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Abstract. This paper set up a Closure-operator scheme for semi—a-Lindel6fness in bitopological spaces to manage
covering behavior generated by two interacting topologies. With the Cech—closure hull Hjj = jcliint jel iint, we
reformulate ij-semi-a—open sets and obtain operator-level criteria for ij—semi-a-Lindeldfness. We prove a network
estimate that bounds Lisj" by the size of an ij-S,—network, and a star criterion under p—discrete network decompositions of
such networks. Structural consequences include hereditary and transfer over dense subsets, stability under countable
sums, and a tube-type product when the second topology is discrete and the first factor is i—compact. Also, we
introduce ij-S,—perfect mappings and show preservation of ij-S,—Lindelofness with explicit cardinal bounds; images
under ij-S,— and ij-Sj,—continuous maps are correspondingly controlled. Pairwise invariants are examined via Z;“

air’
which lies between the one—sided quantities and equals their maximum whenever at least one is infinite.

1. INTRODUCTION

Contemporary scholarship on almost open sets begins with Levine’s semi-open sets and Njas-
tad’s a-open sets [20,23]. Building on these, Navalagi developed semi-a-open sets, by compining
the semi and a-open to represent a category that is solely amongst a-open and semi-open fami-
lies [22]. Since then, the concept has spread in multiple directions: variants such as semi*a and

simply*a sets and their associated mappings, compactness and Lindeldfness, and transfers to soft,
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neutrosophic, nano, and rough-set structure [5,6,9,11,13,14,26-28].

Through a conventional compactness to a dynamic covering foundation, the Lindeldf property
has evolved. The evolution of it followed two stages: expanding the background classifications
(broader topologies, soft and nano conditions, fuzzy and neutrosophic models, and bitopological
spaces) and improving the covering classes (nearly open, a-open, semi-open, semi-a). Through
the use of continuity and idealistic assumptions, scholars were able to extract Lindelof, introduced
cardinal invariants tied to bases and networks, and established stability under sums, images, and
controlled products, often via continuity and perfect-type hypotheses. In this article we position
the semi-a-Lindeldf property within bitopology, define and compare its cardinal invariants, give
base and network tests, prove preservation and decomposition results, and supply examples that
separate the main implications [2—4,7,8,10,19,24].

On identical set, bitopology records two conflicting different types of openness. Between or-
dinary i—open sets and the broader ij—pre— and ij—-semi-open sets one finds the ij-a—open fam-
ily [10,17]. In this paper, we examine the Lindel6f phenomena for the semi-« level in the bitopo-
logical context, with emphasis on cardinal invariants and stability under standard constructions.

We begin by transforming the family of i j-semi-a—open sets into preopen sets of a Cech—closure

space using the hull H;; = jcl iint jcl iint, The functional convenience of this operator approach
is that it enables us to transfer many Lindel6f arguments that are expressed using the concept of
reductions local bases.
We work throughout with i # j € {1,2}; the topological index is used to indicate interiors and
closures. In this article we introduce the ij—semi-a-Lindel6f number Ll‘.q’j“ (M) and its pairwise
version, and relate them to the classical i-Lindel6f number and to the a— and pre-Lindeldf num-
bers. Obtain network and star criteria: a countable ij—S,—network implies ij—S,—~Lindelof, and
a p-locally finite ij—S,—network yields the star variant, prove hereditary and dense-set transfer,
and stability under countable sums, introduce ij-S,—perfect functions and show they preserve
ij-So—Lindelofness with explicit cardinal bounds. For pairwise covers we establish sharp inequal-
ities and identify conditions under which the pairwise number equals max{Lf‘z', L;;‘ }, Additionally,
simulations based on ordinal, Sorgenfrey, discrete, and co-countable structures demonstrate that
our predictions are almost optimal by separating all concepts.

Our results refine the known relationships among ij—pre—, ij—semi-, and ij—a—openness [1,10,17]
by isolating the covering behavior that is specific to the semi-a level. The H;; foundation allows
standard Lindelof proofs to adjust with little modification while maintaining the explicitness of
truly bitopological consequences (the j—closure stages).

