Int. J. Anal. Appl. (2026), 24:9

International Journal of Analysis and Applications

Spherical Curves and Their Rigidity in Metric Spaces with Lower Curvature Bounds

Areeyuth Sama-Ae”

Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla
University, Pattani Campus, Pattani, 94000, Thailand

*Corresponding author: areeyuth.s@psu.ac.th

Abstract. In this paper, we examine geometric relationships between metric spaces with curvature bounded below and
their corresponding model spaces of constant curvature. Let y be a closed spherical curve in a metric space whose
curvature is bounded below by K, lying at a distance r < #K from a point. Let y” denote the circle of radius r
centered at the corresponding point in the model space of constant curvature K. Under suitable geometric equivalence
conditions—namely, the preservation of pairwise distances between corresponding points of y and y’, the isometry of
convex hulls of corresponding geodesic triangles, and the equality of arc lengths or total curvature—we show that the
geodesic surface enclosed by y is isometric to the region bounded by )’. This result offers a foundational geometric
characterization of metric spaces with curvature bounded below through their model counterparts and provides a

framework for further study of total curvature, convexity, and isometric embeddings in such spaces.

1. INTRODUCTION

The theory of metric spaces with curvature bounded below offers a powerful framework for
doing geometry on non-smooth and singular spaces. It allows geometers to prove important
theorems about the structure, topology, and geometry of a wide array of objects, unifying the
study of smooth manifolds, convex surfaces, and various limit spaces under a common geometric
principle. Burago et al. [13] provided an extensive account of the theory of metric spaces with
curvature bounded below. Several studies have examined various geometric properties of metric
spaces with curvature bounded below. Ambrosio et al. [7] studied metric measure spaces whose
Riemannian Ricci curvature is bounded from below, while Cheeger and Colding [14] analyzed the
resulting structural features. Petrunin [25] investigated parallel transport in Alexandrov spaces
with lower curvature bounds. Naya and Innami [24] obtained comparison theorems for Steiner

minimal trees on such surfaces. Halbeisen [19] focused on tangent cones in Alexandrov spaces of
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curvature bounded below, and Espinola [17] examined nearest and farthest point problems in these
spaces. Sama-Ae et al. [30] studied distances between points and their nearest-point projections.

Research on the total curvature of closed curves is essential because it connects local bending
with global geometric properties. It plays a key role in comparison geometry and supports
rigidity theorems that relate curves to model spaces. The total curvature also provides a consistent
framework for analyzing non-smooth curves and has applications in physics, biology, and material
science, making it a fundamental tool in modern geometry. The total curvature of a curve serves as
a key invariant connecting local geometry to global topology. Fenchel’s Theorem shows that every
closed curve has total curvature at least 27r, while the Fary—-Milnor Theorem reveals that knotted
curves exceed 47, demonstrating the interplay between geometry and topology. Defined without
differential tools, the total curvature quantifies shape complexity and has broad applications,
highlighting how a curve’s global form arises from its accumulated local bending.

The curvature of a curve measures how quickly its tangent vector turns, indicating how much
it deviates from a straight line. Pointwise curvature is this rate at a single point, while total
curvature is the sum of all these changes along the entire curve, found by integrating pointwise
curvature. For a smooth curve, curvature quantifies the curve’s turn rate. The pointwise curvature
shows the instantaneous rate of turning, and the total curvature is the integral of these local values
over the curve’s length. The study of total curvature dates back to the work of Fenchel [18],
who in 1929 proved that any closed curve in three-dimensional Euclidean space possesses total
curvature at least 21, with equality holding precisely when the curve is a convex planar curve.
Subsequently, Borsuk [9] and Milnor [23] generalized this result to n-dimensional Euclidean spaces.
Alexandrov [4] further developed lower and upper curvature bounds for metric spaces lacking
Riemannian structures, generalizing classical curvature concepts to arbitrary metric spaces [37].
Sasaki [32] established a strengthened form of Fenchel’s theorem by applying Douglas’s work on
the Plateau problem [16] together with the Gauss—-Bonnet theorem. In 1974, Tsukamoto [36] proved
that in a complete simply connected Riemannian manifold with negative sectional curvature, the
total curvature of a smooth closed curve exceeds 27t. Subsequent studies broadened this framework
to encompass closed curves in Riemannian manifolds with non-positive curvature as well as in
hyperbolic spaces [10,21,33]. A detailed exposition of this theory was presented in [5], where
total curvature was introduced through the total rotation of geodesic polygons inscribed in the
closed curve and approaching it arbitrarily closely. Additional commentary and development on
the subject can be found in [6,27]. Chern [15] addressed total curvature of immersed manifolds,
and later works by van Rooij [37], Brickell and Hsiung [10]. Investigations in spherical geometries
by Teufel [34,35] connected total curvature with isoperimetric inequalities, while Honda et al. [20]
extended these studies to curves with singularities.

This concept was subsequently extended to CAT(0) spaces by Alexander and Bishop [2, 3],
who showed that the total curvature of any closed curve is bounded below by 27, with equality

occurring only when the curve forms a geodesic bigon or bounds a convex region isometric to
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a planar convex subset. Building on this foundation, Maneesawarng and Lenbury [22] further
developed the theory of total curvature in CAT(K) spaces, establishing a framework for analyzing
curves in spaces of bounded curvature. Within the setting of CAT(K) spaces, Sama-Ae and Ma-
neesawarng [28] investigated the geometric properties of curves on spheres. Extending this work,
Sama-Ae and Phon-On [29] characterized closed curves that bound geodesic surfaces isometric
to disks in the model space, employing measures such as arc length, total curvature, and chord
length. Later, Sama-Ae et al. [31] generalized these results to closed spherical curves enclosing
geodesic surfaces isometric to disks in the model space. Phokeaw and Sama-Ae [26] demonstrated
that in metric spaces with curvature bounded below, a totally geodesic surface bounded by a
spherical curve is isometric to the corresponding region in Mk, provided certain distance and
angle conditions are satisfied. In the present paper, we introduce additional conditions that guar-
antee the totally geodesic surface enclosed by a closed spherical curve is isometric to the region
bounded by a circle of the same radius. These enhanced criteria deepen our understanding of
rigidity phenomena in spaces with curvature bounded below, extend classical results in spherical
geometry, and offer new insights into the geometric structure of such spaces.

