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Abstract. The aim of this paper is to present a finite volume method (FVM) for solving numerically the two-assets

generalized Black-Scholes equation. It it well-known that FVM is well-suited for solving problems involving hyperbolic

and/or conservative laws mainly encountered in transport-diffusion and fluid dynamics problems. In this work, we

attempt to use FVM for solving problems arising from market finance domain, in particular, the generalized multi-assets

Black-Scholes problem. The discretization details and steps are presented for the two-assets problem. Then, numerical

experiments are conducted on two main examples and show satisfactory results.

1. Introduction

Financial option pricing remains a challenge problem within the modern finance markets.

This is noticed in particular for the multi-asset model which are an essential extension of the

classical models in quantitative finance. Indeed, it allows a better understanding and pricing of

the derivative products, while offering the opportunity to reduce the global portfolio risk to any

holder of such option.
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The mathematical modeling of the multi-asset financial options leads to a multi-dimensional

stochastic partial differential equations (SPDE) system such as the so-called Black-Scholes-Merton

models [1, 2] and its extensions [3–6]. In general, it is difficult, even impossible to address ana-

lytical solutions to these SPDE, due to the large number of variables and the complex financial

relationships between the assets. Thus, numerical methods which provide approximated solu-

tions have to be considered. During the past decades, several numerical methods have been

proposed to solve the Black-Scholes models equations. The widely used methods can be clas-

sified into two families : stochastic methods such as Monte-Carlo techniques [6–9, 11, 16, 18, 19],

and deterministic methods such as finite difference methods (FDM) [11–13,19], and finite element

methods (FEM) [10, 11, 14, 15]. On the contrary, Finite volume methods (FVM) [17, 20] are rarely

used to numerically solve the Black-Scholes models and its extensions. However let us these

references [21–23] where the authors propose a FVM solution to the Black-Scholes model. In the

previous work [24], we use FVM to solve numerically the Black-Scholes linear model with constant

parameters and the generalized linear model with satisfactory results.

In this work, we propose a FVM numerical solution of the two dimensional Black-Scholes

model. We present the FVM discretization steps and present numerical examples to illustrate the

performance of the method.

The paper is structured as follow : in Section 2 we recall the two-dimensional Black-Scholes

model equation which is completed with initial and limit conditions. In Section 3 we present

the steps of the FVM domain, time and space discretization details. Finally Section 4 presents

numerical simulations for both call and put with spread and basket options.

2. The two-dimensional Black-Scholes model equation

The initial Black-Scholes equation which involved one financial asset. It has been extended and

adapted for options pricing taking account multiple financial assets. The resulting mathematical

model is the so-called Black-Scholes multi-dimensional equation which is given as follows when

considering n assets :
∂P
∂t

(S, t) +
n∑

i=1

(r− qi) Si
∂P
∂Si

(S, t) +
1
2

n∑
i, j=1

ρi jσiσ jSiS j
∂2P
∂Si∂S j

(S, t) − rP(S, t) = 0,

P(S, T) = φ(S),

(2.1)

where : P = P(S1, · · · , Sn, t) designates the price of the option; (S, t) ∈ (R?
+)

n
× [0, T]; S =

(S1, · · · , Sn); Si and σi designate respectively the price and the volatility of asset i for i = 1, · · · , n;

qi represents the dividend rate of Si; ρi j is the correlation coefficient between Si and S j for i , j; r is

the risk-free interest rate; T denotes the the expiration date or maturity of the option; φ represents

the terminal condition. We recall that each asset price Si = Si(t) is governed by the one-dimension

Black-Scholes model under the risk-neutral probability as follows

dSi = Si [(r− qi)dt + σidWi] , for i = 1, · · · , n, (2.2)
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where W1, · · · , Wn designate correlated standard brownian motions and their correlation coefficient

is given by d〈Wi, W j〉 = ρi jdt. When considering n = 2 assets, system (2.1) now reads

