Spherical Curves and Their Rigidity in Metric Spaces with Lower Curvature Bounds

Main Article Content

Areeyuth Sama-Ae

Abstract

In this paper, we examine geometric relationships between metric spaces with curvature bounded below and their corresponding model spaces of constant curvature. Let \(\gamma\) be a closed spherical curve in a metric space whose curvature is bounded below by \(K\), lying at a distance \(r < \tfrac{\pi}{2\sqrt{K}}\) from a point. Let \(\gamma^{\prime}\) denote the circle of radius \(r\) centered at the corresponding point in the model space of constant curvature \(K\). Under suitable geometric equivalence conditions—namely, the preservation of pairwise distances between corresponding points of \(\gamma\) and \(\gamma^{\prime}\), the isometry of convex hulls of corresponding geodesic triangles, and the equality of arc lengths or total curvature—we show that the geodesic surface enclosed by \(\gamma\) is isometric to the region bounded by \(\gamma^{\prime}\). This result offers a foundational geometric characterization of metric spaces with curvature bounded below through their model counterparts and provides a framework for further study of total curvature, convexity, and isometric embeddings in such spaces.

Article Details

References

  1. D.V. Alekseevskij, E.B. Vinberg, A.S. Solodovnikov, Geometry of Spaces of Constant Curvature, in: Encyclopaedia of Mathematical Sciences, Springer, Berlin, Heidelberg, 1993: pp. 1–138. https://doi.org/10.1007/978-3-662-02901-5_1.
  2. S.B. Alexander, R.L. Bishop, Comparison Theorems for Curves of Bounded Geodesic Curvature in Metric Spaces of Curvature Bounded Above, Differ. Geom. Appl. 6 (1996), 67–86. https://doi.org/10.1016/0926-2245(96)00008-3.
  3. S.B. Alexander, R.L. Bishop, The Fary-Milnor Theorem in Hadamard Manifolds, Proc. Am. Math. Soc. 126 (1998), 3427–3436. https://doi.org/10.1090/s0002-9939-98-04423-2.
  4. A.D. Alexandrov, Theory of Curves Based on the Approximation by Polygonal Lines, Thesis, Nauchnaya Sessiya Leningradskogo University, Tezisy Dokladov, 1946.
  5. A.D. Aleksandrov, V.N. Berestovskii, I.G. Nikolaev, Generalized Riemannian Spaces, Russ. Math. Surv. 41 (1986), 1–54. https://doi.org/10.1070/rm1986v041n03abeh003311.
  6. A.D. Alexandrov, Y.G. Reshetnyak, General Theory of Irregular Curves, Springer, Dordrecht, 1989. https://doi.org/10.1007/978-94-009-2591-5.
  7. L. Ambrosio, N. Gigli, G. Savaré, Metric Measure Spaces with Riemannian Ricci Curvature Bounded from Below, Duke Math. J. 163 (2014), 1405–1490. https://doi.org/10.1215/00127094-2681605.
  8. W. Ballmann, Lectures on Spaces of Nonpositive Curvature, Birkhäuser, Basel, 1995. https://doi.org/10.1007/978-3-0348-9240-7.
  9. K. Borsuk, Sur la Courbure Totale des Lignes Ferm'ees, Ann. Soc. Polon. Math. 20 (1947), 251–265.
  10. F. Brickell, C.C. Hsiung, The Total Absolute Curvature of Closed Curves in Riemannian Manifolds, J. Differ. Geom. 9 (1974), 177–193. https://doi.org/10.4310/jdg/1214432100.
  11. M.R. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer, Heidelberg, 1999. https://doi.org/10.1007/978-3-662-12494-9.
  12. D. Burago, Y. Burago, S. Ivanov, A Course in Metric Geometry, American Mathematical Society, Providence, 2001. https://doi.org/10.1090/gsm/033.
  13. Y. Burago, M. Gromov, G. Perel'man, A.D. Alexandrov Spaces with Curvature Bounded Below, Russ. Math. Surv. 47 (1992), 1–58. https://doi.org/10.1070/rm1992v047n02abeh000877.
  14. J. Cheeger, T.H. Colding, On the Structure of Spaces with Ricci Curvature Bounded Below. I, J. Differ. Geom. 46 (1997), 406–480. https://doi.org/10.4310/jdg/1214459974.
  15. S.S. Chern, R.K. Lashof, On the Total Curvature of Immersed Manifolds, Am. J. Math. 79 (1957), 306–318. https://doi.org/10.2307/2372684.