By combining the results obtained in Theorems 3.2 and 3.3, we derive the principal conclusion
of this work, which unifies the local and global geometric properties of closed spherical curves
in metric spaces whose curvature is bounded below. This theorem provides a rigidity criterion
ensuring that a totally geodesic surface bounded by a closed spherical curve in such a space is
isometric to the corresponding region in the model space of constant curvature. In particular, it
shows that the equality of fundamental geometric quantities—such as length, total curvature, and
chordal distance—between corresponding arcs is sufficient to guarantee a global isometry between

the two geometric conﬁgurations.

Theorem 1.1. Let (X,d) be a metric space of curvature bounded below by K. Let y be a closed spherical
curve in X, lying at a distance r < ﬁ from a point p € X, and let y’ be a circle of radius r centered at a
point p’ in the model space (M%, dx). Suppose that the following statements hold:
(1) d(x,z) = dx(x’,2"), whenever d(x,y) = dx(x',y') and d(y,z) = dx(y’,2"), forall x, y,z € y and
x',y,z €y’;
(2) The convex hulls of A(x,y,z) and A(X',y’,2") are isometric to each other if there exists a point
w € [y, z] such that d(x,w) = dg(x’,w"), where w’ € [y’, 2] is the comparison point of w;
() €(y) =t(y") or xe(y) = xe(y’); and
(4) d(x,y) = dx(x', '), whenever £(yyy) = f(y;,y,) or Ke(Yxy) = Kc()/;,y,)for any subarc yyy with
endpoints x, y of y and any subarc y’, y with endpoints x’,y" of y'.
Then the convex hull C(y) bounded by y is isometric to the convex hull C(y") bounded by y’; that is, the

totally geodesic surface enclosed by y and the disk enclosed by y’ are mutually isometric.
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2. DEFINITIONS AND PRELIMINAIRES

Let (X, d) be a metric space, and let y : [4,b] — X denote a curve in X. The length of y, denoted
by £(y), is defined as

k
E(y) =sup Y d(y(tia), y(t)),
i=1

where the supremum is taken over all possible partitionsa =ty < t; < --- < t; = b of the interval

[a,b]. The intrinsic metric d* induced by d is defined as
d*(x,y) := inf{f(y) | y is a curve from x to y},

for all x, y € X. This defines a new distance function taking values in [0, o|. If the original metric
d coincides with the intrinsic metric d*, the space (X, d) is called a length space.

A geodesic in a metric space X is an isometric embedding of R into X, with its image also referred
to as a geodesic. A geodesic path between two points p and g is amap g : [0,a] € R — X satisfying
8(0) =p, g(a) = g, and

d(g(s),g(t)) =Is—tl foralls,tel0al
The set ¢([0,a]) is called a geodesic segment connecting p and gq. If this segment is unique, it is
denoted by [p, q]. A metric space (X, d) is a geodesic space if every pair of points in X can be joined

by a geodesic segment.

Definition 2.1. [12] Let K be a real number. The model space M2 is defined according to the sign of K as
follows:

R?, ifK=0,
M7, = { the Euclidean sphere of radius 1/ VK, ifK>0,
the hyperbolic plane of constant curvature K, if K < 0.

Further details on the spaces M% can be found in [1,8,11]. A geodesic triangle A(p, g, 7) ina metric
space X consists of the vertices p, g, and r, connected by geodesic segments [p, ¢, [¢,7], and [p, 7].
To such a triangle, one can associate a comparison triangle A(p’,q’, 1) in the model space (]Mi, dx),
where the side lengths match: d(p,q) = dx(p’,q'), d(q,7) = dx(q’,7"), and d(p,r) = dx(p’,7"). This

comparison triangle exists whenever the perimeter satisfies

d(p,q) +d(q,7) +d(p,r) < 2—&

and in this case it is unique up to isometries. When K < 0, we interpret 2%

VK

Given a triangle A(p,q,7) in a metric space X and its corresponding comparison triangle

as oo,

A(p’,q’,7") in the model space M%, the comparison point for a point x € [g, 7] is the point X’ € [q/,7’]
such that d(gq,x) = dx(q’,x"). The comparison angle at g of the triangle A(p,q,r) is defined as the
angle at g’ in the comparison triangle A(p’,q’,1"). The angle at p in A(p, g,r) within X is denoted
by 2,(q,7). The corresponding comparison angle at p’ in M2 is denoted by Z,(q,7) or £y (¢',7").
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Definition 2.2. [5,13] Let X be a length space. A locally complete space X is a space with curvature
bounded below by a real number K if, for every point x € X, there exists a neighborhood U(x) such that
the following condition holds:

(A) For any four distinct points p,q,,s € U(x), the inequality

2s(q,p) + 4(q,7) + Ls(p,7) < 2m
is satisfied.

In spaces where, locally, any two points can be connected by a geodesic — in particular, in locally
compact spaces — the condition (A) in Definition 2.2 can be replaced by the following condition:

(B) For every triangle A(p, g, r) within the neighborhood U(x), and for any point s on the segment
[, 7], the inequality

d(p,s) 2 dx(p’,s')

holds, where s’ is the corresponding point of s on the segment [¢’, '] of the comparison triangle
A(p',q',7") in Mz

Let (X, d) be a metric space with curvature bounded below by K, and let p and ¢ be two geodesics

in X emanating from a common point w € X. The angle between geodesics p and ¢ at w is defined

by

L(p,0) = ltim cos™!

—0

(dz(wfp(f)) +d*(w,0(t)) - d*(p(t), o(t))
2d(w, p(t)) d(w, o(t))
The angle at the vertex p of a geodesic triangle A(g,p, r) is then defined as the angle between the
geodesic segments [p, q| and [p, r].
The condition (B) is equivalent to the following condition:

(C) for any triangle A(p,q, 1) in U(x),

Lp(q,r) 2 Lp(q,7), L4(p,r) 2 Ly (P',7") and Z:(p,q) = £» (P, q'),

. .o . . . 2 .
where A(p’,q’,7’) is a comparision triangle in M7, of the triangle A(p, g, 7).
Spaces with curvature bounded below were introduced earlier through local conditions. For
complete metric spaces, however, the corresponding global curvature bounds can be derived
directly from these local assumptions. Since the space X considered in this work is a complete

geodesic metric space, we refer to X as a metric space with curvature bounded below in the large.

Theorem 2.1. [12] If X is a metric space with curvature bounded below by K, where K > 0, then
diam(X) < 7/ VK and any triangle in X has perimeter no greater than 21/ VK.