The hull Hj; is introduced in section 2, which also fixes notation and recalls the open-set classes.
Section 3 develops the semi-a-Lindeloéf number, network and star criteria, sums and a tube
product, hereditary and dense-set transfer, image theorems, and ij—S,—perfect maps together with
cardinal bounds. The section closes with examples that separate implications and calibrate the

sharpness of our assumptions.
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2. PRELIMINARIES

In this section we fix notation and basic tools for the bitopological spaces and recall the ij—pre,
ij-semi, and ij—a—open classes and record their standard characterizations, then define the
ij-semi—-a—open family together with an equivalent hull form. We introduce the three ij—semi-«a
continuity variants and the pairwise Lindelof perfect maps that will mediate our transfer results.
Finally, we package the semi—a calculus into the Cech—closure hull H;;, note its monotonicity and

extensiveness, and identify ij—S,—covers with covers by H;j—preopen sets.

Definition 2.1. Let (M, y1,y2) be bitopological and A € M, with i # j € {1,2}. Then
(1) ij-pre-open [17]if A C i-in{j-cl(A));
(2) ij-semi-open [10] if A C j-c{i-int(A));
(3) ij-a-open [29] if A C i-in{j-cl(i-int(A))).

Proposition 2.1 ( [21]). A is ij—semi—open iff AU € y; with U € A C j-cl(U).
Proposition 2.2 ( [15]). A is ij—pre—open iff AU € y; with A C U C j-cl(A).
Theorem 2.1. [1] A is ij—a—open iff A is both ij—semi—open and ij—pre—open.

Definition 2.2 ([1]). A € M is ij-semi—-a—open if there exists U € ij-aO(M) with U C A C j-cl(U).
Denote the family by ij-S,O(M).

Proposition 2.3 ([1]). A is ij—semi—a—open iff
A c jofiinfj-cl-int(4))))

Definition 2.3 ( [2]). A function I : (M, y1,y2) — (C, p1,p2) is pairwise Lindeldf perfect if I' is closed,

continuous, and I'"'(c) is pairwise Lindelof in the pairwise Lindelof sense.

Definition 2.4. [1] LetI': (M, y1,y2) = (C,p1,p2) and i # j € {1,2}. Then

(1) I is ij~semi-a—continuous iff f1(V) € ij-S,O(M) for every V € p;.
(2) I is ij~semi-a*~continuous iff [~} (W) € ij-S,O(M) for every W € ij-S,0(C).
(3) T is ij-semi-a’—continuous iff [~} (W) € y; for every W € ij-S,O(C).

Definition 2.5. [22] For A € M set
Hij(A) 1= j-cli-int(j-cl(i-intA))).
Then A is ij—semi—a—open iff A C H;j(A).

Proposition 2.4. [25] H;j is monotone and extensive, ie. A C B = H;j(A) C H;j(B) and A C H;j(A).
Hence (M, Hjj) isa Cech closure space. ij-S,~covers coincide with covers by Hjj—preopen sets.
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3. ij-SEMI-a—LINDELOF IN BITOPOLOGICAL SPACES

This section introduces the ij—S,—Lindelof property for sets and spaces and the cardinal invariants
ij“ andff)‘; - We establish monotonicity and refinement rules, network and o—discrete star criteria,
and stability under closed subspaces, dense-set transfer, finite unions, countable sums, and a

product when p; is discrete and the second factor is i~compact.

Definition 3.1. Let (M, y1, y2) be bitopological spaceand A € M. Aisij-S,~Lindelof ifevery ij—S,—open
cover of A contains a countable subcover.
Define
LZ.S]?‘ (A) := min{x : every ij—S,—open cover of A has a subcover of size < «}.
And write LZ.SJ.“ (M) when A = M.

. . . . . Sa _ Sa Szx

The pairwise invariant is Losir (A) = max{L}5(A), L3 (A)}.
Proposition 3.1. For AC B C M:

Sa Sa Sa

L (A) < L (B) < L (M).
If A is ij—S,—Lindelof then A is ij—a—Lindelof.
Proof. Let A € B € M. Any ij-S,—cover of B also covers A. Hence subcover bounds transfer.
Sa Sa
L (A) < L (B).
Applying the same argument to B € M gives Lf}." (B) < Ll.S].“ (M).
The implication follows since ij—a—open C ij—-S,—open. m]

Proposition 3.2. If ‘W is an ij-S,—open cover of A and U C ij-S,O(M) refines ‘W, then U is an

ij—Sa—open cover of A.

