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Abstract. In this paper, we examine geometric relationships between metric spaces with curvature bounded below and

their corresponding model spaces of constant curvature. Let γ be a closed spherical curve in a metric space whose

curvature is bounded below by K, lying at a distance r < π
2
√

K
from a point. Let γ′ denote the circle of radius r

centered at the corresponding point in the model space of constant curvature K. Under suitable geometric equivalence

conditions—namely, the preservation of pairwise distances between corresponding points of γ and γ′, the isometry of

convex hulls of corresponding geodesic triangles, and the equality of arc lengths or total curvature—we show that the

geodesic surface enclosed by γ is isometric to the region bounded by γ′. This result offers a foundational geometric

characterization of metric spaces with curvature bounded below through their model counterparts and provides a

framework for further study of total curvature, convexity, and isometric embeddings in such spaces.

1. Introduction

The theory of metric spaces with curvature bounded below offers a powerful framework for

doing geometry on non-smooth and singular spaces. It allows geometers to prove important

theorems about the structure, topology, and geometry of a wide array of objects, unifying the

study of smooth manifolds, convex surfaces, and various limit spaces under a common geometric

principle. Burago et al. [13] provided an extensive account of the theory of metric spaces with

curvature bounded below. Several studies have examined various geometric properties of metric

spaces with curvature bounded below. Ambrosio et al. [7] studied metric measure spaces whose

Riemannian Ricci curvature is bounded from below, while Cheeger and Colding [14] analyzed the

resulting structural features. Petrunin [25] investigated parallel transport in Alexandrov spaces

with lower curvature bounds. Naya and Innami [24] obtained comparison theorems for Steiner

minimal trees on such surfaces. Halbeisen [19] focused on tangent cones in Alexandrov spaces of
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curvature bounded below, and Espínola [17] examined nearest and farthest point problems in these

spaces. Sama-Ae et al. [30] studied distances between points and their nearest-point projections.

Research on the total curvature of closed curves is essential because it connects local bending

with global geometric properties. It plays a key role in comparison geometry and supports

rigidity theorems that relate curves to model spaces. The total curvature also provides a consistent

framework for analyzing non-smooth curves and has applications in physics, biology, and material

science, making it a fundamental tool in modern geometry. The total curvature of a curve serves as

a key invariant connecting local geometry to global topology. Fenchel’s Theorem shows that every

closed curve has total curvature at least 2π, while the Fáry–Milnor Theorem reveals that knotted

curves exceed 4π, demonstrating the interplay between geometry and topology. Defined without

differential tools, the total curvature quantifies shape complexity and has broad applications,

highlighting how a curve’s global form arises from its accumulated local bending.

The curvature of a curve measures how quickly its tangent vector turns, indicating how much

it deviates from a straight line. Pointwise curvature is this rate at a single point, while total

curvature is the sum of all these changes along the entire curve, found by integrating pointwise

curvature. For a smooth curve, curvature quantifies the curve’s turn rate. The pointwise curvature

shows the instantaneous rate of turning, and the total curvature is the integral of these local values

over the curve’s length. The study of total curvature dates back to the work of Fenchel [18],

who in 1929 proved that any closed curve in three-dimensional Euclidean space possesses total

curvature at least 2π, with equality holding precisely when the curve is a convex planar curve.

Subsequently, Borsuk [9] and Milnor [23] generalized this result to n-dimensional Euclidean spaces.

Alexandrov [4] further developed lower and upper curvature bounds for metric spaces lacking

Riemannian structures, generalizing classical curvature concepts to arbitrary metric spaces [37].

Sasaki [32] established a strengthened form of Fenchel’s theorem by applying Douglas’s work on

the Plateau problem [16] together with the Gauss–Bonnet theorem. In 1974, Tsukamoto [36] proved

that in a complete simply connected Riemannian manifold with negative sectional curvature, the

total curvature of a smooth closed curve exceeds 2π. Subsequent studies broadened this framework

to encompass closed curves in Riemannian manifolds with non-positive curvature as well as in

hyperbolic spaces [10, 21, 33]. A detailed exposition of this theory was presented in [5], where

total curvature was introduced through the total rotation of geodesic polygons inscribed in the

closed curve and approaching it arbitrarily closely. Additional commentary and development on

the subject can be found in [6, 27]. Chern [15] addressed total curvature of immersed manifolds,

and later works by van Rooij [37], Brickell and Hsiung [10]. Investigations in spherical geometries

by Teufel [34,35] connected total curvature with isoperimetric inequalities, while Honda et al. [20]

extended these studies to curves with singularities.

This concept was subsequently extended to CAT(0) spaces by Alexander and Bishop [2, 3],

who showed that the total curvature of any closed curve is bounded below by 2π, with equality

occurring only when the curve forms a geodesic bigon or bounds a convex region isometric to
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a planar convex subset. Building on this foundation, Maneesawarng and Lenbury [22] further

developed the theory of total curvature in CAT(K) spaces, establishing a framework for analyzing

curves in spaces of bounded curvature. Within the setting of CAT(K) spaces, Sama-Ae and Ma-

neesawarng [28] investigated the geometric properties of curves on spheres. Extending this work,

Sama-Ae and Phon-On [29] characterized closed curves that bound geodesic surfaces isometric

to disks in the model space, employing measures such as arc length, total curvature, and chord

length. Later, Sama-Ae et al. [31] generalized these results to closed spherical curves enclosing

geodesic surfaces isometric to disks in the model space. Phokeaw and Sama-Ae [26] demonstrated

that in metric spaces with curvature bounded below, a totally geodesic surface bounded by a

spherical curve is isometric to the corresponding region in MK, provided certain distance and

angle conditions are satisfied. In the present paper, we introduce additional conditions that guar-

antee the totally geodesic surface enclosed by a closed spherical curve is isometric to the region

bounded by a circle of the same radius. These enhanced criteria deepen our understanding of

rigidity phenomena in spaces with curvature bounded below, extend classical results in spherical

geometry, and offer new insights into the geometric structure of such spaces.

By combining the results obtained in Theorems 3.2 and 3.3, we derive the principal conclusion

of this work, which unifies the local and global geometric properties of closed spherical curves

in metric spaces whose curvature is bounded below. This theorem provides a rigidity criterion

ensuring that a totally geodesic surface bounded by a closed spherical curve in such a space is

isometric to the corresponding region in the model space of constant curvature. In particular, it

shows that the equality of fundamental geometric quantities—such as length, total curvature, and

chordal distance—between corresponding arcs is sufficient to guarantee a global isometry between

the two geometric configurations.

Theorem 1.1. Let (X, d) be a metric space of curvature bounded below by K. Let γ be a closed spherical
curve in X, lying at a distance r < π

2
√

K
from a point p ∈ X, and let γ′ be a circle of radius r centered at a

point p′ in the model space (M2
K, dK). Suppose that the following statements hold:

(1) d(x, z) = dK(x′, z′), whenever d(x, y) = dK(x′, y′) and d(y, z) = dK(y′, z′), for all x, y, z ∈ γ and
x′, y′, z′ ∈ γ′;

(2) The convex hulls of 4(x, y, z) and 4(x′, y′, z′) are isometric to each other if there exists a point
w ∈ [y, z] such that d(x, w) = dK(x′, w′), where w′ ∈ [y′, z′] is the comparison point of w;

(3) `(γ) = `(γ′) or κc(γ) = κc(γ′); and
(4) d(x, y) = dK(x′, y′), whenever `(γxy) = `(γ′x′y′) or κc(γxy) = κc(γ′x′y′) for any subarc γxy with

endpoints x, y of γ and any subarc γ′x′y′ with endpoints x′, y′ of γ′.

