On Semi α-Lindelöf in Bitopological Spaces
Main Article Content
Abstract
This paper set up a Closure–operator scheme for semi–\(\alpha\)–Lindel\"{o}fness in bitopological spaces to manage covering behavior generated by two interacting topologies. With the Čech–closure hull \(H_{ij}=j\!\operatorname{cl}\,i\!\operatorname{int}\,j\!\operatorname{cl}\,i\!\operatorname{int}\), we reformulate \(ij\)–semi–\(\alpha\)–open sets and obtain operator–level criteria for \(ij\)–semi–\(\alpha\)–Lindel\"{o}fness. We prove a network estimate that bounds \(L^{S_\alpha}_{ij}\) by the size of an \(ij\)–\(S_\alpha\)–network, and a star criterion under \(\rho\)–discrete network decompositions of such networks. Structural consequences include hereditary and transfer over dense subsets, stability under countable sums, and a tube–type product when the second topology is discrete and the first factor is \(i\)–compact. Also, we introduce \(ij\)–\(S_\alpha\)–perfect mappings and show preservation of \(ij\)–\(S_\alpha\)–Lindelöfness with explicit cardinal bounds; images under \(ij\)–\(S_\alpha\)– and \(ij\)–\(S_\alpha^\ast\)–continuous maps are correspondingly controlled. Pairwise invariants are examined via \(\widehat L^{S_\alpha}_{\mathrm{pair}}\), which lies between the one–sided quantities and equals their maximum whenever at least one is infinite.
Article Details
References
- Q.H. Al-Rubaye, Semi-$alpha$-Compactness in Bitopological Spaces, J. Babylon Univ. / Pure Appl. Sci. 21 (2013), 2008–2022.
- A.A. Atoom, F. Bani-Ahmad, Between Pairwise–Perfect Functions and Pairwise-$t$-$alpha$-Perfect Functions, J. Appl. Math. Inform. 42 (2024), 15–29. https://doi.org/10.14317/JAMI.2024.015.
- A.A. Atoom, H. Qoqazeh, M.A.B. Abdelrahman, E. Hussein, D.A. Mahmoud, et al., A Spectrum of Semi-Perfect Functions in Topology: Classification and Implications, WSEAS Trans. Math. 24 (2025), 347–357. https://doi.org/10.37394/23206.2025.24.33.
- A.A. Atoom, H. Qoqazeh, E. Hussein, A. Owledat, Analyzing the Local Lindelöf Proper Function and the Local Proper Function of Deep Learning in Bitopological Spaces, Int. J. Neutrosophic Sci. 26 (2025), 299–309. https://doi.org/10.54216/ijns.260223.
- A.A. Atoom, M.A.B. Abdelrahman, Difference Compactness in Bitopological Spaces: Foundations from Difference Sets and Dual Views with Applications, Bol. Soc. Paran. Mat. 43 (2025), 1–15. https://doi.org/10.5269/bspm.77237.
- A.A. Atoom, M.A.B. Abdelrahman, Structural Properties of Pairwise Difference Lindelöf Spaces: Statistical Applications in Data Analysis, Bol. Soc. Paran. Mat. 43 (2025), 1–22. https://doi.org/10.5269/bspm.78337.
- A.A. Atoom, M. Al-Otaibi, M.G. Ghadaireh, H. Qoqazeh, A.O. AlKhawaldeh, Exploring the Role of [d, e]-Lindelöf Spaces: Theoretical Insights and Practical Implications, Int. J. Anal. Appl. 23 (2025), 136. https://doi.org/10.28924/2291-8639-23-2025-136.
- A.A. Atoom, R. Alrababah, M. Alholi, H. Qoqazeh, A. Alnana, et al., Exploring the Difference Paralindelöf in Topological Spaces, Int. J. Anal. Appl. 23 (2025), 24. https://doi.org/10.28924/2291-8639-23-2025-24.