A closed curve in a metric space (X, d) is defined as a continuous mapping from an oriented
circle in the Euclidean plane. A chain V on a closed curve y is a finite ordered collection of points
corresponding to chosen parameter values, and the elements of V are referred to as the vertices of
the chain. If the curve y is composed of geodesic segments joining successive points of V, then the
pair (y, V) is called a closed polygonal curve with vertex chain V. Moreover, if there exists a point

u € X and a real number r > 0 such that d(x, u) = r for every point x on y, then y is referred to as a
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spherical curve, and r is its radius. For instance, a circle of radius » > 0 in ]1\/[%< is a closed spherical
curve whose points all lie at distance r from its center. A circular arc is simply a subarc of such a
circle in IM%<

If 0 is a closed polygonal curve with a chain {6(fy), 6(t1),...,0(t,) = 6(to)}, then for ¢ inscribed
in a closed curve y, we define the modulus of 6 associated with y, denoted by u, (0), as

ty(6) = max{diam(y|j ,,)) [0 <i<n—1},

where for each 0 < i < n -1, the restriction y/| denotes the subarc of y with endpoints y(#;)

titisa]
and y(ti+1), and €(yly, ) is its length. Consider now a closed polygonal curve 6 inscribed in y.
Let the vertices of 6 be arranged as p1,p2, ..., Pn, Pn+1 = p1. For convenience, we denote by p; the
angle formed by the vertices p;_1, pi, and pi+1. The quantity «x(0) denotes the fotal rotation of 6 and

is given by

n
k() = ) (m—p0).
i=1
Finally, the total curvature x.(y) of a closed curve y is defined by
kc(y) =lim sup «.(9),
2055, (y)

where X, () denotes the family of all inscribed closed polygonal curves 6 in y with mesh y,, () < e.
In the special case where y itself is a closed polygonal curve, one has k%(y) = xc(y).

A subset A of a metric space (X, d) is said to be convex if, for any two points x, y € A, the geodesic
segment connecting x and y is entirely contained in A. The convex hull of A, denoted C(A), is the
smallest convex set containing A. An isometry between two metric spaces (X,d) and (Y,d*) is a
functioni : X — Y such thatd(x,y) = d*(i(x),i(y)) forall x,y € X.

3. SpPHERICAL CURVES AND THEIR CHARACTERIZATIONS

In this section, we first present a proposition demonstrating that the total curvature of a circular
arc in the model space is the limit of the total rotation of a sequence of inscribed polysegments. We
then introduce two properties of the space that will be assumed in the proofs of the subsequent
lemmas and theorems, followed by the presentation of several lemmas, a remark, and the two
main theorems. The following proposition states that if a curve—specifically, a circular arc—in
the model space M? is approximated by a sequence of progressively finer polysegments, the total
rotations of these polysegments converge to the total curvature of the smooth circular arc. This
result provides a key foundation for proving the main theorems of the paper.

For convenience, in what follows, we denote by y,, a spherical curve in a metric space with

curvature bounded below, having endpoints a and b, and by )/, a circular arc in M2 with

/b/
endpoints a4’ and b’.

Proposition 3.1. Let ' be a circular arc of a circle C with endpoints a and b in the space (]Mi,dK).

Consider a sequence of polysegments Oy whose ordered vertices are given by a = p(()k), pgk), ey pﬁ,i) e C.
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Assume that for some integer m with 1 < m < ny, the points pék),pgk), . ..,pgf) lie on the arc y'. If the

sequence satisfies

, (k) (k)
E(0k) = €(y') and Oﬁry;%f_ldK(pi Piy) 20 ask— oo,

then,
lim «:(5¢) = ().

k—o0

Proof. We consider three possibilities:
(k)

Case 1. Assume that all points p,, * lie on the arc )’ for every k. Fix a polysegment 6 = 6. Then,

define a new polysegment 6’ = 6, inscribed in )’ with the ordered vertices p(()k),pgk), . ,p;(q?,b
such that the total curvature satisfies x7(6;) > x:(0x), and the mesh of the subdivision satisfies
iy (6;) = 0 ask — co. Therefore, we conclude that

ke(y') = lim «Z(0;) > klim i (Ok)- (3.1)

k—o0

Next, we aim to establish the reverse inequality: x(y’) < limy_, x(0k). Let € > 0 be arbitrary.
Then, there exists a point ¢ € y’ such that Kc(yéb) = ¢&. Assume k is sufficiently large. Since

£(6x) = €(y’) and p,g;) € y/,, there exists an index m < ny such that pf,f) € Ve

Now, construct a new polysegment 6 = 06;' by replacing all vertices of O following p,(jf)
with the point c. Then, 6/ is inscribed in the subarc y;., and we have x;(5¢) > x3(0}), with

Ly, (6)) — 0as k — co. Hence,
’ _ . * 144 . *
ke(vie) = lim &7(67) < lim x7(3).
Since y’ is smooth, its total curvature decomposes additively as

ke(y') = KC()/;C) + Kc(yéb) = KC()/;C) +&.
Therefore, we conclude that
we(y’) < im xo(8) + e
Since ¢ > 0 was arbitrary, it follows that

ke(y") < lim «(0). (3.2)

k—o0

Combining the inequalities (3.1) and (3.2), we obtain

Ke(y’) = lim x(8x),
as required.

Case 2. Assume that all points p,(f,{c) lie outside )’ for every k. Fix a polysegment 6 = &;. Then,

there exists an index m < n; such that p,(j; ) y’. Construct a new polysegment 6" = 6, by replacing

all vertices of 6 following p,(,]f ) with the point b. As a result, 8 is inscribed in )/, and it satisfies

ke (0) < kp(0k) and ) (6;) = 0ask — oo.
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Therefore, we have

ke(y') = klim Ke(0p) < klim K5 (Ok)- (3.3)
We now aim to show the reverse inequality: limy_,«, k(0x) < k:(y’). Suppose, for contradiction,
that k() < limg_,e x7(0k). Let € > 0 be given. Then, we can find a subarc )/, of the circle C such

that

Kc(y;d) =x:()") + Kc(y;d) =x:()) + e

(k)

®) 5 bask — oo, for sufficiently large k, the point p,, " lies in )’ . Modify the polysegment

Since p,,

Or by replacing all vertices lying on y; , with b, resulting in a new polysegment 6 = 0 inscribed in

y’. For large k, we then have
Ke(0p) + &>« (6), and s (6;) — 0ask — oo.
Thus, we obtain that
re(y') = lim xc(8p) + e > lim 12 (6),
which leads to a contradiction. Therefore, it must be that
L i (0g) < ke (y')- (3.4)
Combining inequalities (3.3) and (3.4), we conclude that

lim «%(6k) = xc()').

k—o0

(k)

Case 3. The points p,, lie on )y’ for some values of k, and do not lie on )’ for others. In this

(s(k))
Ms(k)
of them do. Consequently, the argument reduces to either Case 1 or Case 2, and the result follows

situation, we select a subsequence O, of o; such that either all the points p lie on y’ or none
accordingly.