Proof. Let ‘W be an ij—S,—open cover of A and let U C ij-S,O(M) refine ‘W (relative to A). For
each a € A choose W, € ‘W with a € W,. By refinement, there exists U, € U witha € U, C W,.
Hence a € |JU, so U covers A. Since every member of U is ij-S,—open, U is an ij—S,—open cover
of A. m]

Definition 3.2. A bitopological space (M, y1,y2) is ij-semi-a—Lindelof iff every ij-semi—a—open cover
of M has a countable subcover. Define the cardinal invariant

Lf].“ M) := min{K . every ij—Sq—open cover of M has a subcover of size < K}.

The space M is pairwise S,—Lindelof if it is both 12-S,~Lindelof and 21-S,—Lindelof; set Lf;;ir(M) =
max{L}3 (M), L33 (M)}.

721

Remark 3.1. Every ij—semi—a—Lindeldf space is i-Lindeldf. Consequently L;( M) < L3*(M),

)

Definition 3.3. A family N is an ij-S,—network if for every ij—S,—open W and every m € W there exists
Ne NwithmeNCW.
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Definition 3.4. A subfamily P C ij-S,O(M) is an ij-S,—m—base if for every nonempty V € y; there exists
P € P with P € H;j(V).

Theorem 3.1. If M has an ij-S,—network N, then Lf]." (M) <IN

Proof. Let W C ij-S,O(M) cover M. Set N’ := {N,, : m € M} C N. For each N € N’ select one
Wy € W with N € Wy. Then {Wy : N € N’} covers M, and

[(Wy : N e N')| <IN <IN
Hence LZ.S].‘*(M) < INI. o

Definition 3.5. A space M is ij—S,—star—Lindelof if for every ij—S,—open cover U there exists a countable
subfamily (Uy,)nen € U such that

St({UL, : n € N}, U) = M.

Theorem 3.2. If N = U,enNy is an ij-S,—network with each N, discrete, then M is
ij=Sa—star—Lindelof.

Proof. Let U C ij-S,0(M) be a cover of M. For each N € N choose Uy € U with N C Uy.
Fix n € N. Since N, is discrete, the family

{St(Un, U) : N € N,

covers [J N, and is pointwise finite. There exists a countable subfamily {UNZ }kew Whose cover
U N,

Now set a countable U* := {LIN;: : 1,k € N}. Fixm € Mand pick W € U withm € W. Because N
is an ij-S,—network, there exists N € N with m € N € W. This N lies in NV,,, hence N C St(LIN;Cz, U)
for some k. Consequently W meets Uyy and therefore m € St(U", U). Since m was arbitrary,
St(U*, U) = M. i

Remark 3.2. If (M, y1,y2) is ij-semi—a—compact, then it is ij—semi-a—Lindeldf and LZS]“(M) < No.

Definition 3.6. The invariantflsg‘;ir(M) is the least cardinal x such that every pairwise S,—open cover of
M admits a subcover of size < «; equivalently,

Z}‘igir(X) = min{K . every pairwise S,—open cover of X has a subcover of size < K}.
Proposition 3.3.

Sa S(l AS“
max{L}5 (M), L3} (M)} < Losie

Example 3.1. Consider M = R, Y1 = YEuc, Y2 = Vdise, and (i,j) = (1,2). Then 12-S,0(M) = 11

since for j discrete,

(M) < LY (M) + L3 (M).

A C 2-cl1-int2-cl 1-intA = 1-intA & A €y;.
Hence Lf‘z‘ (M) = No. For (i,j) = (2,1), 2 is discrete, so for each A C M,
2-int1-cl2-intA = 1-cl(A), 1-cl(1-clA) = 1-clA,
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and A C 1-clA; thus every subset is 21-S,—open. The cover by singletons yields Lgi’(X) = 2%, By
Proposition 3.3,

Lin (M) = 2%,
Example 3.2. Consider M = [0, w1) with y the order topology and y2 = yqisc. As above, 12-S,0(M) =
Y1, 50

L33 (M) = an

witnessed by the classical cover {[0, &) : a < w1}. For (i,j) = (2,1), every subset is 21-S,—open, hence
Lif (M) = IM| = ws. Thereforefg‘;ir(M) = w;.

Theorem 3.3. For every bitopological space M,
max{L}3 (M), L1 (M)} < T (M) < L33(M) + L3 (M).