∂P
∂t

+ (r− q1)S1
∂P
∂S1

+ (r− q2)S2
∂P
∂S2

+
1
2
σ2

1S2
1
∂2P
∂S2

1

+
1
2
σ2

2S2
2
∂2P
∂S2

2

+ ρσ1σ2S1S2
∂2P

∂S1∂S2
− rP = 0, ∀(S1, S2, t) ∈ [0,+∞[×[0,+∞[×[0, T],

P(S1, S2, T) = φ(S1, S2), ∀(S1, S2) ∈ [0;+∞[×[0;+∞[,

(2.3)

where ρ = ρ12 is the correlation coefficient betweem S1 and S2.

We aim to solve system (2.3) using finite volume method (FVM). Therefore, we transform the

terminal condition into an initial condition through the variable change τ = T − t. The system is

then completed with suited boundary conditions and now reads

∂P
∂τ

+ (q1 − r)S1
∂P
∂S1

+ (q2 − r)S2
∂P
∂S2
−

1
2
σ2

1S2
1
∂2P
∂S2

1

−
1
2
σ2

2S2
2
∂2P
∂S2

2

− ρσ1σ2S1S2
∂2P

∂S1∂S2
+ rP = 0, ∀(S1, S2, τ) ∈ [0,+∞[×[0,+∞[×[0, T],

P(S1, S2, 0) = φ(S1, S2), ∀(S1, S2) ∈ [0,+∞[×[0,+∞[,

P(0, S2, τ) = f (S2, τ), ∀(S2, τ) ∈ [0,+∞[×[0, T],

P(S1, 0, τ) = g(S1, τ), ∀(S1, τ) ∈ [0,+∞[×[0, T],

P(S1, S2, τ) = h(S2, τ), ∀τ ∈ [0, T], S1 → +∞,

P(S1, S2, τ) = k(S1, τ), ∀τ ∈ [0, T], S2 → +∞,

(2.4)

For the sake of convenience, let us set : x = S1, y = S2, a(x) = (q1 − r)S1, b(y) = (q2 − r)S2,

c(x) =
1
2
σ2

1S2
1, d(y) =

1
2
σ2

2S2
2, e(x, y) = ρσ1σ2S1S2. Thus, system (2.4) now reads

∂P
∂τ

+ a(x)
∂P
∂x

+ b(y)
∂P
∂y
− c(x)

∂2P
∂x2 − d(y)

∂2P
∂y2

− e(x, y)
∂2P
∂x∂y

+ rP = 0, ∀(x, y, τ) ∈ [0,+∞[×[0,+∞[×[0, T],

P(x, y, 0) = φ(x, y), ∀(x, y) ∈ [0,+∞[×[0,+∞[,

P(0, y, τ) = f (y, τ), ∀(y, τ) ∈ [0,+∞[×[0, T],

P(x, 0, τ) = g(x, τ), ∀(x, τ) ∈ [0,+∞[×[0, T],

P(x, y, τ) = h(y, τ), ∀τ ∈ [0, T], x→ +∞,

P(x, y, τ) = k(x, τ), ∀τ ∈ [0, T], y→ +∞,

(2.5)
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In order to approximate solution of system (2.5) with the FVM, we need to bound the computational

domain. Precisely, we replace the infinite space domain [0,+∞[×[0,+∞[ by the rectangular domain

[0, xmax] × [0, ymax]. Finaly the two-dimensional Black-Scholes model problem now reads

∂P
∂τ

+ a(x)
∂P
∂x

+ b(y)
∂P
∂y
− c(x)

∂2P
∂x2 − d(y)