This completes the proof. m]

Let (X, d) be a metric space of curvature bounded below by K. Let y be a spherical curve in X
lying at a distance r < ﬁ from a point p, and )’ be a circular arc of radius r centered at a point p’
in the model space (IM%(, dk). Letg,r,s and q’,7',s" be consecutive points on y and )’, respectively
such that

d(g,r) =dkx(q,7"), d(r,s)=dk(r,s").
If d(gq,s) = dx(q’,s’), then the comparison triangle A(g’,7’,s") corresponds to the triangle A(g,7,s),
and by the angle condition of X, we obtain

L(q,8) = Ly (q,5"). (3.5)

This inequality becomes strict, thatis Z,(q,s) > £+ (q’,s’), wheneverd(q,s) > dx(q’,s’). On the other
hand, if d(g,s) < dk(q’,s), then the triangle A(¢’,7’,s") may no longer correspond to A(g,7,s), and
in such a situation the inequality (3.5) may fail to hold.
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Suppose that A(p’,q’,1") and A(p’,7',s’) are comparison triangles for the geodesic triangles
A(p,q,7) and A(p,1,s) in X, respectively. A characteristic property of X implies the angle compar-
isons:

4(p,q) 2 £v(p'q') and  £(p,s) 2 L (p',s').
Adding these inequalities yields

2i(p,q) + 4e(p,s) 2 2o (P, ') + L (P',8") = v (q',5"). (3.6)

However, by the triangle inequality for angles in X, we have

2¢(q,8) < 4(p,q) + 4(p, 9)- (3.7)

Due to the inequalites (3.6) and (3.7), a direct comparison between /,(g,s) and 2 (¢q’,s’) cannot be
made. Since the proofs of the lemmas and theorems in this section require a comparison between
/r(q,s) and 2, (q’,s"), their statements must include certain additional assumptions.

Next, we present two fundamental properties that will be assumed in the forthcoming theorems.
These properties establish essential geometric constraints on the metric space under consideration
and play a crucial role in ensuring the validity of subsequent results related to the behavior of
curves, their lengths, and total curvature in metric spaces with curvature bounded below.
Property A. Let (X,d) be a metric space of curvature bounded below by K. Let y be a spherical
curve in X lying at a distance r < ﬁ from a point, and )’ be a circular arc of radius r centered at

a point in the model space (]M%(, dg). Forallx,y,zeyand x’, v,z €/,
d(x,z) =dg(x',2"),

whenever
d(x,y) = dx(¥',y') and d(y, z) = dx(y',2)
Property B. Let (X, d) be a metric space of curvature bounded below by K. Let A(x, y, z) be a triangle
in X, and let A(x’, ¥/, z’) be the comparison triangle of A(x, y,z) in the model space (M%,dk). The
convex hulls of A(x, y,z) and A(x’,y’,z") are isometric to each other if there exists a point w € [y, z]
such that
d(x,w) =dg(x', "),

where w’ € [y/,2’] is the comparison point of w.

In support of the proof of Theorem 3.1, we now present a lemma that supplies a key comparison
between points on a spherical curve in the space X and points on a corresponding circular arc in

2
the model space M.

Lemma 3.1. Let (X,d) be a metric space of curvature bounded below by K that satisfies Property A. Let y
be a spherical curve in X lying at a distance r < ﬁ from a point p, with endpoints x and y. Let " be a

circular arc of radius r centered at a point p’ in the model space (M%, dx), with endpoints x’ and y'.
Ift(y) =4(y’) < ~z d(x,y) =dx(x’,y), then
d(x,z) <dx(x,2") and d(z,y) <dk(Z,V),
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where z € y and z' € )’ such that
d(x,z) =d(z,y) and dx(x',z") =dx(Z, V).

Proof. Let £(y) = £(y') <
d(x,z) > dx(x’,2") or d(z,y)

and d(x,y) = dx(x’,y’). Assume, for contradiction, that either

a|a

d
d (z’,y"). Then we can choose points u’, v’ € )’ such that

\Y

d(x,z) =dx(u',z’) and d(y,z)=dx(v,z").

By Property A, this implies that
d(x,y) =dx(u',v").

However, with this choice of #” and v" on ), we obtain
dix',y") <dg(u',v"),
which is a contradiction. Therefore, we must have d(x,z) < dk(x’,z’) and d(z,y) <dk(z’,y’). O

The following theorem presents several fundamental comparison results involving curve length,
chord length, and total curvature for spherical curves in metric spaces with curvature bounded
below. These results form an essential part of the analytical framework required for the proofs of
the main theorems. In particular, the theorem provides precise inequalities that relate geometric
quantities of a given spherical curve in the ambient metric space to those of its corresponding
comparison curve in the model space of constant curvature. Such estimates play a crucial role in
establishing rigidity phenomena and ensuring that local geometric constraints propagate to global

geometric conclusions.

Theorem 3.1. Let (X, d) be a metric space of curvature bounded below by K that satisfies Property A. Let
y be a spherical curve in X, lying at a distance r < ﬁ from a point p with endpoints a and b. Let )" denote
the circular arc of radius r centered at a point p’ in the model space (M, dx), with endpoints a’ and b'.
Assume further that

Ly) =L)< and d(a,b) = dg(a’,b").

sl

(1) Let 0, is a polygonal curve consisting of consecutive points a = p1,p2,...,pn = b, where p; € y
foralli € {2,3,..,n—1}, and similarly, let &;, be a polygonal curve with consecutive points a’ =
PPy pn = b, where p; €)', foralli € {2,3,...,n = 1}. Suppose d(pi, pi+1) = dx(p}, v}, 1),
foralli€{2,3,..,n—1}. Then

K (0n) < 2(0},).

('), then xe(y) < xe(y”).
dg(a',b), then £(y) < €()').
dx(a’, V"), then x.(y) < k().

