On Semi α-Lindelöf in Bitopological Spaces

Main Article Content

Ali A. Atoom, Mohammad A. Bani Abdelrahman, Maryam M. Alholi, Diana Amin Mohammad Mahmoud, Eslam Qudah, Hamza Qoqazeh

Abstract

This paper set up a Closure–operator scheme for semi–\(\alpha\)–Lindel\"{o}fness in bitopological spaces to manage covering behavior generated by two interacting topologies. With the Čech–closure hull \(H_{ij}=j\!\operatorname{cl}\,i\!\operatorname{int}\,j\!\operatorname{cl}\,i\!\operatorname{int}\), we reformulate \(ij\)–semi–\(\alpha\)–open sets and obtain operator–level criteria for \(ij\)–semi–\(\alpha\)–Lindel\"{o}fness. We prove a network estimate that bounds \(L^{S_\alpha}_{ij}\) by the size of an \(ij\)–\(S_\alpha\)–network, and a star criterion under \(\rho\)–discrete network decompositions of such networks. Structural consequences include hereditary and transfer over dense subsets, stability under countable sums, and a tube–type product when the second topology is discrete and the first factor is \(i\)–compact. Also, we introduce \(ij\)–\(S_\alpha\)–perfect mappings and show preservation of \(ij\)–\(S_\alpha\)–Lindelöfness with explicit cardinal bounds; images under \(ij\)–\(S_\alpha\)– and \(ij\)–\(S_\alpha^\ast\)–continuous maps are correspondingly controlled. Pairwise invariants are examined via \(\widehat L^{S_\alpha}_{\mathrm{pair}}\), which lies between the one–sided quantities and equals their maximum whenever at least one is infinite.