  16. J. Douglas, Solution of the Problem of Plateau, Trans. Am. Math. Soc. 33 (1931), 263–321. https://doi.org/10.2307/1989472.
  17. R. Espínola, C. Li, G. López, Nearest and Farthest Points in Spaces of Curvature Bounded Below, J. Approx. Theory 162 (2010), 1364–1380. https://doi.org/10.1016/j.jat.2010.02.007.
  18. W. Fenchel, "Uber Kr"ummung und Windung Geschlossener Raumkurven, Math. Ann. 101 (1929), 238–252.
  19. S. Halbeisen, On Tangent Cones of Alexandrov Spaces with Curvature Bounded Below, Manuscripta Math. 103 (2000), 169–182. https://doi.org/10.1007/s002290070018.
  20. A. Honda, C. Tanaka, Y. Yamauchi, The Total Absolute Curvature of Closed Curves with Singularities, Adv. Geom. 25 (2025), 93–104. https://doi.org/10.1515/advgeom-2024-0024.
  21. M.C. López, V.F. Mateos, J.M. Masqué, Total Curvature of Curves in Riemannian Manifolds, Differ. Geom. Appl. 28 (2010), 140–147. https://doi.org/10.1016/j.difgeo.2009.10.008.
  22. C. Maneesawarng, Y. Lenbury, Total Curvature and Length Estimate for Curves in CAT(K) Spaces, Differ. Geom. Appl. 19 (2003), 211–222. https://doi.org/10.1016/s0926-2245(03)00031-7.
  23. J.W. Milnor, On the Total Curvature of Knots, Ann. Math. 52 (1950), 248–257. https://doi.org/10.2307/1969467.
  24. S. Naya, N. Innami, A Comparison Theorem for Steiner Minimum Trees in Surfaces with Curvature Bounded Below, Tohoku Math. J. 65 (2013), 131–157. https://doi.org/10.2748/tmj/1365452629.
  25. A. Petrunin, Parallel Transportation for Alexandrov Space with Curvature Bounded Below, Geom. Funct. Anal. 8 (1998), 123–148. https://doi.org/10.1007/s000390050050.
  26. C. Phokaew, A. Sama-ae, Some Rigidity Theorems of Closed Geodesic Polygons and Spherical Curves in Metric Spaces with Curvature Bounded Below, Eur. J. Pure Appl. Math. 17 (2024), 3932–3944. https://doi.org/10.29020/nybg.ejpam.v17i4.5571.
  27. Y.G. Reshetnyak, Inextensible Mappings in a Space of Curvature No Greater Than $K$, Sov. Math. J. 9 (1968), 683–689. https://doi.org/10.1007/bf02199105.
  28. A. Sama-Ae, C. Maneesawarng, Geometry of Curves on Spheres in CAT(k) Spaces, Southeast Asian Bull. Math. 32 (2008), 767–778.
  29. A. Sama-Ae, A. Phon-on, Total Curvature and Some Characterizations of Closed Curves in CAT(k) Spaces, Geom. Dedicata 199 (2018), 281–290. https://doi.org/10.1007/s10711-018-0349-y.
  30. A. Sama-Ae, A. Phon-on, N. Makaje, A. Hazanee, A Distance Between Two Points and Nearest Points in a Metric Space of Curvature Bounded Below, Thai J. Math. Special Issue (2022), 229–239.
  31. A. Sama-Ae, A. Phon-on, N. Makaje, A. Hazanee, P. Riyapan, Some Characterizations of a Closed Geodesic Polygon and a Closed Spherical Curve in a CAT(k) Space, Thai J. Math. 23 (2025), 185–196.
  32. S. Sasaki, On the Total Curvature of a Closed Curve, Jpn. J. Math.: Trans. Abstr. 29 (1959), 118–125. https://doi.org/10.4099/jjm1924.29.0_118.
  33. J. Szenthe, On the Total Curvature of Closed Curves in Riemannian Manifolds, Publ. Math. Debr. 15 (2022), 99–105. https://doi.org/10.5486/pmd.1968.15.1-4.15.
  34. E. Teufel, On the Total Absolute Curvature of Closed Curves in Spheres, Manuscripta Math. 57 (1986), 101–108. https://doi.org/10.1007/bf01172493.
  35. E. Teufel, The Isoperimetric Inequality and the Total Absolute Curvature of Closed Curves in Spheres, Manuscripta Math. 75 (1992), 43–48. https://doi.org/10.1007/bf02567070.
  36. Y. Tsukamoto, On the Total Absolute Curvature of Closed Curves in Manifolds of Negative Curvature, Math. Ann. 210 (1974), 313–319. https://doi.org/10.1007/bf01434285.
  37. A.C.M. van Rooij, The Total Curvature of Curves, Duke Math. J. 32 (1965), 313–324. https://doi.org/10.1215/s0012-7094-65-03232-1.