Then the convex hull C(γ) bounded by γ is isometric to the convex hull C(γ′) bounded by γ′; that is, the
totally geodesic surface enclosed by γ and the disk enclosed by γ′ are mutually isometric.
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2. Definitions and Preliminaires

Let (X, d) be a metric space, and let γ : [a, b]→ X denote a curve in X. The length of γ, denoted

by `(γ), is defined as

`(γ) = sup
k∑

i=1

d(γ(ti−1),γ(ti)),

where the supremum is taken over all possible partitions a = t0 < t1 < · · · < tk = b of the interval

[a, b]. The intrinsic metric d∗ induced by d is defined as

d∗(x, y) := inf{`(γ) | γ is a curve from x to y},

for all x, y ∈ X. This defines a new distance function taking values in [0,∞]. If the original metric

d coincides with the intrinsic metric d∗, the space (X, d) is called a length space.

A geodesic in a metric space X is an isometric embedding of R into X, with its image also referred

to as a geodesic. A geodesic path between two points p and q is a map g : [0,α] ⊂ R→ X satisfying

g(0) = p, g(α) = q, and

d(g(s), g(t)) = |s− t| for all s, t ∈ [0,α].

The set g([0,α]) is called a geodesic segment connecting p and q. If this segment is unique, it is

denoted by [p, q]. A metric space (X, d) is a geodesic space if every pair of points in X can be joined

by a geodesic segment.

Definition 2.1. [12] Let K be a real number. The model space M2
K is defined according to the sign of K as

follows:

M2
K =


R2, if K = 0,

the Euclidean sphere of radius 1/
√

K, if K > 0,

the hyperbolic plane of constant curvature K, if K < 0.

Further details on the spaces M2
K can be found in [1,8,11]. A geodesic triangle4(p, q, r) in a metric

space X consists of the vertices p, q, and r, connected by geodesic segments [p, q], [q, r], and [p, r].
To such a triangle, one can associate a comparison triangle 4(p′, q′, r′) in the model space (M2

K, dK),

where the side lengths match: d(p, q) = dK(p′, q′), d(q, r) = dK(q′, r′), and d(p, r) = dK(p′, r′). This

comparison triangle exists whenever the perimeter satisfies

d(p, q) + d(q, r) + d(p, r) <
2π
√

K
,

and in this case it is unique up to isometries. When K ≤ 0, we interpret 2π
√

K
as∞.

Given a triangle 4(p, q, r) in a metric space X and its corresponding comparison triangle

4(p′, q′, r′) in the model space M2
K, the comparison point for a point x ∈ [q, r] is the point x′ ∈ [q′, r′]

such that d(q, x) = dK(q′, x′). The comparison angle at q of the triangle 4(p, q, r) is defined as the

angle at q′ in the comparison triangle 4(p′, q′, r′). The angle at p in 4(p, q, r) within X is denoted

by ∠p(q, r). The corresponding comparison angle at p′ in M2
K is denoted by ∠̃p(q, r) or ∠p′(q′, r′).
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Definition 2.2. [5, 13] Let X be a length space. A locally complete space X is a space with curvature

bounded below by a real number K if, for every point x ∈ X, there exists a neighborhood U(x) such that
the following condition holds:

(A) For any four distinct points p, q, r, s ∈ U(x), the inequality

∠̃s(q, p) + ∠̃s(q, r) + ∠̃s(p, r) ≤ 2π

is satisfied.

In spaces where, locally, any two points can be connected by a geodesic — in particular, in locally

compact spaces — the condition (A) in Definition 2.2 can be replaced by the following condition:

(B) For every triangle4(p, q, r)within the neighborhood U(x), and for any point s on the segment

[q, r], the inequality

d(p, s) ≥ dK(p′, s′)

holds, where s′ is the corresponding point of s on the segment [q′, r′] of the comparison triangle

4(p′, q′, r′) in M2
K.

Let (X, d) be a metric space with curvature bounded below by K, and let ρ and σ be two geodesics

in X emanating from a common point w ∈ X. The angle between geodesics ρ and σ at w is defined

by

∠(ρ, σ) = lim
t→0

cos−1
(

d2(w,ρ(t)) + d2(w, σ(t)) − d2(ρ(t), σ(t))
2 d(w,ρ(t)) d(w, σ(t))

)
.

The angle at the vertex p of a geodesic triangle 4(q, p, r) is then defined as the angle between the

geodesic segments [p, q] and [p, r].
The condition (B) is equivalent to the following condition:

(C) for any triangle 4(p, q, r) in U(x),

∠p(q, r) ≥ ∠p′(q′, r′), ∠q(p, r) ≥ ∠q′(p′, r′) and ∠r(p, q) ≥ ∠r′(p′, q′),

where 4(p′, q′, r′) is a comparision triangle in M2
K of the triangle 4(p, q, r).

Spaces with curvature bounded below were introduced earlier through local conditions. For

complete metric spaces, however, the corresponding global curvature bounds can be derived

directly from these local assumptions. Since the space X considered in this work is a complete

geodesic metric space, we refer to X as a metric space with curvature bounded below in the large.

Theorem 2.1. [12] If X is a metric space with curvature bounded below by K, where K > 0, then
diam(X) ≤ π/

√
K and any triangle in X has perimeter no greater than 2π/

√
K.

A closed curve in a metric space (X, d) is defined as a continuous mapping from an oriented

circle in the Euclidean plane. A chain V on a closed curve γ is a finite ordered collection of points

corresponding to chosen parameter values, and the elements of V are referred to as the vertices of

the chain. If the curve γ is composed of geodesic segments joining successive points of V, then the

pair (γ, V) is called a closed polygonal curve with vertex chain V. Moreover, if there exists a point

u ∈ X and a real number r > 0 such that d(x, u) = r for every point x on γ, then γ is referred to as a
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spherical curve, and r is its radius. For instance, a circle of radius r > 0 in M2
K is a closed spherical

curve whose points all lie at distance r from its center. A circular arc is simply a subarc of such a

circle in M2
K.

If δ is a closed polygonal curve with a chain {δ(t0), δ(t1), . . . , δ(tn) = δ(t0)}, then for δ inscribed

in a closed curve γ, we define the modulus of δ associated with γ, denoted by µγ(δ), as

µγ(δ) = max{diam(γ|[ti,ti+1]) | 0 ≤ i ≤ n− 1},

where for each 0 ≤ i ≤ n − 1, the restriction γ|[ti,ti+1] denotes the subarc of γ with endpoints γ(ti)

and γ(ti+1), and `(γ|[ti,ti+1]) is its length. Consider now a closed polygonal curve δ inscribed in γ.

Let the vertices of δ be arranged as p1, p2, . . . , pn, pn+1 = p1. For convenience, we denote by p̂i the

angle formed by the vertices pi−1, pi, and pi+1. The quantity κ∗c(δ) denotes the total rotation of δ and

is given by

κ∗c(δ) =
n∑

i=1

(π− p̂i).

