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Abstract. The aim of this paper is to present a finite volume method (FVM) for solving numerically the two-assets
generalized Black-Scholes equation. It it well-known that FVM is well-suited for solving problems involving hyperbolic
and/or conservative laws mainly encountered in transport-diffusion and fluid dynamics problems. In this work, we
attempt to use FVM for solving problems arising from market finance domain, in particular, the generalized multi-assets
Black-Scholes problem. The discretization details and steps are presented for the two-assets problem. Then, numerical

experiments are conducted on two main examples and show satisfactory results.

1. INTRODUCTION

Financial option pricing remains a challenge problem within the modern finance markets.
This is noticed in particular for the multi-asset model which are an essential extension of the
classical models in quantitative finance. Indeed, it allows a better understanding and pricing of
the derivative products, while offering the opportunity to reduce the global portfolio risk to any

holder of such option.
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The mathematical modeling of the multi-asset financial options leads to a multi-dimensional
stochastic partial differential equations (SPDE) system such as the so-called Black-Scholes-Merton
models [1,2] and its extensions [3-6]. In general, it is difficult, even impossible to address ana-
lytical solutions to these SPDE, due to the large number of variables and the complex financial
relationships between the assets. Thus, numerical methods which provide approximated solu-
tions have to be considered. During the past decades, several numerical methods have been
proposed to solve the Black-Scholes models equations. The widely used methods can be clas-
sified into two families : stochastic methods such as Monte-Carlo techniques [6-9,11,16,18,19],
and deterministic methods such as finite difference methods (FDM) [11-13,19], and finite element
methods (FEM) [10,11,14,15]. On the contrary, Finite volume methods (FVM) [17,20] are rarely
used to numerically solve the Black-Scholes models and its extensions. However let us these
references [21-23] where the authors propose a FVM solution to the Black-Scholes model. In the
previous work [24], we use FVM to solve numerically the Black-Scholes linear model with constant
parameters and the generalized linear model with satisfactory results.

In this work, we propose a FVM numerical solution of the two dimensional Black-Scholes
model. We present the FVM discretization steps and present numerical examples to illustrate the
performance of the method.

The paper is structured as follow : in Section 2 we recall the two-dimensional Black-Scholes
model equation which is completed with initial and limit conditions. In Section 3 we present
the steps of the FVM domain, time and space discretization details. Finally Section 4 presents

numerical simulations for both call and put with spread and basket options.

2. THE TWO-DIMENSIONAL BLACK-SCHOLES MODEL EQUATION

The initial Black-Scholes equation which involved one financial asset. It has been extended and
adapted for options pricing taking account multiple financial assets. The resulting mathematical
model is the so-called Black-Scholes multi-dimensional equation which is given as follows when

considering n assets :
oP - oP 1 v P
E(S, f) + ; (1’ - qz) Sla—sl(s, t) + E ijZ:1 pijaiajsisjm(sr t) - T’P(S, t) = 0,
P(S,T) = ¢(S),

where : P = P(Sy,---,Sy,t) designates the price of the option; (S,t) € (RY)"x[0,T]; S =

(S1,-++,Sn); Si and o; designate respectively the price and the volatility of assetifori =1,---,n;

2.1)

q; represents the dividend rate of S;; p;; is the correlation coefficient between S; and S; fori # j; ris
the risk-free interest rate; T denotes the the expiration date or maturity of the option; ¢ represents
the terminal condition. We recall that each asset price S; = S;(t) is governed by the one-dimension

Black-Scholes model under the risk-neutral probability as follows

ds; = S;[(r—g;)dt + 0;dW;], for i=1,---,n, (2.2)
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where Wy, - - -, W), designate correlated standard brownian motions and their correlation coefficient

is given by d(W;, W;) = p;;dt. When considering n = 2 assets, system (2.1) now reads

oP oP P 1 ,oFP 1, PP
or T mSiag T q)Sgg s 151352+2 272587

2

%P
+ p6162515285 35 —rP =0, Y(51,52,t) € [0, +00[X[0, +c0[X[0, T],

P(Sl,SZ,T> = ¢(51/S2); V(S1,Sz) € [0,‘-|-00[><[0; +00[,

(2.3)

where p = p1y is the correlation coefficient betweem S; and S».
We aim to solve system (2.3) using finite volume method (FVM). Therefore, we transform the
terminal condition into an initial condition through the variable change 7 = T —t. The system is