Ppair
If at least one ofog (M) or Lgi' (M) is infinite, then
L% (M) = max(L (M), L3 (M)},

pair 7721

Proof. For the lower bound, note that a pairwise S,—open cover may consist solely of 12-S,—open
sets (or solely of 21-5,—open sets). Hence any universal bound for pairwise covers must dominate
both L‘fg (M) and Lg‘l‘ (M), giving

max{L3s (M), L33 (M)} < T3 (M).

pair
For the upper bound, let ‘W be a pairwise S,—open cover. Decompose
W =WpUWy, WpC 12-SaO(M), Wy C 21-SaO(M).

Set A = |JWixand B = M\ A. Then B C | J W5;. By the definitions of Lfg and Lg‘l* there exist

Vo SWia, [Vio] £ Lig (M), Covering A,

Vo € Wa, [Val< L;‘l* (M), covering B.
Thus V12 U V> covers M and
Zﬁén(M) < ViUVl < LY (M) + L3z (M).
If at least one of Lf‘z’ (M) or Li‘l* (M) is infinite, then for cardinals
L33 (M) + L33 (M) = max{L33 (M), L3 (M)},
Combining with the lower bound yields the stated equality. m]

Proposition 3.4. Every ij—semi—a—closed subset of an ij—semi—a—Lindelof space is ij—semi—a—Lindelof.

Proof. Let A C Mbe ij-S,—closed and assume M is ij-S,—-Lindelof. Given an ij—S,—open cover ‘W
of A, the family W U { M\ A} is anij—S,—open cover of M. By ij-S,—Lindeldfness, it has a countable
subcover {W,, : n € N} U {M\ A}. Dropping M\ A (if selected) leaves a countable subfamily of W
that covers A. Hence A is ij—-S,~Lindelof. O
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Definition 3.7. A subset D C M is ij-So—dense if its ij-S,~hull equals M, i.e., H;j(D) = M.
Proposition 3.5. If D C M is ij-S,—dense and ij-S,—Lindelof, then M is ij-S,—Lindelof and
L (M) <L}*(D).
Proof. Let W Cij-S,O(M) cover M. The trace
WID:={WnD:WeW)

is an ij-S,~open cover of D. By ij-S,~Lindeldfness of D there exists a subfamily {W, : y < x} € W
with x < LZ.SJ.“(D) such that D € U, (W, N D). For ij-S,~open U,

M= H;j(D) ¢ Hz’j(U(Wy n D)) c UHij(wy ND) C UHij(wy) = U W,.

Y<K Y<K y<x y<K
Thus {We : £ < «} is a subcover of M of size < Lf}“’ (D). Hence M is ij—-S,~Lindelof and Lf]." (X) <
Sa
Ll.]. (D).

Example 3.3. Consider M = R, y1 = VEue, Y2 = Yeoe, and (i,j) = (1,2). Set D = (0,1). Then
1-int(D) = D # @ and 2—cl(D) = M. Hence

Hi(D) = 2-cl(1-int2-cl(1-intD) ) = 2-cl(1-int M) = 2-cl(M) = M,
so D is 12-S,—dense. But D is not 1-dense in (M, y1), since 1-cl(D) = [0,1] # M.
Example 3.4. For each a < w1 let I, = [0, 1] with the Euclidean topology. Define

M= I_I Io, y1 = topological sum of Euclidean topologies,

a<wq
y2 = topological sum of co—countable topologies.

Fix (i,j) = (1,2) and define D = | |,,,(0,3) € M. Then for each a, 1-int(DN1,) = (0,3) # @ and
2—cl(DN1,) = I,. Therefore 2—l(1-int D) = M, and as in Example 3.3 we get H15(D) = X. Thus D is
12-S,—dense in X. Yet D is not 1-dense, since in each component 1-cl(D N 1,) = [0, 3] is a proper subset

of 1.
Theorem 3.4. Let (M, y1,y2) be bitopological and fix i # j. For D € M the following are equivalent:
(1) D is ij-Ss~dense, i.e. Hij(D) = M.
(2) Every nonempty ij—S,—open set meets D.
) j-cl(i-int(D)) = M.
Moreover, for every A € M,
Hi(DNA) = A mHl./]V‘(D),

so if D is ij-S,—dense in M and A is any subspace, then D N A is ij—S,—dense in A.
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Proof. (1)=(2): If H;;(D) = M and W is nonempty ij—S,—open with WN D = @, this contradicts
the hull-based characterization of ij-S,—openness. Hence every nonempty ij—S,—open set meets
D.
(2)=(3): Suppose j—cl(i-int D) # M. Then some c € M admitsa j—open V 3 c with VNi-intD =
@. By definition, i—int V is ij-S,—open and misses D, contradicting (2). Thus j-cl(i-intD) = M.
(3)=(1): Using the standard formula for the ij—-S,~hull,