- A.A. Atoom, M.A. Bani Abdelrahman, T.S. Alshammari, K.A. Rashedi, M.Z. Aldrabseh, Difference Lindelöf Perfect Function in Topology and Statistical Modeling, Mathematics 13 (2025), 3961. https://doi.org/10.3390/math13243961.
- S. Bose, Semi-Open Sets, Semi-Continuity and Semi-Open Mappings in Bitopological Spaces, Bull. Cal. Math. Soc. 73 (1981), 237–246.
- M.A. El Safty, M. El Sayed, S.A. Alblowi, Accuracy Based on Simply* Alpha Open Set in Rough Set and Topological Space, Soft Comput. 25 (2021), 10609–10615. https://doi.org/10.1007/s00500-021-05935-7.
- R. Gowri, A.K.R. Rajayal, Supra Semi Alpha Open Sets in Supra Bitopological Spaces, Arya Bhatta J. Math. Inform. 2019 (2019), 263–268.
- Q.H. Imran, F. Smarandache, R.K. Al-Hamido, R. Dhavaseelan, On Neutrosophic Semi Alpha Open Sets, Neutrosophic Sets Syst. 18 (2019), 5.
- Q.H. Imran, On Nano Semi Alpha Open Sets, arXiv:1801.09143 (2018). https://doi.org/10.48550/arXiv.1801.09143.
- M. Jelic, A Decomposition of Pairwise Continuity, J. Inst. Math. Comput. Sci. Math. Ser. 3 (1990), 25–29.
- M. Jeli'c, Feebly $p$-Continuous Mappings, Suppl. Rend. Circ. Mat. Palermo (2) 24 (1990), 387–395.
- A. Kar, P. Bhattacharyya, Bitopological Preopen Sets, Precontinuity and Preopen Mappings, Indian J. Math 34 (1992), 295–309.
- J.C. Kelly, Bitopological Spaces, Proc. Lond. Math. Soc. s3-13 (1963), 71–89. https://doi.org/10.1112/plms/s3-13.1.71.
- A. Kilicman, Z. Salleh, On Pairwise Lindelöf Bitopological Spaces, Topol. Appl. 154 (2007), 1600–1607. https://doi.org/10.1016/j.topol.2006.12.007.
- N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, Am. Math. Mon. 70 (1963), 36–41. https://doi.org/10.1080/00029890.1963.11990039.
- S.N. Maheshwari, R. Prasad, Semi-Open Sets and Semi-Continuous Functions in Bitopological Spaces, Math. Notes 26 (1977), 29–37.
- G.B. Navalagi, Definition Bank in General Topology, Topology Atlas preprint, 449, (2000). http://at.yorku.ca/i/d/e/b/75.
- O. Njastad, On Some Classes of Nearly Open Sets, Pac. J. Math. 15 (1965), 961–970. https://doi.org/10.2140/pjm.1965.15.961.
- H. Qoqazeh, A. Atoom, M. Alholi, E. ALmuhur, E. Hussein, et al., $KC$-Bitopological Spaces, AIMS Math. 9 (2024), 32182–32199. https://doi.org/10.3934/math.20241545.
- A. Rieser, Čech Closure Spaces: A Unified Framework for Discrete and Continuous Homotopy, Topol. Appl. 296 (2021), 107613. https://doi.org/10.1016/j.topol.2021.107613.
- A. Robert, S.P. Missier, Between $alpha$-Closed Sets and Semi $alpha$-Closed Sets, Int. J. Mod. Eng. Res. 4 (2014), 34–41.
- A. Robert, S. Pious Missier, Semi-Star-Alpha-Open Sets and Associated Functions, Int. J. Comput. Appl. 104 (2014), 24–29. https://doi.org/10.5120/18288-9426.
- A. Robert, S.P. Missier, Connectedness and Compactness via Semi-Star-Alpha-Open Sets, Int. J. Math. Trends Technol. 12 (2014), 1–7. https://doi.org/10.14445/22315373/ijmtt-v12p501.
- S.K. Sampath, On a Decomposition of Pairwise Continuity, Bull. Cal. Math. Soc. 81 (1989), 441–446.