then completed with suited boundary conditions and now reads

op op P 1,0 FP 1, PP
T + (q )Sl 95, + (q 7’)5285 2 151 852 2 252352

%P
— p010251S2=—== + 1P =0, ¥(S1,52,7) € [0, +00[%x][0, +0[x[0, T],

05105,
P(Sl,SZ,O) = qb(Sl,Sz), V(Sl,Sz) € [O, +00[X[0, +00[,
P(0,52,7) = f(S2,7), ¥(S2,7) € [0, +oo[x[0, T], (24)
P(51,0,7) = g(S1,7), Y(S51,7) € [0, +00[X[0, T],

P(S1,S2,7) = h(Sz,t), YT €[0,T], S1 = +0o0,

P(51,52,T> = k(S1,T), V1 € [O,T], Sy = 400,

For the sake of convenience, let us set: x = S1, y = S, a(x) = (g1 —7)S1, b(y) = (g2 —71)S2,

c(x) = ; 0253, d(y) = %(7252 e(x,y) = po10251S2. Thus, system (2.4) now reads

oP oP oP J*P *P
5. tal)o-+ b(y)@ —c(x) 53 —d(y)a—yz

2
() g+ 1P = 0, (1, 3,7) € [0,+o0{x(0, +o0[x[, T,

P(x,,0) = b(x,y), Y(x,y) € [0, +o0[x[0, +o],
P(0,y,7) = f(3,7), ¥(y,7) € [0, +o0[x[0, T], 25)
P(x,0,7) = g(x,7), ¥(x,7) € [0, +00[X[0, T},

P(x,y,t) =h(y,7), Yt €[0,T], x > +oo,

P(x,y,7) =k(x,7), YT €[0,T], y > 400,
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In order to approximate solution of system (2.5) with the FVM, we need to bound the computational
domain. Precisely, we replace the infinite space domain [0, +-00[X [0, +co[ by the rectangular domain
[0, Xmax] X [0, ¥max]. Finaly the two-dimensional Black-Scholes model problem now reads

JP JP JP 2’p %P
5 —|—a(x)$ + b<y)8_y - C(x)ﬁ —d(y)a—yz

9P
—e(x,vy) o2y +rP =0, ¥Y(x,y,7) € [0, Xmax] X [0, Ymax] X [0, T},

P(x,y,0) = ¢(x,y), Y(x,¥) € [0, Xmax] X [0, Ymax],
P(0,y,7) = f(y,7), ¥(y,7) € [0, ymax) X [0, T, (2.6)
P(x,0,7) = g(x,7), Y(x,7) € [0, Xmax] X [0, T],

P(Xmax, Y, T) = h(y,7), Y(y,7) € [0, Ymax) X [0, T},

P(X, Ymax, T) = k(x,7), Y(x,7) € [0, Xmax) X [0, T},
3. FINITE VOLUME DISCRETIZATION OF THE MODEL PROBLEM

3.1. Computational domain discretization. Let us set ) = [0, Xmax] X [0, Ymax] X [0, T], the compu-
tational domain established section 2. Then an uniform cartesian discretization of () is performed
as following :
e [0, Xxmax| is subdivised into (N + 1) equidistant nodes xo, x1 - - - , Xn,-1, ¥n,, with mesh step
Ax = Xmax/Ny; let xop = 0, XN, = Xmax be the exterior nodes; there are (N, — 1) interior
nodes, which are xy - -+, xy,—1. We set the nodes x;,1/0 = x;+ Ax/2fori=1,--- ,N,—-1;
® [0, Ymax| is treated the same way with (N, + 1) equidistant nodes yo, y1,- -, Yn,-1, YN, with
mesh step Ay = Ymax/Ny;
e the time domain [0,T] is treated the same way with (N; + 1) equidistant discret times
70, 71 o N1 N with time step AT = T/N;.
We now set the control volumes as VZ]. = KixHj X T, where K; =|xi_1/2,%iy1/2[, Hj =
Yi-1/2. Y172l Tn = (7", "] fori = 1,...,Ny -1, j = 1,....Nyj—1land n = 0,...,N; - 1.
Thus, let us notice that there exist four types of control volumes : first control volumes, interior

control volumes, mixtes control volumes and latest control volumes.