Finally, the total curvature κc(γ) of a closed curve γ is defined by

κc(γ) = lim
ε→0

sup
δ∈Σε(γ)

κ∗c(δ),

where Σε(γ) denotes the family of all inscribed closed polygonal curves δ in γwith mesh µγ(δ) < ε.

In the special case where γ itself is a closed polygonal curve, one has κ∗c(γ) = κc(γ).

A subset A of a metric space (X, d) is said to be convex if, for any two points x, y ∈ A, the geodesic

segment connecting x and y is entirely contained in A. The convex hull of A, denoted C(A), is the

smallest convex set containing A. An isometry between two metric spaces (X, d) and (Y, d∗) is a

function i : X→ Y such that d(x, y) = d∗(i(x), i(y)) for all x, y ∈ X.

3. Spherical Curves and Their Characterizations

In this section, we first present a proposition demonstrating that the total curvature of a circular

arc in the model space is the limit of the total rotation of a sequence of inscribed polysegments. We

then introduce two properties of the space that will be assumed in the proofs of the subsequent

lemmas and theorems, followed by the presentation of several lemmas, a remark, and the two

main theorems. The following proposition states that if a curve—specifically, a circular arc—in

the model space M2
K is approximated by a sequence of progressively finer polysegments, the total

rotations of these polysegments converge to the total curvature of the smooth circular arc. This

result provides a key foundation for proving the main theorems of the paper.

For convenience, in what follows, we denote by γab a spherical curve in a metric space with

curvature bounded below, having endpoints a and b, and by γ′a′b′ a circular arc in M2
K with

endpoints a′ and b′.

Proposition 3.1. Let γ′ be a circular arc of a circle C with endpoints a and b in the space (M2
K, dK).

Consider a sequence of polysegments δk whose ordered vertices are given by a = p(k)0 , p(k)1 , . . . , p(k)nk
∈ C.
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Assume that for some integer m with 1 ≤ m ≤ nk, the points p(k)0 , p(k)1 , . . . , p(k)m lie on the arc γ′. If the
sequence satisfies

`(δk)→ `(γ′) and max
0≤i≤nk−1

dK(p
(k)
i , p(k)i+1)→ 0 as k→∞,

then,

lim
k→∞

κ∗c(δk) = κc(γ
′).

Proof. We consider three possibilities:

Case 1. Assume that all points p(k)nk
lie on the arc γ′ for every k. Fix a polysegment δ = δk. Then,

define a new polysegment δ′ = δ′k inscribed in γ′ with the ordered vertices p(k)0 , p(k)1 , . . . , p(k)nk
, b

such that the total curvature satisfies κ∗c(δ′k) ≥ κ
∗
c(δk), and the mesh of the subdivision satisfies

µγ′(δ′k)→ 0 as k→∞. Therefore, we conclude that

κc(γ
′) = lim

k→∞
κ∗c(δ

′

k) ≥ lim
k→∞

κ∗c(δk). (3.1)

Next, we aim to establish the reverse inequality: κc(γ′) ≤ limk→∞ κ
∗
c(δk). Let ε > 0 be arbitrary.

Then, there exists a point c ∈ γ′ such that κc
(
γ′cb

)
= ε. Assume k is sufficiently large. Since

`(δk)→ `(γ′) and p(k)nk
∈ γ′cb, there exists an index m ≤ nk such that p(k)m ∈ γ

′
ac.

Now, construct a new polysegment δ′′ = δ′′k by replacing all vertices of δk following p(k)m

with the point c. Then, δ′′k is inscribed in the subarc γ′ac, and we have κ∗c(δk) ≥ κ∗c(δ
′′

k ), with

µγ′ac
(δ′′k )→ 0 as k→∞. Hence,

κc
(
γ′ac

)
= lim

k→∞
κ∗c(δ

′′

k ) ≤ lim
k→∞

κ∗c(δk).

Since γ′ is smooth, its total curvature decomposes additively as

κc(γ
′) = κc

(
γ′ac

)
+ κc

(
γ′cb

)
= κc

(
γ′ac

)
+ ε.

Therefore, we conclude that

κc(γ
′) ≤ lim

k→∞
κ∗c(δk) + ε.

Since ε > 0 was arbitrary, it follows that

κc(γ
′) ≤ lim

k→∞
κ∗c(δk). (3.2)

Combining the inequalities (3.1) and (3.2), we obtain

κc(γ
′) = lim

k→∞
κ∗c(δk),

as required.

Case 2. Assume that all points p(k)nk
lie outside γ′ for every k. Fix a polysegment δ = δk. Then,

there exists an index m ≤ nk such that p(k)m ∈ γ
′. Construct a new polysegment δ′ = δ′k by replacing

all vertices of δ following p(k)m with the point b. As a result, δ′k is inscribed in γ′, and it satisfies

κ∗c(δ
′

k) ≤ κ
∗

c(δk) and µγ′(δ
′

k)→ 0 as k→∞.
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Therefore, we have

κc(γ
′) = lim

k→∞
κ∗c(δ

′

k) ≤ lim
k→∞

κ∗c(δk). (3.3)

We now aim to show the reverse inequality: limk→∞ κ
∗
c(δk) ≤ κc(γ′). Suppose, for contradiction,

that κc(γ′) < limk→∞ κ
∗
c(δk). Let ε > 0 be given. Then, we can find a subarc γ′ad of the circle C such

that

κc
(
γ′ad

)
= κc(γ

′) + κc
(
γ′bd

)
= κc(γ

′) + ε.

Since p(k)nk
→ b as k→ ∞, for sufficiently large k, the point p(k)nk

lies in γ′ad. Modify the polysegment

δk by replacing all vertices lying on γ′bd with b, resulting in a new polysegment δ = δk inscribed in

γ′. For large k, we then have

κ∗c(δ
′

k) + ε > κ∗c(δk), and µγ′(δ
′

k)→ 0 as k→∞.

Thus, we obtain that

κc(γ
′) = lim

k→∞
κ∗c(δ

′

k) + ε ≥ lim
k→∞

κ∗c(δk),

which leads to a contradiction. Therefore, it must be that

lim
k→∞

κ∗c(δk) ≤ κc(γ
′). (3.4)

Combining inequalities (3.3) and (3.4), we conclude that

lim
k→∞

κ∗c(δk) = κc(γ
′).

Case 3. The points p(k)nk
lie on γ′ for some values of k, and do not lie on γ′ for others. In this

situation, we select a subsequence δs(k) of δk such that either all the points p(s(k))ns(k)
lie on γ′ or none

of them do. Consequently, the argument reduces to either Case 1 or Case 2, and the result follows

accordingly.

This completes the proof. �

Let (X, d) be a metric space of curvature bounded below by K. Let γ be a spherical curve in X
lying at a distance r < π

2
√

K
from a point p, and γ′ be a circular arc of radius r centered at a point p′

in the model space (M2
K, dK). Let q, r, s and q′, r′, s′ be consecutive points on γ and γ′, respectively

such that

d(q, r) = dK(q′, r′), d(r, s) = dK(r′, s′).