@) Ife(y) <¢
(3) Ifd(a,b) <
(4) Ifd(a,b) <
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Proof. (1): By assumption, for each i, the triangle A(p’,p!_,,p!) serves as a comparison triangle for

triangle A(p, pi-1, pi). By the angle property in X, it follows that p; > p’. Hence,

n-1 n—1
K(00) = Y (m=1) < Y (T =F}) = K:(6})-

i=2 i=2
(2): First, we consider the case when £(y) = €(y’). Let {6} | be a sequence of polysegments
inscribed in y, each consisting of geodesic segments of equal length, such that p,(6x) — 0 as
k — oco. Fix 6 = 0 with vertices a = p1,p2,...,pn = b. On the model space M2, we construct a
corresponding polysegment T = 14 with ordered verticesa’ = p3,p;,...,p, = b’, where each p’ lies

on a circle of radius r centered at p’, and

d(pi,piv1) = dx(p;,pi,q), forallie{1,2,...,n-1}

Without loss of generality, we may assume that 7 and y” wind around p’ in the same direction.
Then there exists an integer m < n such that p; € y" for alli € {1,2,...,m}. By Property A, for each

i€12,3,...,n—1}, the triangle A(p!_, p! ) in M% is a comparison triangle for A(pi—, pi, pi+1) in

Pin
X. Consequently, we have

Di zﬁ. for all i.

We therefore have that
n-1 n-1
Ke(0k) = %3 (0) = ) (m—pi) < ) (n=p}) =x(o}),
i=2 i=2
and consequently
ke(y) = khm K (0k) < khm Ke(0p)- (3.8)
By Proposition 3.1, we have
kh—>n;) ke (0r) = xc(y'). (3.9)

The inequality «.(y) < k.(y”) follows from (3.8) and (3.9).
Now if £(y) < £()’), there is a subarc y* of )’ such that £(y*) = £(y), and hence
Ke(y) < we(y”) <xe(y'),

by the result just obtained. Hence, (2) is completely proved.
(3): We construct inductively a sequence {6,,} of polysegments inscribed in y and a sequence {5;,}

of polysegments inscribed in )" as follows. Let 01 = [a,b] and 6] = [a’,V’]. It is then clear that
5(51) < 5(51).

Next, we construct 6, to be a polysegment with ordered vertices a,p1, b, by choosing a point
p1 € y such that

d(a,p1) = d(p1,b).
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Similarly, we construct a polysegment &7, with ordered vertices a’, p}, b’ by choosing a point p € )’

satisfying
dk(a’,p}) = dx(py, b').

By Lemma 3.1, we obtain

d(a,p1) <dk(a’,p}) and d(p1,b) <dx(p}, V'),

which implies that
0(02) < €(0)).

To construct 63, on y, we insert points pp; and p22 between each pair of consecutive vertices of
07 such that

d(a,p21) = d(p2,p1) = d(p1,p22) = d(p22,b).

Thus, 63 is a polysegment with ordered vertices a, p21, p1,p22, b. Similarly, we construct 63 in the
same manner as 03, obtaining a polysegment with ordered vertices a’,p,,, p}, P5,,b’. By the same

argument as above, it follows that
£(03) < 6(63).

For n > 4, we construct 6, and 6;, in the same manner as in the previous steps. Therefore, we

have

£(0,) <€(0),), foralln >4.

Moreover, by Proposition 3.1, we have that
£(6y) = £(y) and £(5),) = £()y') asn — oo,

and hence

£(y) = lim £(6,) < lim £(5;,) = €()').

n—oo n—oo
Now, if d(a,b) < dg(a’,V’"), there exists a subarc y* of )’ with endpoints @’ and b”" such that
d(a,b) =dg(a’,b"). Hence,

y) <t <€),

by the result just obtained. Therefore, (3) is completely proved.
(4): If d(a,b) <dg(a’, V), then by (2) and (3), we have that x.(y) < x.()’). m]

Based on the results of Theorem 3.1, we now formulate a conclusion that will serve as an essential
component in the proof of Theorem 3.2. This conclusion refines the comparison framework
established earlier and provides a direct link between the geometric behavior of spherical curves
in a metric space with curvature bounded below and their corresponding comparison curves in

the model space.
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Remark 3.1. By the assertion of Theorem 3.1(3), if d(a,b) < dx(a’,V’), then €(y) < €(y’). Conse-
quently, when d(a,b) < dk(a’,b’), wehave £(y) < £()’) by applying the theorem to a circular arc y’
having the same chord length as y. Hence, if £(y) = €(y’), it follows thatd(a,b) > dx(a’,b"). More-
over, ifd(a,b) <dk(a’,V") and £(y) = €(y’), thend(a,b) = dk(a’, V). Similarly, if d(a,b) < dx(a’, ")
and x.(y) = «x:(y’), then d(a,b) = dx(a’,V’). Theorem 3.1(2) states that if £(y) < £(y’), then
ke(y) < xc(y’). Hence, if x.(y) = x.(y’), it follows that £(y) > €(y’). Moreover, assuming
that d(a,b) = dk(a’,b’), Theorem 3.1(3) gives €(y) < £(y’). Therefore, if d(a,b) = dx(a’,V") and
ke(y) = xc()’), we conclude that £(y) = £(y”).

The following lemma shows that when a spherical curve in a metric space whose curvature is
bounded below by K satisfies certain length and distance conditions, the convex hull determined

by its principal points is isometric to the corresponding region in the model space.

Lemma 3.2. Let (X, d) be a metric space of curvature bounded below by K that satisfies both Property A
and Property B. Let y be a spherical curve in X lying at a distance r < ﬁ from a point p with endpoints a
and b. Let y’ be a circular arc of radius r centered at a point p’ in the model space (M2, dx) with endpoints
a’ and U'. Assume that d(a,b) = dx(a’,b’) and £(y) = €(y’) < %( Choose points e € y and ¢’ € y’
satisfying
E(yae) = C(ype)-

Then the geodesic segment [p, e] intersects the geodesic segment [a,b] at some point. Moreover, the convex
hulls

C({a,e,b,p}) and C({a’,€’,b',p'})
are isometric to each other.
Proof. First, we show that the geodesic segment [a,]] intersects the geodesic segment [p,e] at a

point. Let m’ denote the intersection point of [a’, '] and [p’,¢’]. Along the geodesic segment [e, p],

let m be the point satisfying
d(m,e) = dg(m’,e).

Then the point m’ corresponds to the point m. Since A(a’,¢’,p’) corresponds to A(a,e,p) and

AV, e, p’) corresponds to A(b,e,p), we have
d(a,m) >dg(a’,m’) and d(b,m)>dg(t’,m’). (3.10)
By triangle inequality,
d(a,b) <d(a,m) +d(m,b). (3.11)
Using assumption, and combining (3.10) and (3.11), we have

dx(a, V') = d(a,b) < d(a,m) +d(m,b) > d(a’,m’) + dx(t',m’) > dx (', 1)), (3.12)

That implies
d(a,m) =dg(a’,m") and d(b,m)=dx(b',m’),
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therefore the equality (3.12) forces
dx(a’,b") = d(a,b) =d(a,m) +d(m,b) = dg(a’,m") +dg(b',m") = dg(a’, V).