∂2P
∂y2

− e(x, y)
∂2P
∂x∂y

+ rP = 0, ∀(x, y, τ) ∈ [0, xmax] × [0, ymax] × [0, T],

P(x, y, 0) = φ(x, y), ∀(x, y) ∈ [0, xmax] × [0, ymax],

P(0, y, τ) = f (y, τ), ∀(y, τ) ∈ [0, ymax] × [0, T],

P(x, 0, τ) = g(x, τ), ∀(x, τ) ∈ [0, xmax] × [0, T],

P(xmax, y, τ) = h(y, τ), ∀(y, τ) ∈ [0, ymax] × [0, T],

P(x, ymax, τ) = k(x, τ), ∀(x, τ) ∈ [0, xmax] × [0, T],

(2.6)

3. Finite volume discretization of the model problem

3.1. Computational domain discretization. Let us set Ω = [0, xmax]× [0, ymax]× [0, T], the compu-

tational domain established section 2. Then an uniform cartesian discretization of Ω is performed

as following :

• [0, xmax] is subdivised into (Nx + 1) equidistant nodes x0, x1 · · · , xNx−1, xNx , with mesh step

∆x = xmax/Nx; let x0 = 0, xNx = xmax be the exterior nodes; there are (Nx − 1) interior

nodes, which are x1 · · · , xNx−1. We set the nodes xi±1/2 = xi ± ∆x/2 for i = 1, · · · , Nx − 1;

• [0, ymax] is treated the same way with (Ny + 1) equidistant nodes y0, y1, · · · , yNy−1, yNy with

mesh step ∆y = ymax/Ny;

• the time domain [0, T] is treated the same way with (Nt + 1) equidistant discret times

τ0, τ1
· · · , τNt−1, τNt with time step ∆τ = T/Nt.

We now set the control volumes as Vn
i, j = Ki × H j × Tn, where Ki =]xi−1/2, xi+1/2[, H j =

]y j−1/2, y j+1/2[, Tn = [τn, τn+1] for i = 1, . . . , Nx − 1, j = 1, . . . , Ny − 1 and n = 0, . . . , Nt − 1.

Thus, let us notice that there exist four types of control volumes : first control volumes, interior

control volumes, mixtes control volumes and latest control volumes.

3.2. Finite volume-compatible form of the model problem. In order to perform the FVM dis-

cretization on the model problem, the PDE of (2.6)

∂P
∂τ

+ a(x)
∂P
∂x

+ b(y)
∂P
∂y
− c(x)

∂2P
∂x2 − d(y)

∂2P
∂y2 − e(x, y)

∂2P
∂x∂y

+ rP = 0, (3.1)

needs to be re-written into the following conservative form

∂P
∂τ

+
∂F(P)
∂x

+
∂G(P)
∂y

= c(x)
∂2P
∂x2 + d(y)

∂2P
∂y2 + e(x, y)

∂2P
∂x∂y

+ S(P) (3.2)
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where
F(P(x, y, τ)) = a(x)P(x, y, τ), G(P(x, y, τ)) = b(x)P(x, y, τ),

S(P(x, y, τ)) =
[
a(x)
∂x

+
b(y)
∂y
− r

]
P(x, y, τ).

3.3. Control volume computations. The FVM consists in integrating the conservative law (3.2)

on each control volume Vn
i, j, which yields

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

∫ τn+1

τn

[
∂P
∂τ

+
∂F(P)
∂x

+
∂G(P)
∂y

]
dxdydτ

=

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

∫ τn+1

τn

[
c(x)

∂2P
∂x2 + d(y)

∂2P
∂y2

]
dxdydτ

+

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

∫ τn+1

τn

[
e(x, y)

∂2P
∂x∂y

+ S(P)
]

dxdydτ (3.3)

When we then integrate the first-order derivatives and divide each term by ∆x∆y, equation (3.3)

becomes

1
∆x∆y

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

[
P(x, y, τn+1) − P(x, y, τn)

]
dxdy

+
∆τ
∆x

1
∆y∆τ

∫ y j+1/2

y j−1/2

∫ τn+1

τn
[F (P(xi+1/2, y, τ)) − F (P(xi−1/2, y, τ))] dy∆τ

+
∆τ
∆y

1
∆x∆τ

∫ xi+1/2

xi−1/2

∫ τn+1

τn

[
G

(
P(x, y j+1/2, τ)