If d(q, s) = dK(q′, s′), then the comparison triangle 4(q′, r′, s′) corresponds to the triangle 4(q, r, s),
and by the angle condition of X, we obtain

∠r(q, s) ≥ ∠r′(q′, s′). (3.5)

This inequality becomes strict, that is ∠r(q, s) > ∠r′(q′, s′), whenever d(q, s) > dK(q′, s′). On the other

hand, if d(q, s) < dK(q′, s′), then the triangle 4(q′, r′, s′) may no longer correspond to 4(q, r, s), and

in such a situation the inequality (3.5) may fail to hold.
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Suppose that 4(p′, q′, r′) and 4(p′, r′, s′) are comparison triangles for the geodesic triangles

4(p, q, r) and 4(p, r, s) in X, respectively. A characteristic property of X implies the angle compar-

isons:

∠r(p, q) ≥ ∠r′(p′, q′) and ∠r(p, s) ≥ ∠r′(p′, s′).

Adding these inequalities yields

∠r(p, q) + ∠r(p, s) ≥ ∠r′(p′, q′) + ∠r′(p′, s′) = ∠r′(q′, s′). (3.6)

However, by the triangle inequality for angles in X, we have

∠r(q, s) ≤ ∠r(p, q) + ∠r(p, s). (3.7)

Due to the inequalites (3.6) and (3.7), a direct comparison between ∠r(q, s) and ∠r′(q′, s′) cannot be

made. Since the proofs of the lemmas and theorems in this section require a comparison between

∠r(q, s) and ∠r′(q′, s′), their statements must include certain additional assumptions.

Next, we present two fundamental properties that will be assumed in the forthcoming theorems.

These properties establish essential geometric constraints on the metric space under consideration

and play a crucial role in ensuring the validity of subsequent results related to the behavior of

curves, their lengths, and total curvature in metric spaces with curvature bounded below.

Property A. Let (X, d) be a metric space of curvature bounded below by K. Let γ be a spherical

curve in X lying at a distance r < π
2
√

K
from a point, and γ′ be a circular arc of radius r centered at

a point in the model space (M2
K, dK). For all x, y, z ∈ γ and x′, y′, z′ ∈ γ′,

d(x, z) = dK(x′, z′),

whenever

d(x, y) = dK(x′, y′) and d(y, z) = dK(y′, z′)

Property B. Let (X, d) be a metric space of curvature bounded below by K. Let4(x, y, z) be a triangle

in X, and let 4(x′, y′, z′) be the comparison triangle of 4(x, y, z) in the model space (M2
K, dK). The

convex hulls of 4(x, y, z) and 4(x′, y′, z′) are isometric to each other if there exists a point w ∈ [y, z]
such that

d(x, w) = dK(x′, w′),

where w′ ∈ [y′, z′] is the comparison point of w.

In support of the proof of Theorem 3.1, we now present a lemma that supplies a key comparison

between points on a spherical curve in the space X and points on a corresponding circular arc in

the model space M2
K.

Lemma 3.1. Let (X, d) be a metric space of curvature bounded below by K that satisfies Property A. Let γ
be a spherical curve in X lying at a distance r < π

2
√

K
from a point p, with endpoints x and y. Let γ′ be a

circular arc of radius r centered at a point p′ in the model space (M2
K, dK), with endpoints x′ and y′.

If `(γ) = `(γ′) ≤ π
√

K
and d(x, y) = dK(x′, y′), then

d(x, z) ≤ dK(x′, z′) and d(z, y) ≤ dK(z′, y′),
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where z ∈ γ and z′ ∈ γ′ such that

d(x, z) = d(z, y) and dK(x′, z′) = dK(z′, y′).

Proof. Let `(γ) = `(γ′) ≤ π
√

K
and d(x, y) = dK(x′, y′). Assume, for contradiction, that either

d(x, z) > dK(x′, z′) or d(z, y) > dK(z′, y′). Then we can choose points u′, v′ ∈ γ′ such that

d(x, z) = dK(u′, z′) and d(y, z) = dK(v′, z′).

By Property A, this implies that

d(x, y) = dK(u′, v′).

However, with this choice of u′ and v′ on γ′, we obtain

d(x′, y′) < dK(u′, v′),

which is a contradiction. Therefore, we must have d(x, z) ≤ dK(x′, z′) and d(z, y) ≤ dK(z′, y′). �

The following theorem presents several fundamental comparison results involving curve length,

chord length, and total curvature for spherical curves in metric spaces with curvature bounded

below. These results form an essential part of the analytical framework required for the proofs of

the main theorems. In particular, the theorem provides precise inequalities that relate geometric

quantities of a given spherical curve in the ambient metric space to those of its corresponding

comparison curve in the model space of constant curvature. Such estimates play a crucial role in

establishing rigidity phenomena and ensuring that local geometric constraints propagate to global

geometric conclusions.

Theorem 3.1. Let (X, d) be a metric space of curvature bounded below by K that satisfies Property A. Let
γ be a spherical curve in X, lying at a distance r < π

2
√

K
from a point p with endpoints a and b. Let γ′ denote

the circular arc of radius r centered at a point p′ in the model space (M2
K, dK), with endpoints a′ and b′.

Assume further that

`(γ) = `(γ′) ≤
π
√

K
and d(a, b) = dK(a′, b′).

(1) Let δn is a polygonal curve consisting of consecutive points a = p1, p2, . . . , pn = b, where pi ∈ γ

for all i ∈ {2, 3, ..., n − 1}, and similarly, let δ′n be a polygonal curve with consecutive points a′ =
p′1, p′2, . . . , p′n = b′, where p′i ∈ γ

′, for all i ∈ {2, 3, ..., n − 1}. Suppose d(pi, pi+1) = dK(p′i , p′i+1),
for all i ∈ {2, 3, ..., n− 1}. Then

κ∗c(δn) ≤ κ
∗

c(δ
′

n).

(2) If `(γ) ≤ `(γ′), then κc(γ) ≤ κc(γ′).
(3) If d(a, b) ≤ dK(a′, b′), then `(γ) ≤ `(γ′).
(4) If d(a, b) ≤ dK(a′, b′), then κc(γ) ≤ κc(γ′).
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Proof. (1): By assumption, for each i, the triangle 4(p′, p′i−1, p′i ) serves as a comparison triangle for

triangle 4(p, pi−1, pi). By the angle property in X, it follows that p̂i ≥ p̂′i . Hence,

κ∗c(δn) =
n−1∑
i=2

(π− p̂i) ≤
n−1∑
i=2

(π− p̂′i ) = κ∗c(δ
′

n).

(2): First, we consider the case when `(γ) = `(γ′). Let {δk}
∞

k=1 be a sequence of polysegments

inscribed in γ, each consisting of geodesic segments of equal length, such that µγ(δk) → 0 as

k → ∞. Fix δ = δk with vertices a = p1, p2, . . . , pn = b. On the model space M2
K, we construct a

corresponding polysegment τ = τk with ordered vertices a′ = p′1, p′2, . . . , p′n = b′, where each p′i lies

on a circle of radius r centered at p′, and

d(pi, pi+1) = dK(p′i , p′i+1), for all i ∈ {1, 2, . . . , n− 1}.

Without loss of generality, we may assume that τ and γ′ wind around p′ in the same direction.

Then there exists an integer m ≤ n such that p′i ∈ γ
′ for all i ∈ {1, 2, . . . , m}. By Property A, for each

i ∈ {2, 3, . . . , n− 1}, the triangle 4(p′i−1, p′i , p′i+1) in M2
K is a comparison triangle for 4(pi−, pi, pi+1) in

X. Consequently, we have

p̂i ≥ p̂′i for all i.