Consequently, the geodesic segment [a, ] intersects the segment [p, e] at the point m.

Since X satisfies Property B, the convex hulls of the triangles A(a,e,p) and A(b,e,p) in X are
isometric to the convex hulls of the triangles A(a’,¢,p’) and A(V,¢’,p’) in M, respectively. Fur-
thermore, the convex hulls of the triangles A(a,¢,b) and A(a,p,b) in X are isometric to the convex
hulls of the triangles A(a’,¢’,b") and A(a’,p’, V") in IM%(, respectively.

The next step is to verify that C({a, e, b, p}) and C({a’,¢’,V’, p’}) are isometric. By the definition of
the convex hull, C({a,¢, b, p}) exists and is uniquely determined, as previously noted. Define the
maps

ip: C({a,e,b}) = C({a’,€’,b'}) and ip:C({a,b,p}) - C({a’,V',p'})
such thatiy(a) = a’, i1(b) =V, i1(e) = ¢, ix(a) = a’, ir(b) = V', and i (p) = p’. Let
i:C(la,e,b,p)) — C{d, e, V,p')) =C(ld, e, V') uCa,V,p'})

be the map defined by ilc(j4ep) = i1 and ilc(pp)) = 2. We shall prove that i is an isometry by
verifying that:

(1) iis an isometry onto its image; and

(2) C({a,e,b,p}) = C({a,e,b}) UC({a, b, p}).

It is clear that i is surjective. Injectivity follows from the properties of intersecting geodesic
segments and the isometry of convex hulls. To prove (1), letz1,z, € C({a,¢,b,p}), and set zi =1i(z1),
zy, = i(z2). We must verify that d(z1,22) = dk(z],z,). If both z; and z; belong to the same convex
hull, i.e. C({a,e,b}), C({a,e,p}), C({a,b,p}), or C({e, b, p}), the result is immediate.

Without loss of generality, assume z; € C({a,e,m}) and zo € C({b,m,p}). Suppose that [z],z}]
meets [a’,b] at z; and [¢/,p’] at z] such that 2} € [z],2]] (the case z| € [z],z]
analogously). Let z3 and z4 be points satisfying i1(z3) = z; and i»(z4) = z}. In IM%(, we have

| can be treated

z1,2,] = [Z,z3) U [2},2;] and [z},2)] = [z}, 2}] U [z, 23]
Since C({a, ¢, p}) is isometric to C({a’,¢’,p’}) and [z}, 2] € C({a’,b’,p’}), we obtain
[z1,24) = [21,23] U [23,24] € C({a,b,p}),
with d(z1,z3) = dx(2],2}) and d(z3,24) = dx(2},z}), and hence
d(z1,24) = d(z1,23) +d(23,24) = dx(z],25) + dx(25,2;) = dk(z],2))-
Similarly, because C({a, b, p}) is isometric to C({a’, ?’,p’}) and [zé,zé] c C({a’,b',p’}), we have

[z3,22] = [2z3,24] U [24,22] € C({a,b,p}),

’

with d(z3,24) = dK(zé,z4

) and d(z4,22) = dK(sz, z,), and therefore

d(z3,20) = d(z3,24) + d(z4,22) = dx(2},2) +dk (2}, 25) = dk (25, 25).
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Hence,
[z1,22] = [z1,23] U [23,24] U |24, 22]
forms a geodesic segment, and thus
d(z1,22) = d(z1,23) + d(z3,24) + d(z4,22)
= dx(z},25) +dx (25, zy) +dx(2), 25)
= dx(z},2).

We now prove (2). Let M = {a,e,b} and N = {a,b,p}. We first show that C(M) U C(N) is
convex. Let uj, up € C(M)UC(N). We must show that the geodesic segment [u1, u3] is contained
in C(M) UC(N). If both u; and uy belong to C(M) or both to C(N), there is nothing to prove.
Otherwise, assume u; € C(M) and u; € C(N). Let u] and u be the corresponding points to u; and
up, respectively, and let t denote the intersection point of [uf, u] with [a’,b']. Sett = i~1(t'). Then,

d(ur, up) = di(up,uy) = dx(uy, t') +de(t,u}) = d(uy, t) +d(t, u),
which implies that [u3,t] and [t, up] together form a geodesic segment joining 11 and u,. Hence,
[, up] = [ug, t] U [t,up] € C(M)UC(N),

and therefore C(M) U C(N) is convex.

Since C(M U N) is the smallest convex set containing M U N, we have
C(MUN) c C(M) UC(N).
Conversely, as both C(M) and C(N) are subsets of C(M U N), it follows that
C(M)UC(N) c C(MUN).
Therefore, C(M) U C(N) = C(M UN) is convex. o

From Lemma 3.2, we can deduce the following lemma, which serves as an essential intermediary
step in establishing the geometric comparison results needed for the proof of Theorem 3.2. In
particular, this lemma refines the conclusions of Lemma 3.2 by applying them to a more specific

configuration of points along the spherical curve and its corresponding model curve.

Lemma 3.3. Let (X,d) be a metric space of curvature bounded below by K that satisfies both Property A
and Property B. Let y be a spherical curve in X, lying at a distance r < ﬁ from a point p with endpoints
a and b, and let y’ be a circular arc of radius r centered at a point p’ in the model space (M3, d) with
endpoints a’ and b'. Assume that d(a,b) = dg(a’,b") and £(y) = £()’) < %( Leta,eq,es,...,e,band
a, ei, e,, ..., e, b" beordered vertices in y and y’, respectively, such that

C(Vae,) = 6()/;,8;), forallie{1,2,...,n}.

Then the convex hulls C({a,e1,ey,...,e,,b,p}) and C({a’,ei,e’, ..., €, b'}) are isometric to each other.
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The following lemma is crucial in guaranteeing that the totally geodesic surface enclosed by
a closed spherical curve in a metric space of curvature bounded below is isometric to the disk

bounded by a circle in the model space.

Lemma 3.4. Let (X, d) be a metric space of curvature bounded below by K that satisfies both Property A and
Property B. Let y be a spherical curve in X, lying at a distance r < ﬁ from a point p, with endpoints a and
b, and let v’ be a circular arc of radius r centered at a point p’ in the model space (IM%(, dk), with endpoints
a’ and V. Suppose that d(a,b) = dx(a’,b") and €(y) = €(y") < . Then the following statements hold:

N
(1) Ueeylp, el = C(y Uip}); and
(2) C(y U ip}) is isometric to C(y" U {p’}).

