, J. Polit. Econ. 81 (1973), 637–654. https://www.jstor.org/stable/1831029.
- R.C. Merton, Theory of Rational Option Pricing, Bell J. Econ. Manag. Sci. 4 (1973), 141–183. https://doi.org/10.2307/3003143.
- W. Wyss, The Fractional Black-Scholes Equation, Fract. Calc. Appl. Anal. 3 (2000), 51–61. https://api.semanticscholar.org/CorpusID:123326106.
- Y. Chen, Numerical Methods for Pricing Multi-Asset Options, Thesis, University of Toronto, 2017.
- V.G. Ivancevic, Adaptive-Wave Alternative for the Black-Scholes Option Pricing Model, Cogn. Comput. 2 (2010), 17–30. https://doi.org/10.1007/s12559-009-9031-x.
- D. Lamberton, B. Lapeyre, Introduction au Calcul Stochastique Appliqué à la Finance, Ellipse, 2012.
- B. Lapeyre, E. Pardoux, R. Sentis, Méthodes de Monte-Carlo pour les Équations de Transport et de Diffusion, Springer, (1998).
- B. Bouchard, Monte Carlo Methods in Financial Engineering, Springer, 2003.
- P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer New York, 2003. https://doi.org/10.1007/978-0-387-21617-1.
- M.J. Tomas III, Finite Element Analysis and Option Pricing, PhD Thesis, Syracuse University, 1996.
- Y. Achdou, O. Pironneau, Computational Methods for Option Pricing, SIAM, 2005. https://doi.org/10.1137/1.9780898717495.
- J. Persson, Accurate Finite Difference Methods for Option Pricing, PhD Thesis, Acta Universitatis Upsaliensis, 2006.
- J. Zhao, M. Davison, R.M. Corless, Compact Finite Difference Method for American Option Pricing, J. Comput. Appl. Math. 206 (2007), 306–321. https://doi.org/10.1016/j.cam.2006.07.006.
- A. Andalaft-Chacur, M. Montaz Ali, J. González Salazar, Real Options Pricing by the Finite Element Method, Comput. Math. Appl. 61 (2011), 2863–2873. https://doi.org/10.1016/j.camwa.2011.03.070.
- N. Hilber, O. Reichmann, C. Schwab, C. Winter, Computational Methods for Quantitative Finance, Springer, Berlin, Heidelberg, 2013. https://doi.org/10.1007/978-3-642-35401-4.
- F. Racicot, R. Théoret, Finance Computationnelle et Gestion des Risques, Presses de l'Université du Québec, 2006. https://doi.org/10.2307/j.ctv18ph6c6.
- R. Eymard, T. Gallouët, R. Herbin, Finite Volume Methods, Handbook of Numerical Analysis, Volume 7, pp. 713–1018, Elsevier, 2000. https://doi.org/10.1016/S1570-8659(00)07005-8.
- B. Lapeyre, E. Temam, Competitive Monte Carlo Methods for the Pricing of Asian Options, J. Comput. Financ. 5 (2001), 39–57. https://doi.org/10.21314/jcf.2001.061.
- O. Guib'e, M'ethodes Num'eriques pour la Finance, Thesis, Université de Rouen, 2016.
- T. Barth, R. Herbin, M. Ohlberger, Finite Volume Methods: Foundation and Analysis, Wiley, 2017. https://doi.org/10.1002/9781119176817.ecm2010.
- S. Wang, A Novel Fitted Finite Volume Method for the Black-Scholes Equation Governing Option Pricing, IMA J. Numer. Anal. 24 (2004), 699–720. https://doi.org/10.1093/imanum/24.4.699.
- L. Angermann, S. Wang, Convergence of a Fitted Finite Volume Method for the Penalized Black–Scholes Equation Governing European and American Option Pricing, Numer. Math. 106 (2007), 1–40. https://doi.org/10.1007/s00211-006-0057-7.
- G.I. Ramírez-Espinoza, M. Ehrhardt, Conservative and Finite Volume Methods for the Convection-Dominated Pricing Problem, Adv. Appl. Math. Mech. 5 (2013), 759–790. https://doi.org/10.4208/aamm.12-m1216.
- D. Paré, K. Lamien, L. Some, Y. Paré, SOLVING GENERALIZED LINEAR MODEL OF Black-Scholes WITH CLASSICAL FINITE VOLUME METHOD, Int. J. Numer. Methods Appl. 20 (2021), 17–40. https://doi.org/10.17654/nm020010017.