)
− F

(
P(x, y j−1/2, τ)

)]
dx∆τ

=
1

∆x∆y

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

∫ τn+1

τn

[
c(x)

∂2P
∂x2 + d(y)

∂2P
∂y2

]
dxdydτ

+
1

∆x∆y

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

∫ τn+1

τn

[
e(x, y)

∂2P
∂x∂y

+ S(P)
]

dxdydτ (3.4)

For the sake of simplicity, let us define the following mean values and numerical fluxes

Pn
i, j =

1
∆x∆y

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

P(x, y, τn)dxdy,

F (Pn
i−1, j, Pn

i, j) =
1

∆y∆τ

∫ y j+1/2

y j−1/2

∫ τn+1

τn
F (P(xi−1/2, y, τ)) dy∆τ,

F (Pn
i, j, Pn

i+1, j) =
1

∆y∆τ

∫ y j+1/2

y j−1/2

∫ τn+1

τn
F (P(xi+1/2, y, τ)) dy∆τ,

G(Pn
i, j−1, Pn

i, j) =
1

∆x∆τ

∫ xi+1/2

xi−1/2

∫ τn+1

τn
F
(
P(x, y j−1/2, τ)

)
dx∆τ,

G(Pn
i, j, Pn

i, j+1) =
1

∆x∆τ

∫ xi+1/2

xi−1/2

∫ τn+1

τn
F
(
P(x, y j+1/2, τ)

)
dx∆τ.

(3.5)
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Using the above notations and using explicite Euler discretization for the temporal derivative, then

equation (3.4) now reads

Pn+1
i, j − Pn

i, j +
∆τ
∆x

(
F (Pn

i, j, Pn
i+1, j) −F (Pn

i−1, j, Pn
i, j)

)
+

∆τ
∆y

(
G(Pn

i, j, Pn
i, j+1) −G(P

n
i, j−1, Pn

i, j)
)

=
1

∆x∆y

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

∫ τn+1

τn

[
c(x)

∂2P
∂x2 + d(y)

∂2P
∂y2

]
dxdydτ

+
1

∆x∆y

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

∫ τn+1

τn

[
e(x, y)

∂2P
∂x∂y

+ S(P)
]

dxdydτ (3.6)

To complete the FVM iterative scheme we need to discretize of the diffusion and source terms.

Thus, using centered finite differences to approximate the second-order derivative terms, we get

1
∆x∆y

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

∫ τn+1

τn
c(x)

∂2P
∂x2 dxdydτ ' ∆τ.ci.

Pn
i+1, j − 2Pn

i, j + Pn
i−1, j

∆x2

1
∆x∆y

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

∫ τn+1

τn
d(y)

∂2P
∂y2 dxdydτ ' ∆τ.d j.

Pn
i, j+1 − 2Pn

i, j + Pn
i, j−1

∆y2 ,

1
∆x∆y

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

∫ τn+1

τn
e(x, y)

∂2P
∂x∂y

dxdydτ ' ∆τ.ei, j.
Pn

i+1, j+1 − Pn
i+1, j−1 − Pn

i−1, j+1 + Pn
i−1, j−1

4∆x∆y
,

1
∆x∆y

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

∫ τn+1

τn
S(P)dxdydτ ' ∆τ.S(Pn

i, j),

(3.7)

where ci = c(xi), di = d(y j) and ei, j = e(xi, y j). Finally, the general FVM scheme on the interior

control volumes (i.e. i = 2, . . . , Nx − 2, j = 2, . . . , Ny − 2, n = 0, . . . , Nt − 1) is given by the following

relation

Pn+1
i, j = Pn

i, j −
∆τ
∆x

(
F(Pn

i, j) − F(Pn
i−1, j)

)
−

∆τ
∆y

(
G(Pn

i, j+1) −G(Pn
i, j)