3.2. Finite volume-compatible form of the model problem. In order to perform the FVM dis-

cretization on the model problem, the PDE of (2.6)

JP JP JdP 2’P 2’p 2’p
5> +ﬂ(x)£ + b(y)a—y - C(X)E - d(y)a—yz —e(x, y)m + 1P =0, (3.1)

needs to be re-written into the following conservative form

oP JF(P) dG(P) J*P J*P J*P
— + + c(x)=— + d(y)8_y2 +e(x,y) %y + S(P) (3.2)

ot ox 5y~ M3z
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where

F(P(x,y,7)) = a(x)P(x,y,7), G(P(x,y,7)) = b(x)P(x,y,7),

S(P(x,y,1)) = [W + 5y "

3.3. Control volume computations. The FVM consists in integrating the conservative law (3.2)

on each control volume Vl?lj, which yields

Xit+1/2 Yj+1/2 G ap JdG(P
f f ] f [8P ) + (P )]dxdydr
Xic1/2 YYj-172 VT a
Xit1/2 y]+1/2f [ 0*P
+d(y)=— ] dxdydt
L 1/2 Lj 1/2 " 8x2 ayz
Xiy1/2 Yj+1/2 s
f f f [ S(P)] dxdydt (3.3)
Xi-1/2 VYYj-12 VT y

When we then integrate the first-order derivatives and divide each term by AxAy, equation (3.3)

becomes

1 Xiy1/2 Yj+1/2 et 1 g
AxAyf f [P(x,y,*c )—P(x,y,1 )] xdy

Xi-1/2 Yi-1/2

n+1

Yitr1/2
A.’Xf AyAT f i I;’ xl+l/2/ Y, T)) —-F (P(Xi_l/z, Y, ’C))] d]/AT

Xit+1/2 H_H
AyAxATfm j; P(x,yj11/2,7 )) F(P(X,yj—uz,f))]dxAT

X2 (Y T 2P 2P
AxAy],; f j; [C( )8x2 +d(y) ayz]dxdyah

i-1/2 Yi-1/2

fx1+1/2 fym/zf”“[
+ S(P)] dxdydt (3.4)
AXAy Xi-12 YYj-172 xdy

For the sake of simplicity, let us define the following mean values and numerical fluxes

Xir1/2 y/+1/2 )
Pt = f f P(x,y,7")dxdy,
g AXAy Xi-1/2 Yi-1/2

n+1

Yi+1/2
pr_ Pty = A
T( i-1,j z,]) A]/AT j;] " ﬁn xl 1/2rer))dy T,
Yivi2 T
PVl Pi’l — )
T( i+1 ]) AyAT L s ﬁ xl+1/2’ y’ T)) dyAT’ (3 5)

Xi+1/2
n n —
Q(Pl] 1,P.,].) = AXA’L'f P(x,yj-1/2,T ))dxAT,

Xi-1/2

Xit1/2
GPL Pl = oan f f P(X, Yj+1/2,7) ) dxA.

Xi-1/2

n+1
i+l




6 Int. . Anal. Appl. (2026), 24:28

Using the above notations and using explicite Euler discretization for the temporal derivative, then

equation (3.4) now reads

At AT
1
Py Pl R (TP PLy) - ﬂp?up*fj))u—y(gﬂ’” Pi) =GPl L)

Xit1/2 y]+1/2f [ 8213 aZp
+d(y)=— ]dxdyd’c
AxAyfl s f/ e Jo 8x2 oy?

Xit1/2 y]+1/zf [
S(P)] dxdydt (3.6)
AxAyfz 1/2 f/ 1/2 ™ y

To complete the FVM iterative scheme we need to discretize of the diffusion and source terms.

Thus, using centered finite differences to approximate the second-order derivative terms, we get

Xit1/2  (Yj+1/2 P! —ZPn + P!
A f f f dxdydT ~ At ARl 2 =l
AxXBY Jsi ) Vi IT . - ?;n -
Xit1/2 j+1/2 T 17 —+ 1
f f f dxdydT ~ Avd LWL
AXAy Xi-1/2 Yi-1/2 T Ay

12

1 Sz (Vi T e(x, )a dxdude AT.ors Pl ~ Pl ~ Pilgjpa TP o
AxAy Y 9x xdy Y “h 4AxAy ’

Xi-1/2 Yj-1/2 T
fxxﬂ/z fyj+l/2f s
P)dxdydt
AXA]/ Xi-1/2 YYj-1/2 "
(3.7)

where ¢; = c(x;), d; = d(y;) and e;; = e(x;,y;). Finally, the general FVM scheme on the interior