Proof. By assumption, each geodesic segment [p,e], with e € y, intersects the geodesic segment
[a,b].
(1): By the definition of C(y U {p}), we have

lpel cchrup.

667/
Next, we show that ., [p, €] is a convex set. Let x,y € U,c, [p, €]. Then x € [p,e1] and y € [p, e;] for
some e1,ex on'y. If e; = ey, the statement is clear. Suppose instead that e; # e;. Let ¢} and e/, be two

points on y” such that

50/;'3;) = {(yqe,) and {’(y;,eé) = {(Vae,)-
Without loss of generality, assume that ¢/ lies between 2’ and €} on )’. By Lemma 3.3, we obtain
[x,y] € C({p,a,e1,ez,b}). Furthermore, it is easy to see that every point z € [x, y] lies on a segment

[p, '] for some e" € Y. Hence, the set U,e,,, [P, €] is convex.
Since C(y U {p}) is the smallest convex set containing y U {p}, it follows that

Cyuiph clJipel-

ecy
Consequently,

lp.el =cOruiph.

egy

(2): Define a map j : C()’ U{p’}) — C(y U{p}) such that for each segment [p’,c’], where ¢’

is a point on y’ is mapped isometrically onto the geodesic segment [p,c|, where c is a point
on y satisfying €(ys..) = €(y,,.). By (1), it is easy to see that j is a bijection. To show that j
is an isometry from C()’ U {p’}) onto C(y U {p}), we verify that j preserves distances between
points. Let x’ and y’ be points on the segments [p’,¢’] and [p’, f'], respectively, where ¢’ and
f’ lie on y’. On the corresponding geodesic segments [p,e] and [p, f], let x and y be the points
corresponding to x” and y’, respectively. We shall show that d(x, y) = dx(x’,y’). By Lemma 3.2,
the sets {p’,a’,¢’, f',b'} and {p,a,e, f, b} determine corresponding isometric convex hulls. Hence,

the equality d(x, y) = dx(x’, y’) follows immediately. o
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This subsequent theorem constitutes the first main result of this paper. It establishes that in
a metric space with curvature bounded below, if a closed spherical curve and a corresponding
circle in the model space share the same radius, have equal lengths, and possess identical distance
relations between their boundary points, then the convex hull enclosed by the curve is isometric

to the model disk. Consequently, both surfaces exhibit identical geometric structures.

Theorem 3.2. Let (X,d) be a metric space of curvature bounded below by K. Let y be a closed spherical
curve in X, lying at a distance r < #( from a point p, and let v’ be a circle of radius r centered at a point
p’ in the model space (M3, dx). Suppose that the following statements hold:

(1) X satisfies both Property A and Property B;

(2) tly) =0

(3) d(a,b) = dk(a’,b"), whenever {(yy) = (Y, ) for any subarc y,y, of y and any subarcy’,,, of y".
Then C(y) is isometric to C(y’), that is, the totally geodesic surface bounded by y and the disk bounded by
y' are isometric to each other.

Proof. Let x,y € y and x’,y" € )’ be such that {(y,,) = f(y;,y,) = {(y)/2. By condition (3), it
follows that d(x, y) = dx(x’, y’). By Lemma 3.4, we obtain

U lpel=Clmutph) and | JIpf] = COor U o).

EEVXV fEVyx
Moreover,
el =co uip).
eey’
We now define a map
jr:CUp" UYLy ) — Clp U ysy)
such that each segment [p’,z'], where 2 € )/, ,, is mapped to the geodesic segment [p, z], where

z € yyy satisfies £(yy,) = €(y%,,,). Similarly, we define

Jj2: CUP VY y) — CUp U yyx)
in the same manner as j;. Lemma 3.4 ensures that both j; and j, are isometries.

We now demonstrate that C(y”) and C(y) are isometric to each other. By the definition of convex

hull, we observe that C(y) exists and is unique. We define a map

i1:C(y") = C(Yy) YC(Yyw) = C(y)
such that the restriction of i to C({p’} Uy, y,) is j1, and its restriction to C({p’} U Yy ) is j2. To prove
that i is an isometry from C(y”) to C(y), it suffices to verify that i is an isometry onto its image and
that C(y) = C(yxy) U C(yyx)-

It is clear that i is surjective. Moreover, as established in Lemma 3.3, the injectivity of i follows
from the fact that the corresponding geodesic segments intersect uniquely and the associated
convex hulls are isometric. To verify that i preserves distances between any two points, let
21,2, € C(y’), and set z; = i(z]) and z; = i(z}). If z],z, € C(y;,y,) or z},z} € C(j/'y,x,), then the
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distance preservation follows directly. Hence, it remains to consider the mixed case. Assume that
z) € C(y;,y,) and z), € C()/’y,x,). Hence, | € [p,v}] and 2} € [p’,v}] for some v] € Yy and vy €y,
On X, we let [p, v1] be the geodesic segment containing z; and let [p, v;] be the geodesic segment
containing zo where v1 € yy, and v3 € Y.
If¢ (7/;i v;) <{(y’)/2,wethenhave y;i oy = y;i Y y’y oy By applying (3) together with Lemma 3.4,
we obtain that C(y;{ y,) is isometric to C(ys,,) via j;, and similarly C (ng;y’> is isometric to C(yo,y)
via j. Consequently, it follows that C (y;;v;) is isometric to C()4,0,) under the map 7, and therefore

d(z1,22) = dx(z},2).

Additionally, we also have d(z1,z2) = dk(z],2,) if {(y <(y')/2.

’ )
Eéli
We now demonstrate that

C(y) = C(yxy Yryx) = Cyxy) U C(ryn)-

It is necessary to demonstrate that the set C(yx, U yyx) is convex. Without losing generality, we
suppose that u; € C(yy,) and up € C(yyx). Thus u; € [p,w;] and up € [p,ws], for some w; € yyy
and w; € yy,. Since j; is an isometry from C(y”, y,) to C(yxy) and j; is an isometry from C ()/'y, ) to
C(yyx), we may choose points w] € yy and w) € y,» corresponding to w; and wy, respectively,
and similarly select points #] and u/, corresponding to u; and uy, respectively.

If¢ (y;v;wQ <€(y")/2, then y;%w& = y;}i s Y y’y,w; is the result. As C (y;u;y’> is isometric to C(yw,y)
by j1 and C(
by i. Consequently, we obtain

) is isometric to C(yw,,) by j2, we thus obtain that C( ) is isometric to C(Vuw,w, )

Vagy Vi,
d(uy, uz) = dg(uy, uj).

