A Finite Volume Method Solution to the Two-Assets Generalized Black-Scholes Equation

Main Article Content

Daouda Paré, Ibrahim Zangré, Kassiénou Lamien, P.O. Fabrice Ouédraogo, W. Olivier Sawadogo

Abstract

The aim of this paper is to present a finite volume method (FVM) for solving numerically the two-assets generalized Black-Scholes equation. It it well-known that FVM is well-suited for solving problems involving hyperbolic and/or conservative laws mainly encountered in transport-diffusion and fluid dynamics problems. In this work, we attempt to use FVM for solving problems arising from market finance domain, in particular, the generalized multi-assets Black-Scholes problem. The discretization details and steps are presented for the two-assets problem. Then, numerical experiments are conducted on two main examples and show satisfactory results.

Article Details

References

  1. F. Black, M. Scholes, The Pricing of Options and Corporate Liabilities, J. Polit. Econ. 81 (1973), 637–654. https://www.jstor.org/stable/1831029.
  2. R.C. Merton, Theory of Rational Option Pricing, Bell J. Econ. Manag. Sci. 4 (1973), 141–183. https://doi.org/10.2307/3003143.
  3. W. Wyss, The Fractional Black-Scholes Equation, Fract. Calc. Appl. Anal. 3 (2000), 51–61. https://api.semanticscholar.org/CorpusID:123326106.
  4. Y. Chen, Numerical Methods for Pricing Multi-Asset Options, Thesis, University of Toronto, 2017.
  5. V.G. Ivancevic, Adaptive-Wave Alternative for the Black-Scholes Option Pricing Model, Cogn. Comput. 2 (2010), 17–30. https://doi.org/10.1007/s12559-009-9031-x.
  6. D. Lamberton, B. Lapeyre, Introduction au Calcul Stochastique Appliqué à la Finance, Ellipse, 2012.
  7. B. Lapeyre, E. Pardoux, R. Sentis, Méthodes de Monte-Carlo pour les Équations de Transport et de Diffusion, Springer, (1998).
  8. B. Bouchard, Monte Carlo Methods in Financial Engineering, Springer, 2003.
  9. P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer New York, 2003. https://doi.org/10.1007/978-0-387-21617-1.
  10. M.J. Tomas III, Finite Element Analysis and Option Pricing, PhD Thesis, Syracuse University, 1996.
  11. Y. Achdou, O. Pironneau, Computational Methods for Option Pricing, SIAM, 2005. https://doi.org/10.1137/1.9780898717495.
  12. J. Persson, Accurate Finite Difference Methods for Option Pricing, PhD Thesis, Acta Universitatis Upsaliensis, 2006.
  13. J. Zhao, M. Davison, R.M. Corless, Compact Finite Difference Method for American Option Pricing, J. Comput. Appl. Math. 206 (2007), 306–321. https://doi.org/10.1016/j.cam.2006.07.006.
  14. A. Andalaft-Chacur, M. Montaz Ali, J. González Salazar, Real Options Pricing by the Finite Element Method, Comput. Math. Appl. 61 (2011), 2863–2873. https://doi.org/10.1016/j.camwa.2011.03.070.
  15. N. Hilber, O. Reichmann, C. Schwab, C. Winter, Computational Methods for Quantitative Finance, Springer, Berlin, Heidelberg, 2013. https://doi.org/10.1007/978-3-642-35401-4.
  16. F. Racicot, R. Théoret, Finance Computationnelle et Gestion des Risques, Presses de l'Université du Québec, 2006. https://doi.org/10.2307/j.ctv18ph6c6.
  17. R. Eymard, T. Gallouët, R. Herbin, Finite Volume Methods, Handbook of Numerical Analysis, Volume 7, pp. 713–1018, Elsevier, 2000. https://doi.org/10.1016/S1570-8659(00)07005-8.
  18. B. Lapeyre, E. Temam, Competitive Monte Carlo Methods for the Pricing of Asian Options, J. Comput. Financ. 5 (2001), 39–57. https://doi.org/10.21314/jcf.2001.061.
  19. O. Guib'e, M'ethodes Num'eriques pour la Finance, Thesis, Université de Rouen, 2016.
  20. T. Barth, R. Herbin, M. Ohlberger, Finite Volume Methods: Foundation and Analysis, Wiley, 2017. https://doi.org/10.1002/9781119176817.ecm2010.
  21. S. Wang, A Novel Fitted Finite Volume Method for the Black-Scholes Equation Governing Option Pricing, IMA J. Numer. Anal. 24 (2004), 699–720. https://doi.org/10.1093/imanum/24.4.699.
  22. L. Angermann, S. Wang, Convergence of a Fitted Finite Volume Method for the Penalized Black–Scholes Equation Governing European and American Option Pricing, Numer. Math. 106 (2007), 1–40. https://doi.org/10.1007/s00211-006-0057-7.
  23. G.I. Ramírez-Espinoza, M. Ehrhardt, Conservative and Finite Volume Methods for the Convection-Dominated Pricing Problem, Adv. Appl. Math. Mech. 5 (2013), 759–790. https://doi.org/10.4208/aamm.12-m1216.
  24. D. Paré, K. Lamien, L. Some, Y. Paré, SOLVING GENERALIZED LINEAR MODEL OF Black-Scholes WITH CLASSICAL FINITE VOLUME METHOD, Int. J. Numer. Methods Appl. 20 (2021), 17–40. https://doi.org/10.17654/nm020010017.