Article Details

References

  1. Q.H. Al-Rubaye, Semi-$alpha$-Compactness in Bitopological Spaces, J. Babylon Univ. / Pure Appl. Sci. 21 (2013), 2008–2022.
  2. A.A. Atoom, F. Bani-Ahmad, Between Pairwise–Perfect Functions and Pairwise-$t$-$alpha$-Perfect Functions, J. Appl. Math. Inform. 42 (2024), 15–29. https://doi.org/10.14317/JAMI.2024.015.
  3. A.A. Atoom, H. Qoqazeh, M.A.B. Abdelrahman, E. Hussein, D.A. Mahmoud, et al., A Spectrum of Semi-Perfect Functions in Topology: Classification and Implications, WSEAS Trans. Math. 24 (2025), 347–357. https://doi.org/10.37394/23206.2025.24.33.
  4. A.A. Atoom, H. Qoqazeh, E. Hussein, A. Owledat, Analyzing the Local Lindelöf Proper Function and the Local Proper Function of Deep Learning in Bitopological Spaces, Int. J. Neutrosophic Sci. 26 (2025), 299–309. https://doi.org/10.54216/ijns.260223.
  5. A.A. Atoom, M.A.B. Abdelrahman, Difference Compactness in Bitopological Spaces: Foundations from Difference Sets and Dual Views with Applications, Bol. Soc. Paran. Mat. 43 (2025), 1–15. https://doi.org/10.5269/bspm.77237.
  6. A.A. Atoom, M.A.B. Abdelrahman, Structural Properties of Pairwise Difference Lindelöf Spaces: Statistical Applications in Data Analysis, Bol. Soc. Paran. Mat. 43 (2025), 1–22. https://doi.org/10.5269/bspm.78337.
  7. A.A. Atoom, M. Al-Otaibi, M.G. Ghadaireh, H. Qoqazeh, A.O. AlKhawaldeh, Exploring the Role of [d, e]-Lindelöf Spaces: Theoretical Insights and Practical Implications, Int. J. Anal. Appl. 23 (2025), 136. https://doi.org/10.28924/2291-8639-23-2025-136.
  8. A.A. Atoom, R. Alrababah, M. Alholi, H. Qoqazeh, A. Alnana, et al., Exploring the Difference Paralindelöf in Topological Spaces, Int. J. Anal. Appl. 23 (2025), 24. https://doi.org/10.28924/2291-8639-23-2025-24.
  9. A.A. Atoom, M.A. Bani Abdelrahman, T.S. Alshammari, K.A. Rashedi, M.Z. Aldrabseh, Difference Lindelöf Perfect Function in Topology and Statistical Modeling, Mathematics 13 (2025), 3961. https://doi.org/10.3390/math13243961.
  10. S. Bose, Semi-Open Sets, Semi-Continuity and Semi-Open Mappings in Bitopological Spaces, Bull. Cal. Math. Soc. 73 (1981), 237–246.
  11. M.A. El Safty, M. El Sayed, S.A. Alblowi, Accuracy Based on Simply* Alpha Open Set in Rough Set and Topological Space, Soft Comput. 25 (2021), 10609–10615. https://doi.org/10.1007/s00500-021-05935-7.
  12. R. Gowri, A.K.R. Rajayal, Supra Semi Alpha Open Sets in Supra Bitopological Spaces, Arya Bhatta J. Math. Inform. 2019 (2019), 263–268.
  13. Q.H. Imran, F. Smarandache, R.K. Al-Hamido, R. Dhavaseelan, On Neutrosophic Semi Alpha Open Sets, Neutrosophic Sets Syst. 18 (2019), 5.
  14. Q.H. Imran, On Nano Semi Alpha Open Sets, arXiv:1801.09143 (2018). https://doi.org/10.48550/arXiv.1801.09143.
  15. M. Jelic, A Decomposition of Pairwise Continuity, J. Inst. Math. Comput. Sci. Math. Ser. 3 (1990), 25–29.
  16. M. Jeli'c, Feebly $p$-Continuous Mappings, Suppl. Rend. Circ. Mat. Palermo (2) 24 (1990), 387–395.
  17. A. Kar, P. Bhattacharyya, Bitopological Preopen Sets, Precontinuity and Preopen Mappings, Indian J. Math 34 (1992), 295–309.
  18. J.C. Kelly, Bitopological Spaces, Proc. Lond. Math. Soc. s3-13 (1963), 71–89. https://doi.org/10.1112/plms/s3-13.1.71.
  19. A. Kilicman, Z. Salleh, On Pairwise Lindelöf Bitopological Spaces, Topol. Appl. 154 (2007), 1600–1607. https://doi.org/10.1016/j.topol.2006.12.007.
  20. N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, Am. Math. Mon. 70 (1963), 36–41. https://doi.org/10.1080/00029890.1963.11990039.
  21. S.N. Maheshwari, R. Prasad, Semi-Open Sets and Semi-Continuous Functions in Bitopological Spaces, Math. Notes 26 (1977), 29–37.
  22. G.B. Navalagi, Definition Bank in General Topology, Topology Atlas preprint, 449, (2000). http://at.yorku.ca/i/d/e/b/75.
  23. O. Njastad, On Some Classes of Nearly Open Sets, Pac. J. Math. 15 (1965), 961–970. https://doi.org/10.2140/pjm.1965.15.961.
  24. H. Qoqazeh, A. Atoom, M. Alholi, E. ALmuhur, E. Hussein, et al., $KC$-Bitopological Spaces, AIMS Math. 9 (2024), 32182–32199. https://doi.org/10.3934/math.20241545.
  25. A. Rieser, Čech Closure Spaces: A Unified Framework for Discrete and Continuous Homotopy, Topol. Appl. 296 (2021), 107613. https://doi.org/10.1016/j.topol.2021.107613.
  26. A. Robert, S.P. Missier, Between $alpha$-Closed Sets and Semi $alpha$-Closed Sets, Int. J. Mod. Eng. Res. 4 (2014), 34–41.
  27. A. Robert, S. Pious Missier, Semi-Star-Alpha-Open Sets and Associated Functions, Int. J. Comput. Appl. 104 (2014), 24–29. https://doi.org/10.5120/18288-9426.
  28. A. Robert, S.P. Missier, Connectedness and Compactness via Semi-Star-Alpha-Open Sets, Int. J. Math. Trends Technol. 12 (2014), 1–7. https://doi.org/10.14445/22315373/ijmtt-v12p501.
  29. S.K. Sampath, On a Decomposition of Pairwise Continuity, Bull. Cal. Math. Soc. 81 (1989), 441–446.