)
+

∆τ.ci

∆x2

(
Pn

i+1, j − 2Pn
i, j + Pn

i−1, j

)
+

∆τ.d j

∆y2

(
Pn

i, j+1 − 2Pn
i, j + Pn

i, j−1

)
+

∆τ.ei, j

4∆x∆y

(
Pn

i+1, j+1 − Pn
i+1, j−1 − Pn

i−1, j+1 + Pn
i−1, j−1

)
+ ∆τ.S(Pn

i, j),

(3.8)

where the numerical fluxes F and G are approximated by a first-order upwind scheme. This

scheme is adapted for the non-interior control volumes to take account the boundaries. These

specific FVM schemes are given below.

1) For Vn
1,1 with n = 0, . . . , Nt − 1:

Pn+1
1,1 = Pn

1,1 −
∆τ
∆x

(
F(Pn

2,1) − F(Pn
1,1)

)
−

∆τ
∆y

(
G(Pn

1,2) −G(Pn
1,1)

)
+

∆τ.c1

3∆x2

(
4Pn

2,1 − 12Pn
1,1 + 8Pn

0,1

)
+

∆τ.d1

3∆y2

(
4Pn

1,2 − 12Pn
1,1 + 8Pn

1,0

)
+

4∆τ.e1,1

9∆x∆y

(
Pn

2,2 − Pn
2,0 − Pn

0,2 + Pn
0,0

)
+ ∆τ.S(Pn

1,1).

(3.9)
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2) For Vn
1, j with j = 2, . . . , Ny − 2 and n = 0, . . . , Nt − 1:

Pn+1
1, j = Pn

1, j −
∆τ
∆x

(
F(Pn

2, j) − F(Pn
1, j)

)
−

∆τ
∆y

(
G(Pn

1, j+1) −G(Pn
1, j)

)
+

∆τ.c1

3∆x2

(
4Pn

2, j − 12Pn
1, j + 8Pn

0, j

)
+

∆τ.d1

∆y2

(
Pn

1, j+1 − 2Pn
1, j + Pn

1, j−1

)
+

∆τ.e1, j

3∆x∆y

(
Pn

2, j+1 − Pn
2, j−1 − Pn

0, j+1 + Pn
0, j−1

)
+ ∆τ.S(Pn

1, j).

(3.10)

3) For Vn
i,1 with i = 2, . . . , Nx − 2 and n = 0, . . . , Nt − 1:

Pn+1
i,1 = Pn

i,1 −
∆τ
∆x

(
F(Pn

i+1,1) − F(Pn
i,1)

)
−

∆τ
∆y

(
G(Pn

i,2) −G(Pn
i,1)

)
+

∆τ.ci

∆x2

(
Pn

i+1,1 − Pn
i,1 + Pn

i−1,1

)
+

∆τ.d1

3∆y2

(
4Pn

i,2 − 12Pn
i,1 + 8Pn

i,0

)
+

∆τ.ei,1

3∆x∆y

(
Pn

i+1,2 − Pn
i+1,0 − Pn

i−1,2 + Pn
i−1,0

)
+ ∆τ.S(Pn

i,1).

(3.11)

4) For Vn
Nx−1,Ny−1 with n = 0, . . . , Nt − 1:

Pn+1
Nx−1,Ny−1 = Pn

Nx−1,Ny−1 −
∆τ
∆x

(
F(Pn

Nx−1,Ny−1) − F(Pn
Nx−2,Ny−1)

)
−

∆τ
∆y

(
G(Pn

Nx−1,Ny−1) −G(Pn
Nx−1,Ny−2)

)
+

∆τ.cNx−1

3∆x2

(
8Pn

Nx,Ny−1 − 12Pn
Nx−1,Ny−1 + 4Pn

Nx−2,Ny−1

)
+

∆τ.dNy−1

3∆y2

(
8Pn

Nx−1,Ny
− 12Pn

Nx−1,Ny−1 + 8Pn
Nx−1,Ny−2

)
+

4∆τ.eNx−1,Ny−1

9∆x∆y

(
Pn

Nx,Ny
− Pn

Nx,Ny−2 − Pn
Nx−2,Ny

+ Pn
Nx−2,Ny−2

)
+ ∆τ.S(Pn

Nx−1,Ny−1).