12

ATS(PL),

control volumes (i.e. i =2,...,Ny-2,j=2,...,N,—=2,n=0,...,N; — 1) is given by the following

relation
prit —pn _ AT (F(P1)-F(PL, ) - At (G(Pr,,) -G(PL)
ij T Ax i-1,j Ay i,j+1 i,j
4 BTG —2PY + P! LA — 2P+ P! 3.8
sz i+1,j i-1,j Ay i,j+1 i,j—1 ()
L AT e i iy Yy s(pr)
4AXAy i+1,j+1 i+1,j-1 i-1,j+1 i-1,j-1 T i,j/7

where the numerical fluxes ¥ and G are approximated by a first-order upwind scheme. This
scheme is adapted for the non-interior control volumes to take account the boundaries. These
specific FVM schemes are given below.

1) For Vfl withn =0,...,N;—1:

At AT
P =P - & (F(Ps,) - F(P'f,l))—A—y(G(P'fz)—G(P'f,l))
Atcy Atdy
t agz (451 —12P1 8P, ) g (4P, ~12P, 8PL)  (39)
4A’L’€1,1

SAvhy (P2, - P2 =P, +Pr )+ ATS(PY ).
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2) For VT].withj =2,...,Ny—2andn=0,..., N;— 1
AT AT
+1 _
Piit =Py = 5 (B~ F(PL )= 3 (6P ) ~G(PE)
A’C.Cl A’C.dl
+ (4py; - 12y, + 8Py )+ oo (P12 P (3.10)
L2 _prpr )fars(er)
3AxAy \ 2741 1217 1011 T Do T-ol,)-
3) For Vl?ll withi=2,...,Ny—2andn=20,...,N;—1:
At At
1
Pt =Py = S (PP —F(PL) - T (G(PL) - G(P)
AT.CZ' AT.dl
+ 32 (P2, —P! +PL )+ g (4Py, —12P! +8PY) (3.11)
ATCL (pn  _pi_pn 4Pt ) ATS(P!
+ 3AxAy ( i+12 7 Cir10 " Picia T 1'—1,0) +ATS(P).
4) For VK]x_l,Ny_l withn=0,...,N;—1:
At
1
P?\rj—l,Ny—l - an—l,Ny—l T Ax (F(Pan—l,Ny—l) - F(PnNX—Z,Ny—1>)
At
~ 5y (GO ) =GP, )
AT (gpn 12P" 4p"
T 3AX2 NoNy-1 T 2PN N, -1 T AN o N1
Atdy,1 : ; (3.12)
+ 3A12 (8PNX—1,Ny h 12PNX—1,Ny—1 + SPNx—l,Ny—Z)
4AT'eNx_1,Ny_l " " . "
T 9AXAY (P Nu Ny P NuNy—2 P N:-2,N, +P Nx—Z,Ny—Z)
ATS(PY, yy,1)-
5) For VI’GX_L]. withj=2,... N,-2andn=0,...,N; - 1:
At At
1 _
PR = PRy~ g (PR ) —F(PR o)) = A—y(G( Nt ) G (PR 1))
BTN (gpn  _1opn 1 gpn
+ 3AX2 Nyj Ny-1,j + Ny=2,j
At.d;
j
+ Ay? (P?\lx—l,j-i-l - 2P?\fx—1,j + p;z\]x—l,j—l) (3.13)
AT'eNx_l'j n n n n
+ 3AxAy (PNx—l,j-H h PNx—l,j—l B PNx—z,j+1 + PNx—Z,j—l)
AT.S(P?, . ).