Let s” be the point where [u], u}] intersects [x, y’], and let

Hence,
d(ur,up) = di(uy,us) = dx(uy,s") +dx(s’, uy) = d(uy,s) +d(s, u2).
This implies that
[u1, up] = [u1,s] U [s, up] C C(ny) U C(VyX)~

Therefore, C(yx,) U C(yyx) is a convex set.
If€(y’, ) <€(y")/2, the same argument applies, just as in the case €(y/, ,) < £(y’)/2, and we

whw) wiw)
again obtain that C(yy,) U C().) is a convex set.
Accordingly, we conclude that C()’) is isometric to C(y). The proof of the theorem is now

complete. O

Before presenting the second main theorem, we first state the following lemma, which provides
a geometric comparison: in a metric space with curvature bounded below, a spherical curve and its
corresponding model arc have equal lengths if and only if their total curvatures coincide, provided

that their endpoints are equidistant in both spaces.
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Lemma 3.5. Let (X, d) be a metric space of curvature bounded below by K that satisfies both Property A
and Property B. Let y be a spherical curve in X, lying at a distance r < ﬁ from a point p, with endpoints
aand b, and let v’ be a circular arc of radius r centered at a point p’ in the model space (]Mi, dg), with
endpoints a’ and U'. If that d(a,b) = dg(a’, V"), then €(y) = €(y’) if and only if k. (y) = k().

Proof. Assume first that £(y) = €()’). Since d(a,b) = dk(a’,1’), it follows from Lemma 3.4 that the

convex hulls C(y U {p}) and C(y’ U {p’}) are isometric. Consequently, we obtain x.(y) = x.()’).
Conversely, suppose that x.()) = k.(y’). Then, by Theorem 3.1(2), we have ¢(y) > £(y’). Since

d(a,b) =dg(a’, V"), it follows that £(y) < €(y’), and thus £(y) = £()”). mi

Another lemma, which will be used in the proof of the second main result, states that if a closed
spherical curve in a metric space with curvature bounded below preserves the same pairwise
distances as a corresponding circle in the model space, then their total lengths are equal if and only

if their total curvatures coincide.

Lemma 3.6. Let (X, d) be a metric space of curvature bounded below by K that satisfies both Property A
and Property B. Let y be a closed spherical curve in X, lying at a distance r < #( from a point p, and let )’
be a circle of radius r centered at a point p’ in the model space (le(, dk). Assume that d(a,b) = dx(a’, V"),

’

whenever {(yqp) = £(y",,,) for every subarc 'y of y with endpoints a, b and subarc y”
a’,b'. Then, £(y) = €(y) ifand only if k() = x:(y').

Proof. We now prove the sufficiency part. Assume that £()) = £()’). Let p1,p2, and p3 be three

. Of v with endpoints

consecutive points on y such that

l
5(7/?1172) = 5(7/172173) = g(yPSPI) = %

On y”’, choose three consecutive points p3, p5, p; such that

—

/ _ ’ _ ’ _ oy

By the assumption, we have that

d(p1,p2) = dx(py,p5),  d(p2,p3) = dx(py, ps), and  d(ps,p1) = dx(ps, p})-

From Lemma 3.5, it follows that

KC(Vplpz) = KC(V;Q,;;)/ KC(szpa) = KC(?/;@;&)/ and KC(Vpspl) = Kc(y;qépi)'
Therefore, we conclude that

ke(y) = xe(y').

The proof of necessity proceeds in a similar manner. m]

The following theorem constitutes the second main theorem of this paper. It demonstrates that
in a metric space with curvature bounded below, if a closed spherical curve and a corresponding
circle in the model space have the same radius, equal total curvatures, and identical pairwise
distances between points, then the convex hull enclosed by the curve is isometric to the model

disk. Consequently, both surfaces share the same geometric structure.
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Theorem 3.3. Let X be a metric space whose curvature is bounded below by K. Let y be a closed spherical
curve in X, lying at a distance r < ﬁ from a point p, and let v’ be a circle of radius v centered at a point

p’ in the model space (IM%(, dk). Suppose that the following statements hold:
(1) X satisfies both Property A and Property B;

2) xe(y) = xc(y');
(3) d(a,b) = dx(a’, V"), whenever kc(yw) = xc(V",,,) for any subarc y, of y and any subarc y',,, of

a’t’
V'
Then C(y) is isometric to C(y’), that is, the totally geodesic surface bounded by y and the disk bounded by

y" are isometric to each other.

Proof. By (2), we can choose three consecutive points p1,p2, and p3 on y such that

KC(Vplpz) = KC(szps) = KC(Vpapl) = chy).

Similarly, on ), select three consecutive points p}, py, pj satisfying

! = ’ _ ’ k()
Ke(Vygp) = Ke(Vpypn) = Ke(ppe) = =5

By (3), we get that

d(p1,p2) = dx(p1,p5),  d(p2,p3) = dx(py,ps), and  d(ps,p1) = dx(ps, p})-
Then, by Remark 3.1, it follows that

g(VPlpz) = f(y;ipé)/ 5(7/172173) = g(y];;pg)’ and 5(7/173;71) = g(y;;épi)

Applying Lemma 3.6, we obtain £(y) = ¢(y’). Finally, by Theorem 3.2, the desired result follows.
O

4. CONCLUSION

In this work, we have identified geometric conditions that allow a closed spherical curve in
a metric space with curvature bounded below to be accurately compared with a circle in the
model space of constant curvature. In particular, if the space satisfies the distance and curvature
equivalence conditions given in (1)—(4) of Theorem 1.1, then the convex hull enclosed by the
spherical curve y is isometric to the convex hull enclosed by the corresponding circle )’ in the
model space. Hence, the totally geodesic surface bounded by y and the disk bounded by )’ are
isometric to each other.

This result offers an important geometric characterization connecting metric spaces with cur-
vature bounded below to their corresponding constant-curvature model spaces, forming a basis
for further investigations into total curvature, convexity, and isometric embeddings within such
metric spaces.

For further research, these results can be extended to the study of higher-dimensional ana-
logues, such as totally geodesic hypersurfaces and convex bodies in Alexandrov or CAT(K) spaces.

Another promising direction is the exploration of applications in geometric analysis and global
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differential geometry, where curvature comparison theorems play a central role in the study of
manifolds with curvature bounds. Moreover, potential applications can be found in geometric
modeling, computer graphics, and structural design, where curvature-preserving transformations
are essential. Future studies may also focus on relaxing the assumptions of curvature boundedness

or exploring similar isometric relationships in non-smooth or discrete metric geometries.
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