We therefore have that

κ∗c(δk) = κ∗c(δ) =
n−1∑
i=2

(π− p̂i) ≤
n−1∑
i=2

(π− p̂′i ) = κ∗c(δ
′

k),

and consequently

κc(γ) = lim
k→∞

κ∗c(δk) ≤ lim
k→∞

κ∗c(δ
′

k). (3.8)

By Proposition 3.1, we have

lim
k→∞

κ∗c(δ
′

k) = κc(γ
′). (3.9)

The inequality κc(γ) ≤ κc(γ′) follows from (3.8) and (3.9).

Now if `(γ) < `(γ′), there is a subarc γ∗ of γ′ such that `(γ∗) = `(γ), and hence

κc(γ) ≤ κc(γ
∗) < κc(γ

′),

by the result just obtained. Hence, (2) is completely proved.

(3): We construct inductively a sequence {δn} of polysegments inscribed in γ and a sequence {δ′n}

of polysegments inscribed in γ′ as follows. Let δ1 = [a, b] and δ′1 = [a′, b′]. It is then clear that

`(δ1) ≤ `(δ
′

1).

Next, we construct δ2 to be a polysegment with ordered vertices a, p1, b, by choosing a point

p1 ∈ γ such that

d(a, p1) = d(p1, b).
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Similarly, we construct a polysegment δ′2 with ordered vertices a′, p′1, b′ by choosing a point p′1 ∈ γ
′

satisfying

dK(a′, p′1) = dK(p′1, b′).

By Lemma 3.1, we obtain

d(a, p1) ≤ dK(a′, p′1) and d(p1, b) ≤ dK(p′1, b′),

which implies that

`(δ2) ≤ `(δ
′

2).

To construct δ3, on γ, we insert points p21 and p22 between each pair of consecutive vertices of

δ2 such that

d(a, p21) = d(p21, p1) = d(p1, p22) = d(p22, b).

Thus, δ3 is a polysegment with ordered vertices a, p21, p1, p22, b. Similarly, we construct δ′3 in the

same manner as δ3, obtaining a polysegment with ordered vertices a′, p′21, p′1, p′22, b′. By the same

argument as above, it follows that

`(δ3) ≤ `(δ
′

3).

For n ≥ 4, we construct δn and δ′n in the same manner as in the previous steps. Therefore, we

have

`(δn) ≤ `(δ
′

n), for all n ≥ 4.

Moreover, by Proposition 3.1, we have that

`(δn)→ `(γ) and `(δ′n)→ `(γ′) as n→∞,

and hence

`(γ) = lim
n→∞

`(δn) ≤ lim
n→∞

`(δ′n) = `(γ′).

Now, if d(a, b) < dK(a′, b′), there exists a subarc γ∗ of γ′ with endpoints a′ and b′′ such that

d(a, b) = dK(a′, b′′). Hence,

`(γ) ≤ `(γ∗) < `(γ′),

by the result just obtained. Therefore, (3) is completely proved.

(4): If d(a, b) ≤ dK(a′, b′), then by (2) and (3), we have that κc(γ) ≤ κc(γ′). �

Based on the results of Theorem 3.1, we now formulate a conclusion that will serve as an essential

component in the proof of Theorem 3.2. This conclusion refines the comparison framework

established earlier and provides a direct link between the geometric behavior of spherical curves

in a metric space with curvature bounded below and their corresponding comparison curves in

the model space.
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Remark 3.1. By the assertion of Theorem 3.1(3), if d(a, b) ≤ dK(a′, b′), then `(γ) ≤ `(γ′). Conse-

quently, when d(a, b) < dK(a′, b′), we have `(γ) < `(γ′) by applying the theorem to a circular arc γ′

having the same chord length as γ. Hence, if `(γ) = `(γ′), it follows that d(a, b) ≥ dK(a′, b′). More-

over, if d(a, b) ≤ dK(a′, b′) and `(γ) = `(γ′), then d(a, b) = dK(a′, b′). Similarly, if d(a, b) ≤ dK(a′, b′)
and κc(γ) = κc(γ′), then d(a, b) = dK(a′, b′). Theorem 3.1(2) states that if `(γ) ≤ `(γ′), then

κc(γ) ≤ κc(γ′). Hence, if κc(γ) = κc(γ′), it follows that `(γ) ≥ `(γ′). Moreover, assuming

that d(a, b) = dK(a′, b′), Theorem 3.1(3) gives `(γ) ≤ `(γ′). Therefore, if d(a, b) = dK(a′, b′) and

κc(γ) = κc(γ′), we conclude that `(γ) = `(γ′).

The following lemma shows that when a spherical curve in a metric space whose curvature is

bounded below by K satisfies certain length and distance conditions, the convex hull determined

by its principal points is isometric to the corresponding region in the model space.

Lemma 3.2. Let (X, d) be a metric space of curvature bounded below by K that satisfies both Property A
and Property B. Let γ be a spherical curve in X lying at a distance r < π

2
√

K
from a point p with endpoints a

and b. Let γ′ be a circular arc of radius r centered at a point p′ in the model space (M2
K, dK) with endpoints

a′ and b′. Assume that d(a, b) = dK(a′, b′) and `(γ) = `(γ′) ≤ π
√

K
. Choose points e ∈ γ and e′ ∈ γ′

satisfying

`(γae) = `(γ′a′e′).

Then the geodesic segment [p, e] intersects the geodesic segment [a, b] at some point. Moreover, the convex
hulls

C({a, e, b, p}) and C({a′, e′, b′, p′})

are isometric to each other.

Proof. First, we show that the geodesic segment [a, b] intersects the geodesic segment [p, e] at a

point. Let m′ denote the intersection point of [a′, b′] and [p′, e′]. Along the geodesic segment [e, p],
let m be the point satisfying

d(m, e) = dK(m′, e′).

Then the point m′ corresponds to the point m. Since 4(a′, e′, p′) corresponds to 4(a, e, p) and

4(b′, e′, p′) corresponds to 4(b, e, p), we have

d(a, m) ≥ dK(a′, m′) and d(b, m) ≥ dK(b′, m′). (3.10)

By triangle inequality,

d(a, b) ≤ d(a, m) + d(m, b). (3.11)

Using assumption, and combining (3.10) and (3.11), we have

dK(a′, b′) = d(a, b) ≤ d(a, m) + d(m, b) ≥ dK(a′, m′) + dK(b′, m′) ≥ dK(a′, b′). (3.12)

That implies

d(a, m) = dK(a′, m′) and d(b, m) = dK(b′, m′),
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therefore the equality (3.12) forces

dK(a′, b′) = d(a, b) = d(a, m) + d(m, b) = dK(a′, m′) + dK(b′, m′) = dK(a′, b′).

Consequently, the geodesic segment [a, b] intersects the segment [p, e] at the point m.

Since X satisfies Property B, the convex hulls of the triangles 4(a, e, p) and 4(b, e, p) in X are

isometric to the convex hulls of the triangles 4(a′, e′, p′) and 4(b′, e′, p′) in M2
K, respectively. Fur-

thermore, the convex hulls of the triangles 4(a, e, b) and 4(a, p, b) in X are isometric to the convex

hulls of the triangles 4(a′, e′, b′) and 4(a′, p′, b′) in M2
K, respectively.