Nx-1,j
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6) For V" withi=2,..., Ny—-2andn=0,...,N;—1:

i,Ny-1
At At
1
P%y—l - PZNy—l T Ax (F(PgNy—l) - F<P?—1,Ny—1)) - A_y (G(PZNy—1> B G(PZNy—z))
AT.Ci
T Ax2 (P?+1,Ny—1 B PZNy—l + P?—l,Ny—l)
AT.dNy_l " " " (3 14)
v (8P1.,Ny —12P2 8Pl.,Ny_2) .
AT.ei’Ny_l n n " n
T 3AxAy (Pi+1,Ny—1 - Pi+l,Ny—2 B Pi—l,Ny T Pi—l,Ny—Z)
+ AT.S(PZNy_l).
7) For V;’/Ny_l withn =0,...,N;—1:
At At
1
P =Pl = 3 (PPt ~FPx, 1)) = 5y (O(Phn, 1) =GPy, )
AT.C1
+ 3Ax2 (SPg,Ny—l - 12P;11,Ny—1 + 4P§,Ny—1)
AT.dN -1
+ ——2—(8P*,, —12P" . +4P" (3.15)
3A12 1N, 1,N,-1 1,N,-2 :
4.A’L'.€1/Ny_1 " " . -
+ 9AXAy ( 2N, Pz,Ny—z B Po,Ny + Po,Ny—z)
+ AT.S(PT,Ny_l).
8) For Vgix—l,l withn =0,...,N;—1:
At At
1
P?\I—:—l,l = Pan—l,l - E (F( ?\Ix—l,l) - F( Ilzlx—z,l)) - A_y (G( Zr(Ix—l,Z) - G(Plri]x—l,l))
AT.CNx_l
iy (8Py, ,—12P%,  +4Py )
AT.dl
T ag (8Pr o —12Py | +4PYy ) (3.16)
AT en -1 (Pr =Pl =PL Ly +PL )
9AXAY N2 " Ng0 7 Ny=22 " T Ne-2,0
AT.S(P]’@x_lll).

4. NUMERICAL EXAMPLES

4.1. Implementation and numerical setting. In this section we present some numerical experi-
ments of the FVM applied to the Black-Scholes two-dimensional model problem (2.4).

Regarding to the final and boundary conditions, many options with two assets can be considered.
For our experiments, we only consider two main cases : basket option and spread option. The
implementation and computations are performed with MATLAB software.

The model problem inner parameters are set to the following values : g1 = 0.03, g0 = 0.02,
r = 0.01, p = 0.025, 01 = 0.05, 02 = 0.1, Stmax = S2max = 200, T = 1 and K = 70. For the

computational domain discretization,we use N, = 200, N, = 130 and N; = 400.
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4.2. Spread option. A spread option is a multi-asset option where the payoff is calculated from

the difference betweem two underlying assets prices S; and S,.

4.2.1. Call spread option. The payoff of the call spread option is given by ¢(S1, 52, T) = max(S; —
S> —K,0) and the boundary conditions are

P(0,5,,1t) max (=S, — Ke™"(T=1),0),
P(51,0,t) = max(S; —Ke"(T-1),0), 4.1)
P(Sl maxr 52/ t) == max(51 max — SZ - Ke™ (T_t)/ 0)/ ‘
P(S1,S2maxt) = max(Si—Samax —KeT),0).
FVM numerical approximation of the call spread option values at different times are presented on
tigure (1).

hs2)

By N s g =
JrrrrRErs
s/

8 o

(c) Call spread option at t = 0.5 (d) Call spread option at t = 0.75
Ficure 1. FVM numerical solution to the Black-Scholes two dimensional model

problem for a call spread option.

4.2.2. Put spread option. The payoff of the put spread option is given by ¢ (51,52, T) = max(K —
(S1—52),0) and the boundary conditions are

P(0,S,,t) max(Ke™" (T + 8,,0) =0
P(51,0,t) = max(Ke"(T-) —5;,0), 42)
P(Simax,S2,t) = max(Ke T — (S 1ax = S2),0), '
P(S1,Somax,t) = max(Ke T = (S; = Sy max),0).
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FVM numerical approximation of the put spread option values at different times are presented on
tigure (2).

(b) Put spread option at t = 0.25

(c) Put spread option at t = 0.5 (d) Put spread option at t = 0.75

Ficure 2. FVM numerical solution to the Black-Scholes two dimensional model

problem for a put spread option.

4.2.3. Analysis of spread options results. Figures 1(a), 1(b), 1(c) and 1(d) show the FVM approxima-
tions of the call spread option respectively at times t = 0, t = 0.25,t = 0.5 and t = 0.75. We
observe that the call spread option price increases when S; drecreases and S; increases (see table
4.2.3). This is consistent with a behavior of a call spread option which is based on the difference
between S and S5.