(3.12)

5) For Vn
Nx−1, j with j = 2, . . . , Ny − 2 and n = 0, . . . , Nt − 1:

Pn+1
Nx−1, j = Pn

Nx−1, j −
∆τ
∆x

(
F(Pn

Nx−1, j) − F(Pn
Nx−2, j)

)
−

∆τ
∆y

(
G(Pn

Nx−1, j) −G(Pn
Nx−1, j−1)

)
+

∆τ.cNx−1

3∆x2

(
8Pn

Nx, j − 12Pn
Nx−1, j + 4Pn

Nx−2, j

)
+

∆τ.d j

∆y2

(
Pn

Nx−1, j+1 − 2Pn
Nx−1, j + Pn

Nx−1, j−1

)
+

∆τ.eNx−1, j

3∆x∆y

(
Pn

Nx−1, j+1 − Pn
Nx−1, j−1 − Pn

Nx−2, j+1 + Pn
Nx−2, j−1

)
+ ∆τ.S(Pn

Nx−1, j).

(3.13)
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6) For Vn
i,Ny−1 with i = 2, . . . , Nx − 2 and n = 0, . . . , Nt − 1:

Pn+1
i,Ny−1 = Pn

i,Ny−1 −
∆τ
∆x

(
F(Pn

i,Ny−1) − F(Pn
i−1,Ny−1)

)
−

∆τ
∆y

(
G(Pn

i,Ny−1) −G(Pn
i,Ny−2)

)
+

∆τ.ci

∆x2

(
Pn

i+1,Ny−1 − Pn
i,Ny−1 + Pn

i−1,Ny−1

)
+

∆τ.dNy−1

3∆y2

(
8Pn

i,Ny
− 12Pn

i,Ny−1 + 8Pn
i,Ny−2

)
+

∆τ.ei,Ny−1

3∆x∆y

(
Pn

i+1,Ny−1 − Pn
i+1,Ny−2 − Pn

i−1,Ny
+ Pn

i−1,Ny−2

)
+ ∆τ.S(Pn

i,Ny−1).

(3.14)

7) For Vn
1,Ny−1 with n = 0, . . . , Nt − 1:

Pn+1
1,Ny−1 = Pn

1,Ny−1 −
∆τ
∆x

(
F(Pn

2,Ny−1) − F(Pn
1,Ny−1)

)
−

∆τ
∆y

(
G(Pn

1,Ny−1) −G(Pn
1,Ny−2)

)
+

∆τ.c1

3∆x2

(
8Pn

0,Ny−1 − 12Pn
1,Ny−1 + 4Pn

2,Ny−1

)
+

∆τ.dNy−1

3∆y2

(
8Pn

1,Ny
− 12Pn

1,Ny−1 + 4Pn
1,Ny−2

)
+

4∆τ.e1,Ny−1

9∆x∆y

(
Pn

2,Ny
− Pn

2,Ny−2 − Pn
0,Ny

+ Pn
0,Ny−2

)
+ ∆τ.S(Pn

1,Ny−1).

(3.15)

8) For Vn
Nx−1,1 with n = 0, . . . , Nt − 1:

Pn+1
Nx−1,1 = Pn

Nx−1,1 −
∆τ
∆x

(
F(Pn

Nx−1,1) − F(Pn
Nx−2,1)

)
−

∆τ
∆y

(
G(Pn

Nx−1,2) −G(Pn
Nx−1,1)

)
+

∆τ.cNx−1

3∆x2

(
8Pn

Nx,1 − 12Pn
Nx−1,1 + 4Pn

Nx−2,1

)
+

∆τ.d1

3∆y2

(
8Pn

Nx−1,0 − 12Pn
Nx−1,1 + 4Pn

Nx−1,2

)
+

4∆τ.eNx−1,1

9∆x∆y

(
Pn

Nx,2 − Pn
Nx,0 − Pn

Nx−2,2 + Pn
Nx−2,0

)
+ ∆τ.S(Pn

Nx−1,1).