The next step is to verify that C({a, e, b, p}) and C({a′, e′, b′, p′}) are isometric. By the definition of

the convex hull, C({a, e, b, p}) exists and is uniquely determined, as previously noted. Define the

maps

i1 : C({a, e, b})→ C({a′, e′, b′}) and i2 : C({a, b, p})→ C({a′, b′, p′})

such that i1(a) = a′, i1(b) = b′, i1(e) = e′, i2(a) = a′, i2(b) = b′, and i2(p) = p′. Let

i : C({a, e, b, p}) −→ C({a′, e′, b′, p′}) = C({a′, e′, b′})∪C({a′, b′, p′})

be the map defined by i|C({a,e,b}) = i1 and i|C({a,b,p}) = i2. We shall prove that i is an isometry by

verifying that:

(1) i is an isometry onto its image; and

(2) C({a, e, b, p}) = C({a, e, b})∪C({a, b, p}).

It is clear that i is surjective. Injectivity follows from the properties of intersecting geodesic

segments and the isometry of convex hulls. To prove (1), let z1, z2 ∈ C({a, e, b, p}), and set z′1 = i(z1),

z′2 = i(z2). We must verify that d(z1, z2) = dK(z′1, z′2). If both z1 and z2 belong to the same convex

hull, i.e. C({a, e, b}), C({a, e, p}), C({a, b, p}), or C({e, b, p}), the result is immediate.

Without loss of generality, assume z1 ∈ C({a, e, m}) and z2 ∈ C({b, m, p}). Suppose that [z′1, z′2]
meets [a′, b′] at z′3 and [e′, p′] at z′4 such that z′3 ∈ [z′1, z′4] (the case z′4 ∈ [z′1, z′3] can be treated

analogously). Let z3 and z4 be points satisfying i1(z3) = z′3 and i2(z4) = z′4. In M2
K, we have

[z′1, z′4] = [z′1, z′3] ∪ [z
′

3, z′4] and [z′3, z′2] = [z′3, z′4] ∪ [z
′

4, z′2].

Since C({a, e, p}) is isometric to C({a′, e′, p′}) and [z′1, z′4] ⊂ C({a′, b′, p′}), we obtain

[z1, z4] = [z1, z3] ∪ [z3, z4] ⊂ C({a, b, p}),

with d(z1, z3) = dK(z′1, z′3) and d(z3, z4) = dK(z′3, z′4), and hence

d(z1, z4) = d(z1, z3) + d(z3, z4) = dK(z′1, z′3) + dK(z′3, z′4) = dK(z′1, z′4).

Similarly, because C({a, b, p}) is isometric to C({a′, b′, p′}) and [z′3, z′2] ⊂ C({a′, b′, p′}), we have

[z3, z2] = [z3, z4] ∪ [z4, z2] ⊂ C({a, b, p}),

with d(z3, z4) = dK(z′3, z′4) and d(z4, z2) = dK(z′4, z′2), and therefore

d(z3, z2) = d(z3, z4) + d(z4, z2) = dK(z′3, z′4) + dK(z′4, z′2) = dK(z′3, z′2).
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Hence,

[z1, z2] = [z1, z3] ∪ [z3, z4] ∪ [z4, z2]

forms a geodesic segment, and thus

d(z1, z2) = d(z1, z3) + d(z3, z4) + d(z4, z2)

= dK(z′1, z′3) + dK(z′3, z′4) + dK(z′4, z′2)

= dK(z′1, z′2).

We now prove (2). Let M = {a, e, b} and N = {a, b, p}. We first show that C(M) ∪ C(N) is

convex. Let u1, u2 ∈ C(M) ∪ C(N). We must show that the geodesic segment [u1, u2] is contained

in C(M) ∪ C(N). If both u1 and u2 belong to C(M) or both to C(N), there is nothing to prove.

Otherwise, assume u1 ∈ C(M) and u2 ∈ C(N). Let u′1 and u′2 be the corresponding points to u1 and

u2, respectively, and let t′ denote the intersection point of [u′1, u′2] with [a′, b′]. Set t = i−1(t′). Then,

d(u1, u2) = dK(u′1, u′2) = dK(u′1, t′) + dK(t′, u′2) = d(u1, t) + d(t, u2),

which implies that [u1, t] and [t, u2] together form a geodesic segment joining u1 and u2. Hence,

[u1, u2] = [u1, t] ∪ [t, u2] ⊂ C(M)∪C(N),

and therefore C(M)∪C(N) is convex.

Since C(M∪N) is the smallest convex set containing M∪N, we have

C(M∪N) ⊂ C(M)∪C(N).

Conversely, as both C(M) and C(N) are subsets of C(M∪N), it follows that

C(M)∪C(N) ⊂ C(M∪N).

Therefore, C(M)∪C(N) = C(M∪N) is convex. �

From Lemma 3.2, we can deduce the following lemma, which serves as an essential intermediary

step in establishing the geometric comparison results needed for the proof of Theorem 3.2. In

particular, this lemma refines the conclusions of Lemma 3.2 by applying them to a more specific

configuration of points along the spherical curve and its corresponding model curve.

Lemma 3.3. Let (X, d) be a metric space of curvature bounded below by K that satisfies both Property A
and Property B. Let γ be a spherical curve in X, lying at a distance r < π

2
√

K
from a point p with endpoints

a and b, and let γ′ be a circular arc of radius r centered at a point p′ in the model space (M2
K, dK) with

endpoints a′ and b′. Assume that d(a, b) = dK(a′, b′) and `(γ) = `(γ′) ≤ π
√

K
. Let a, e1, e2, . . . , en, b and

a′, e′1, e′2, . . . , e′n, b′ be ordered vertices in γ and γ′, respectively, such that

`(γaei) = `(γ′a′e′i
), for all i ∈ {1, 2, . . . , n}.

Then the convex hulls C({a, e1, e2, . . . , en, b, p}) and C({a′, e′1, e′2, . . . , e′n, b′}) are isometric to each other.
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The following lemma is crucial in guaranteeing that the totally geodesic surface enclosed by

a closed spherical curve in a metric space of curvature bounded below is isometric to the disk

bounded by a circle in the model space.

Lemma 3.4. Let (X, d) be a metric space of curvature bounded below by K that satisfies both Property A and
Property B. Let γ be a spherical curve in X, lying at a distance r < π

2
√

K
from a point p, with endpoints a and

b, and let γ′ be a circular arc of radius r centered at a point p′ in the model space (M2
K, dK), with endpoints

a′ and b′. Suppose that d(a, b) = dK(a′, b′) and `(γ) = `(γ′) ≤ π
√

K
. Then the following statements hold:

(1)
⋃

e∈γ[p, e] = C(γ∪ {p}); and
(2) C(γ∪ {p}) is isometric to C(γ′ ∪ {p′}).

Proof. By assumption, each geodesic segment [p, e], with e ∈ γ, intersects the geodesic segment

[a, b].
(1): By the definition of C(γ∪ {p}), we have⋃

e∈γ
[p, e] ⊂ C(γ∪ {p}).

Next, we show that
⋃

e∈γ[p, e] is a convex set. Let x, y ∈
⋃

e∈γ[p, e]. Then x ∈ [p, e1] and y ∈ [p, e2] for

some e1, e2 on γ. If e1 = e2, the statement is clear. Suppose instead that e1 , e2. Let e′1 and e′2 be two

points on γ′ such that

`(γ′a′e′1
) = `(γa,e1) and `(γ′a′e′2

) = `(γae2).