Moreover, figures 2(a), 2(b), 2(c) and 2(d) show the FVM approximations of the put spread
option respectively at timest = 0,t = 0.25,t = 0.5 and t = 0.75. We can notice that the put spread
option price increases when S; increases and S, decreases (see table 4.2.3).

Times t=0 t=0.25 0.50 t=0.75

Maximum value of call spread option | 133.4139 | 132.5743 | 131.7240 | 130.8631

Maximum value of put spread option | 266.5861 | 267.4257 | 268.2760 | 269.1369
TaBLE 1. Maximum values of call and put spread options computed by FVM at
times 0, 0.25, 0.5 and 0.75.
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4.3. Basket option. A basket option is more specifically an exotic option where the payoff is based

on a weighted sum or average of the values of a portfolio or basket of underlying assets.

4.3.1. Call basket option. The payoff of the call basket option is given by ¢(S1, Sz, T) = max(aS; +
BS2 — K, 0) and the boundary conditions are

P(0,S2,t) = max(BS2 - Ke (1), 0),
P(S1,0,t) = max(aS; —Ke"(T71),0),
P(S1max, S2,t) max (@S max + pS2 — Ke™" (T, 0),
P(S1,S2max,t) = max(aS; + BSamax — Ke (T, 0),

(4.3)

where a and § are positive reals and represent respectively the weights of assets S; and S,. For
the numerical experiments we set @ = 1, § = 2. FVM numerical approximation of the call basket

option values at different times are computed and presented on figure (3).

(a) Call basket optionatt =0 (b) Call basket option at t = 0.25

(c) Call basket option at t = 0.5 (d) Call basket option at t = 0.75

Ficure 3. FVM numerical solution to the Black-Scholes two dimensional model

problem for a call basket option.

4.3.2. Put basket option. The payoff of the put basket option is given by ¢(S1,S2, T) = max(K —
(aS1 + BS2),0) and the boundary conditions are

P(0,S5,t) = max(Ke"T™) - BS,,0) =0,

—t)
P(51,0,t) = max(Ke T —aS;,0), (4.4)
P(Sl max/s SZr t) - maX(Ke_r(T_t) - (0(81 max T ,BSZ)/ O)/ .
P(Slr SZmaX/ t) = maX(Ke_r(T_t) - (0(51 + ﬁSZmax)/ 0)1
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where a and B are positive reals and represent respectively the weights of assets S; and Sy. For
the numerical experiments we set @ = 1, § = 2. FVM numerical approximation of the put basket
option values at different times are presented on figure (4).

(a) Put basket option att =0 (b) Put basket option at ¢t = 0.25

(c) Put basket option att = 0.5

(d) Put basket option at t = 0.75

Ficure 4. FVM numerical solution to the Black-Scholes two dimensional model
problem for a put basket option.

4.3.3. Analysis of basket options results. Figures 3(a), 3(b), 3(c) and 3(d) show the FVM approxima-
tions of the call basket option respectively at timest = 0, = 0.25,t = 0.5and t = 0.75. We observe
that the call basket option price increases rapidly when S; and S increase (see table 4.3.3) and that
is consistent with a behavior of a call basket option which is based on the weighted average of the
underlying assets S; and S».

Moreover, figures 4(a), 4(b), 4(c) and 4(d) show the FVM approximations of the put basket option
respectively at times t = 0,t = 0.25,t = 0.5 and t = 0.75. The put basket option has nul price for

when the values of S; and S are near the origin.

Times t=0 t =025 0.50 t=10.75
Maximum value of call basket option | 533.413 | 532.5764 | 531.7283 | 530.8696
Maximum value of put basket option | 66.58.5861 | 67.4257 | 68.2760 | 69.1369

TaBLE 2. Maximum values of call and put basket options computed by FVM at

times 0, 0.25, 0.5 and 0.75.
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5. CoNCLUSION

In this paper we present the multi-assets Black-Scholes equation. We then apply the finite
volume method to discretize the two-dimensional model problem. Numerical tests have been
achieved and provided satisfactory results. This shows that the FVM is an efficient method to
approximate numerical solutions to multi-dimensional Black-Scholes equation.

However, stability issues has not been considered in this work. Thus, future work should
pursue more investigations on the FVM schemes stability and more generally, extend FVM to

others models in finance.

Data Availability Statement: The MATLAB codes used to computes the results of this study are

available from the corresponding author upon request.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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