(3.16)

4. Numerical examples

4.1. Implementation and numerical setting. In this section we present some numerical experi-

ments of the FVM applied to the Black-Scholes two-dimensional model problem (2.4).

Regarding to the final and boundary conditions, many options with two assets can be considered.

For our experiments, we only consider two main cases : basket option and spread option. The

implementation and computations are performed with MATLAB software.

The model problem inner parameters are set to the following values : q1 = 0.03, q2 = 0.02,

r = 0.01, ρ = 0.025, σ1 = 0.05, σ2 = 0.1, S1 max = S2 max = 200, T = 1 and K = 70. For the

computational domain discretization,we use Nx = 200, Ny = 130 and Nt = 400.
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4.2. Spread option. A spread option is a multi-asset option where the payoff is calculated from

the difference betweem two underlying assets prices S1 and S2.

4.2.1. Call spread option. The payoff of the call spread option is given by φ(S1, S2, T) = max(S1 −

S2 −K, 0) and the boundary conditions are

P(0, S2, t) = max(−S2 −Ke−r(T−t), 0),

P(S1, 0, t) = max(S1 −Ke−r(T−t), 0),

P(S1 max, S2, t) = max(S1 max − S2 −Ke−r(T−t), 0),

P(S1, S2 max, t) = max(S1 − S2 max −Ke−r(T−t), 0).

(4.1)

FVM numerical approximation of the call spread option values at different times are presented on

figure (1).

(a) Call spread option at t = 0 (b) Call spread option at t = 0.25

(c) Call spread option at t = 0.5 (d) Call spread option at t = 0.75

Figure 1. FVM numerical solution to the Black-Scholes two dimensional model

problem for a call spread option.

4.2.2. Put spread option. The payoff of the put spread option is given by φ(S1, S2, T) = max(K −
(S1 − S2), 0) and the boundary conditions are

P(0, S2, t) = max(Ke−r(T−t) + S2, 0) = 0,

P(S1, 0, t) = max(Ke−r(T−t)
− S1, 0),

P(S1 max, S2, t) = max(Ke−r(T−t)
− (S1 max − S2), 0),

P(S1, S2 max, t) = max(Ke−r(T−t)
− (S1 − S2 max), 0).

(4.2)
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FVM numerical approximation of the put spread option values at different times are presented on

figure (2).

(a) Put spread option at t = 0 (b) Put spread option at t = 0.25

(c) Put spread option at t = 0.5 (d) Put spread option at t = 0.75

Figure 2. FVM numerical solution to the Black-Scholes two dimensional model

problem for a put spread option.

4.2.3. Analysis of spread options results. Figures 1(a), 1(b), 1(c) and 1(d) show the FVM approxima-

tions of the call spread option respectively at times t = 0, t = 0.25, t = 0.5 and t = 0.75. We

observe that the call spread option price increases when S1 drecreases and S2 increases (see table

4.2.3). This is consistent with a behavior of a call spread option which is based on the difference

between S1 and S2.

Moreover, figures 2(a), 2(b), 2(c) and 2(d) show the FVM approximations of the put spread

option respectively at times t = 0, t = 0.25, t = 0.5 and t = 0.75. We can notice that the put spread

option price increases when S1 increases and S2 decreases (see table 4.2.3).