Without loss of generality, assume that e′1 lies between a′ and e′2 on γ′. By Lemma 3.3, we obtain

[x, y] ⊆ C({p, a, e1, e2, b}). Furthermore, it is easy to see that every point z ∈ [x, y] lies on a segment

[p, e∗] for some e∗ ∈ γab. Hence, the set
⋃

e∈γab
[p, e] is convex.

Since C(γ∪ {p}) is the smallest convex set containing γ∪ {p}, it follows that

C(γ∪ {p}) ⊆
⋃
e∈γ

[p, e].

Consequently, ⋃
e∈γ

[p, e] = C(γ∪ {p}).

(2): Define a map j : C(γ′ ∪ {p′}) → C(γ ∪ {p}) such that for each segment [p′, c′], where c′

is a point on γ′ is mapped isometrically onto the geodesic segment [p, c], where c is a point

on γ satisfying `(γac) = `(γ′a′c′). By (1), it is easy to see that j is a bijection. To show that j
is an isometry from C(γ′ ∪ {p′}) onto C(γ ∪ {p}), we verify that j preserves distances between

points. Let x′ and y′ be points on the segments [p′, e′] and [p′, f ′], respectively, where e′ and

f ′ lie on γ′. On the corresponding geodesic segments [p, e] and [p, f ], let x and y be the points

corresponding to x′ and y′, respectively. We shall show that d(x, y) = dK(x′, y′). By Lemma 3.2,

the sets {p′, a′, e′, f ′, b′} and {p, a, e, f , b} determine corresponding isometric convex hulls. Hence,

the equality d(x, y) = dK(x′, y′) follows immediately. �
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This subsequent theorem constitutes the first main result of this paper. It establishes that in

a metric space with curvature bounded below, if a closed spherical curve and a corresponding

circle in the model space share the same radius, have equal lengths, and possess identical distance

relations between their boundary points, then the convex hull enclosed by the curve is isometric

to the model disk. Consequently, both surfaces exhibit identical geometric structures.

Theorem 3.2. Let (X, d) be a metric space of curvature bounded below by K. Let γ be a closed spherical
curve in X, lying at a distance r < π

2
√

K
from a point p, and let γ′ be a circle of radius r centered at a point

p′ in the model space (M2
K, dK). Suppose that the following statements hold:

(1) X satisfies both Property A and Property B;
(2) `(γ) = `(γ′);
(3) d(a, b) = dK(a′, b′), whenever `(γab) = `(γ′a′b′) for any subarc γab of γ and any subarc γ′a′b′ of γ′.

Then C(γ) is isometric to C(γ′), that is, the totally geodesic surface bounded by γ and the disk bounded by
γ′ are isometric to each other.

Proof. Let x, y ∈ γ and x′, y′ ∈ γ′ be such that `(γxy) = `(γ′x′y′) = `(γ)/2. By condition (3), it

follows that d(x, y) = dK(x′, y′). By Lemma 3.4, we obtain⋃
e∈γxy

[p, e] = C(γxy ∪ {p}) and
⋃
f∈γyx

[p, f ] = C(γyx ∪ {p}).

Moreover, ⋃
e′∈γ′

[p′, e′] = C(γ′ ∪ {p′}).

We now define a map

j1 : C({p′} ∪ γ′x′y′) −→ C({p} ∪ γxy)

such that each segment [p′, z′], where z′ ∈ γ′x′y′ , is mapped to the geodesic segment [p, z], where

z ∈ γxy satisfies `(γxz) = `(γ′x′z′). Similarly, we define

j2 : C({p′} ∪ γ′y′x′) −→ C({p} ∪ γyx)

in the same manner as j1. Lemma 3.4 ensures that both j1 and j2 are isometries.

We now demonstrate that C(γ′) and C(γ) are isometric to each other. By the definition of convex

hull, we observe that C(γ) exists and is unique. We define a map

i : C(γ′) = C(γ′x′y′)∪C(γ′y′x′)→ C(γ)

such that the restriction of i to C({p′} ∪ γ′x′y′) is j1, and its restriction to C({p′} ∪ γ′y′x′) is j2. To prove

that i is an isometry from C(γ′) to C(γ), it suffices to verify that i is an isometry onto its image and

that C(γ) = C(γxy)∪C(γyx).

It is clear that i is surjective. Moreover, as established in Lemma 3.3, the injectivity of i follows

from the fact that the corresponding geodesic segments intersect uniquely and the associated

convex hulls are isometric. To verify that i preserves distances between any two points, let

z′1, z′2 ∈ C(γ′), and set z1 = i(z′1) and z2 = i(z′2). If z′1, z′2 ∈ C(γ′x′y′) or z′1, z′2 ∈ C(γ′y′x′), then the
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distance preservation follows directly. Hence, it remains to consider the mixed case. Assume that

z′1 ∈ C(γ′x′y′) and z′2 ∈ C(γ′y′x′). Hence, z′1 ∈ [p
′, v′1] and z′2 ∈ [p

′, v′2] for some v′1 ∈ γ
′

x′y′ and v′2 ∈ γ
′

y′x′ .

On X, we let [p, v1] be the geodesic segment containing z1 and let [p, v2] be the geodesic segment

containing z2 where v1 ∈ γxy and v2 ∈ γyx.

If `(γ′v′1v′2
) ≤ `(γ′)/2, we then haveγ′v′1v′2

= γ′v′1 y′ ∪γ
′

y′v′2
. By applying (3) together with Lemma 3.4,

we obtain that C(γ′v′1 y′) is isometric to C(γv1 y) via j1, and similarly C(γ′v′2 y′) is isometric to C(γv2 y)

via j2. Consequently, it follows that C(γ′v′1v′2
) is isometric to C(γv1v2) under the map i, and therefore

d(z1, z2) = dK(z′1, z′2).

Additionally, we also have d(z1, z2) = dK(z′1, z′2) if `(γ′v′2v′1
) ≤ `(γ′)/2.

We now demonstrate that

C(γ) = C(γxy ∪ γyx) = C(γxy)∪C(γyx).

It is necessary to demonstrate that the set C(γxy ∪ γyx) is convex. Without losing generality, we

suppose that u1 ∈ C(γxy) and u2 ∈ C(γyx). Thus u1 ∈ [p, w1] and u2 ∈ [p, w2], for some w1 ∈ γxy

and w2 ∈ γyx. Since j1 is an isometry from C(γ′x′y′) to C(γxy) and j2 is an isometry from C(γ′y′x′) to

C(γyx), we may choose points w′1 ∈ γx′y′ and w′2 ∈ γy′x′ corresponding to w1 and w2, respectively,

and similarly select points u′1 and u′2 corresponding to u1 and u2, respectively.

If `(γ′w′1w′2
) ≤ `(γ′)/2, then γ′w′1w′2

= γ′w′1 y′ ∪ γ
′

y′w′2
is the result. As C(γ′w′1 y′) is isometric to C(γw1 y)

by j1 and C(γ′w′2 y′) is isometric to C(γw2 y) by j2, we thus obtain that C(γ′w′1w′2
) is isometric to C(γw1w2)

by i. Consequently, we obtain

d(u1, u2) = dK(u′1, u′2).

Let s′ be the point where [u′1, u′2] intersects [x′, y′], and let

s = j1(s′) = j2(s′) = i(s′).

Hence,

d(u1, u2) = dK(u′1, u′2) = dK(u′1, s′) + dK(s′, u′2) = d(u1, s) + d(s, u2).

This implies that

[u1, u2] = [u1, s] ∪ [s, u2] ⊂ C(γxy)∪C(γyx).

Therefore, C(γxy)∪C(γyx) is a convex set.

If `(γ′w′2w′1
) ≤ `(γ′)/2, the same argument applies, just as in the case `(γ′w′1w′2

) ≤ `(γ′)/2, and we

again obtain that C(γxy)∪C(γyx) is a convex set.

Accordingly, we conclude that C(γ′) is isometric to C(γ). The proof of the theorem is now

complete. �

Before presenting the second main theorem, we first state the following lemma, which provides

a geometric comparison: in a metric space with curvature bounded below, a spherical curve and its

corresponding model arc have equal lengths if and only if their total curvatures coincide, provided

that their endpoints are equidistant in both spaces.
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Lemma 3.5. Let (X, d) be a metric space of curvature bounded below by K that satisfies both Property A
and Property B. Let γ be a spherical curve in X, lying at a distance r < π

2
√

K
from a point p, with endpoints

a and b, and let γ′ be a circular arc of radius r centered at a point p′ in the model space (M2
K, dK), with

endpoints a′ and b′. If that d(a, b) = dK(a′, b′), then `(γ) = `(γ′) if and only if κc(γ) = κc(γ′).

Proof. Assume first that `(γ) = `(γ′). Since d(a, b) = dK(a′, b′), it follows from Lemma 3.4 that the

convex hulls C(γ∪ {p}) and C(γ′ ∪ {p′}) are isometric. Consequently, we obtain κc(γ) = κc(γ′).

Conversely, suppose that κc(γ) = κc(γ′). Then, by Theorem 3.1(2), we have `(γ) ≥ `(γ′). Since

d(a, b) = dK(a′, b′), it follows that `(γ) ≤ `(γ′), and thus `(γ) = `(γ′). �

Another lemma, which will be used in the proof of the second main result, states that if a closed

spherical curve in a metric space with curvature bounded below preserves the same pairwise

distances as a corresponding circle in the model space, then their total lengths are equal if and only

if their total curvatures coincide.

Lemma 3.6. Let (X, d) be a metric space of curvature bounded below by K that satisfies both Property A
and Property B. Let γ be a closed spherical curve in X, lying at a distance r < π

2
√

K
from a point p, and let γ′

be a circle of radius r centered at a point p′ in the model space (M2
K, dK). Assume that d(a, b) = dK(a′, b′),

whenever `(γab) = `(γ′a′b′) for every subarc γab of γwith endpoints a, b and subarc γ′a′b′ of γ′ with endpoints
a′, b′. Then, `(γ) = `(γ′) if and only if κc(γ) = κc(γ′).

Proof. We now prove the sufficiency part. Assume that `(γ) = `(γ′). Let p1, p2, and p3 be three

consecutive points on γ such that

`(γp1p2) = `(γp2p3) = `(γp3p1) =
`(γ)

3 .

On γ′, choose three consecutive points p′1, p′2, p′3 such that

`(γ′p′1p′2
) = `(γ′p′2p′3

) = `(γ′p′3p′1
) =

`(γ′)
3 .

By the assumption, we have that

d(p1, p2) = dK(p′1, p′2), d(p2, p3) = dK(p′2, p′3), and d(p3, p1) = dK(p′3, p′1).

From Lemma 3.5, it follows that

κc(γp1p2) = κc(γ
′

p′1p′2
), κc(γp2p3) = κc(γ

′

p′2p′3
), and κc(γp3p1) = κc(γ

′

p′3p′1
).

Therefore, we conclude that

κc(γ) = κc(γ
′).

The proof of necessity proceeds in a similar manner. �

The following theorem constitutes the second main theorem of this paper. It demonstrates that

in a metric space with curvature bounded below, if a closed spherical curve and a corresponding

circle in the model space have the same radius, equal total curvatures, and identical pairwise

distances between points, then the convex hull enclosed by the curve is isometric to the model

disk. Consequently, both surfaces share the same geometric structure.
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Theorem 3.3. Let X be a metric space whose curvature is bounded below by K. Let γ be a closed spherical
curve in X, lying at a distance r < π

2
√

K
from a point p, and let γ′ be a circle of radius r centered at a point

p′ in the model space (M2
K, dK). Suppose that the following statements hold:

(1) X satisfies both Property A and Property B;
(2) κc(γ) = κc(γ′);
(3) d(a, b) = dK(a′, b′), whenever κc(γab) = κc(γ′a′b′) for any subarc γab of γ and any subarc γ′a′b′ of

γ′.

Then C(γ) is isometric to C(γ′), that is, the totally geodesic surface bounded by γ and the disk bounded by
γ′ are isometric to each other.

Proof. By (2), we can choose three consecutive points p1, p2, and p3 on γ such that

κc(γp1p2) = κc(γp2p3) = κc(γp3p1) =
κc(γ)

3 .

Similarly, on γ′, select three consecutive points p′1, p′2, p′3 satisfying

κc(γ
′

p′1p′2
) = κc(γ

′

p′2p′3
) = κc(γ

′

p′3p′1
) =

κc(γ′)
3 .

By (3), we get that

d(p1, p2) = dK(p′1, p′2), d(p2, p3) = dK(p′2, p′3), and d(p3, p1) = dK(p′3, p′1).

Then, by Remark 3.1, it follows that

`(γp1p2) = `(γ′p′1p′2
), `(γp2p3) = `(γ′p′2p′3

), and `(γp3p1) = `(γ′p′3p′1
).

Applying Lemma 3.6, we obtain `(γ) = `(γ′). Finally, by Theorem 3.2, the desired result follows.

�

4. Conclusion

In this work, we have identified geometric conditions that allow a closed spherical curve in

a metric space with curvature bounded below to be accurately compared with a circle in the

model space of constant curvature. In particular, if the space satisfies the distance and curvature

equivalence conditions given in (1)–(4) of Theorem 1.1, then the convex hull enclosed by the

spherical curve γ is isometric to the convex hull enclosed by the corresponding circle γ′ in the

model space. Hence, the totally geodesic surface bounded by γ and the disk bounded by γ′ are

isometric to each other.

This result offers an important geometric characterization connecting metric spaces with cur-

vature bounded below to their corresponding constant-curvature model spaces, forming a basis

for further investigations into total curvature, convexity, and isometric embeddings within such

metric spaces.

For further research, these results can be extended to the study of higher-dimensional ana-

logues, such as totally geodesic hypersurfaces and convex bodies in Alexandrov or CAT(K) spaces.

Another promising direction is the exploration of applications in geometric analysis and global
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differential geometry, where curvature comparison theorems play a central role in the study of

manifolds with curvature bounds. Moreover, potential applications can be found in geometric

modeling, computer graphics, and structural design, where curvature-preserving transformations

are essential. Future studies may also focus on relaxing the assumptions of curvature boundedness

or exploring similar isometric relationships in non-smooth or discrete metric geometries.
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