Times t = 0 t = 0.25 0.50 t = 0.75

Maximum value of call spread option 133.4139 132.5743 131.7240 130.8631

Maximum value of put spread option 266.5861 267.4257 268.2760 269.1369
Table 1. Maximum values of call and put spread options computed by FVM at

times 0, 0.25, 0.5 and 0.75.
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4.3. Basket option. A basket option is more specifically an exotic option where the payoff is based

on a weighted sum or average of the values of a portfolio or basket of underlying assets.

4.3.1. Call basket option. The payoff of the call basket option is given by φ(S1, S2, T) = max(αS1 +

βS2 −K, 0) and the boundary conditions are

P(0, S2, t) = max(βS2 −Ke−r(T−t), 0),

P(S1, 0, t) = max(αS1 −Ke−r(T−t), 0),

P(S1 max, S2, t) = max(αS1 max + βS2 −Ke−r(T−t), 0),

P(S1, S2 max, t) = max(αS1 + βS2 max −Ke−r(T−t), 0),

(4.3)

where α and β are positive reals and represent respectively the weights of assets S1 and S2. For

the numerical experiments we set α = 1, β = 2. FVM numerical approximation of the call basket

option values at different times are computed and presented on figure (3).

(a) Call basket option at t = 0 (b) Call basket option at t = 0.25

(c) Call basket option at t = 0.5 (d) Call basket option at t = 0.75

Figure 3. FVM numerical solution to the Black-Scholes two dimensional model

problem for a call basket option.

4.3.2. Put basket option. The payoff of the put basket option is given by φ(S1, S2, T) = max(K −
(αS1 + βS2), 0) and the boundary conditions are

P(0, S2, t) = max(Ke−r(T−t)
− βS2, 0) = 0,

P(S1, 0, t) = max(Ke−r(T−t)
− αS1, 0),

P(S1 max, S2, t) = max(Ke−r(T−t)
− (αS1 max + βS2), 0),

P(S1, S2 max, t) = max(Ke−r(T−t)
− (αS1 + βS2 max), 0),

(4.4)
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where α and β are positive reals and represent respectively the weights of assets S1 and S2. For

the numerical experiments we set α = 1, β = 2. FVM numerical approximation of the put basket

option values at different times are presented on figure (4).

(a) Put basket option at t = 0 (b) Put basket option at t = 0.25

(c) Put basket option at t = 0.5 (d) Put basket option at t = 0.75

Figure 4. FVM numerical solution to the Black-Scholes two dimensional model

problem for a put basket option.

4.3.3. Analysis of basket options results. Figures 3(a), 3(b), 3(c) and 3(d) show the FVM approxima-

tions of the call basket option respectively at times t = 0, t = 0.25, t = 0.5 and t = 0.75. We observe

that the call basket option price increases rapidly when S1 and S2 increase (see table 4.3.3) and that

is consistent with a behavior of a call basket option which is based on the weighted average of the

underlying assets S1 and S2.

Moreover, figures 4(a), 4(b), 4(c) and 4(d) show the FVM approximations of the put basket option

respectively at times t = 0, t = 0.25, t = 0.5 and t = 0.75. The put basket option has nul price for

when the values of S1 and S2 are near the origin.

Times t = 0 t = 0.25 0.50 t = 0.75

Maximum value of call basket option 533.413 532.5764 531.7283 530.8696

Maximum value of put basket option 66.58.5861 67.4257 68.2760 69.1369
Table 2. Maximum values of call and put basket options computed by FVM at

times 0, 0.25, 0.5 and 0.75.
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5. Conclusion

In this paper we present the multi-assets Black-Scholes equation. We then apply the finite

volume method to discretize the two-dimensional model problem. Numerical tests have been

achieved and provided satisfactory results. This shows that the FVM is an efficient method to

approximate numerical solutions to multi-dimensional Black-Scholes equation.

However, stability issues has not been considered in this work. Thus, future work should

pursue more investigations on the FVM schemes stability and more generally, extend FVM to

others models in finance.

Data Availability Statement: The MATLAB codes used to computes the results of this study are

available from the corresponding author upon request.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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