Hy(D) = j-cli-int j-cl(i-intD) ) = j-cli-int M) = j-cl(M) = M.
For the subspace identity, use the subspace rules
i-intA(E) = Aﬁi-intM(E), j-ClA(E) :Aﬂj-CIM(E),
and compute directly:
Hi(DNA) = j—clA(i—intA j-cla(i-int4 (D N A)))
. . .. . .. . M
=AnN ]-CIN(z-th ]-CIM(l-thD)) =AN H; (D).
This also yields the final statement. m]

Proposition 3.6. If A and B are ij-semi—a—Lindelof subsets of (M,y1,y2), then AUB is
ij—semi—a—Lindeldf.

Proof. Let W C ij-S,O(M) cover AU B. Since A is ij-S,—Lindelof, there exists a countable sub-
family {W,,},en € W covering A. Similarly, there is a countable subfamily {V,},en € ‘W covering
B. The union {W, : n € N} U{V, : n € IN} is countable and covers AU B. Hence AUB is
ij-Sa—Lindelof. O

Corollary 3.1. Finite unions of ij—semi—a—Lindelof subsets are ij—semi—a—Lindeldf.

Remark 3.3. For A,BC M,
Lf; (AUB) < Lf].“ (A) + LS] (B).
In particular, if both are < Ry, then A U B is ij-S,—Lindelof.

Lemma 3.1. Let (M, y1,2), (C,p1,p2) be bitopological and fix i # j. Assume p; is discrete. If W €
(i, ))-SaO(MXC) and (m,c) € W, then there exist U € ij—S,O(M) and V € p;with (m,c) e UxV C W.

Theorem 3.5. If {Milen are ij-S,—Lindeldf, then the topological sum @, My with componentwise
(y1,y2) is ij-S,—Lindelof and

LZS]“( EkB Mk) = Sl;p Lf].“ (M).

Proof. Let W Cij-S,O(M) cover M. For each k, the trace

Wi ={WnM;: We W}
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is an ij-S,—open cover of M. Since M; is ij-S,—Lindelof, choose a countable subfamily V, € W
with U Vi 2 Mi. Then V := Uien Vi is countable and covers M, so M is ij-S,—Lindelof.
Set ki := ij“ (M) and « := sup, k. For the lower bound, M is a clopen subspace of M, so by

monotonicity

Ki < LZ.S]." (M) forallk, = sip Ki < LI.S].“ (M).

For the upper bound, from the construction above we may for each k select Uy C W with | U] < «i
and U Uy 2 M. Then
U= Ju

keIN
covers M and satisfies |U| < x - Ng. If «k is infinite, cardinal arithmetic gives x - N9 = «x, hence
LZ.”‘ (M) < k. Combining with the lower bound yields

LZ.S].”‘ M) = sip LI.S]." (My).
O

Theorem 3.6. Assume pj on C is discrete. If (M,y1,Y2) is ij-Sa—Lindeldf and (C, p1, p2) is i—compact,
then (MXC,yi X pi,y; X p;) is (i, j)~Sa—Lindelof.

Proof. Let W C (i, j)-SaO(M x C) cover M x C. For each (m,c) € MxC pick Wy, € W with
(m,c) € Wy,c. By Lemma 3.1 there exist Uy, € ij-S,O(M) and V. € p; with (m,c) € Uye X Vipe €
Wi c.

Fixm € M. Then {V,,. : ¢ € C}is ani—open cover of C. By i-compactness of C choosecy, ..., Co(m)
with C = Ufg) Ve, Set Uy := ﬂfg) U, € ij-S,O(M) (finite intersections are allowed since
Uy, € Uy, will only be used to form rectangles), and note that {U,, : m € M} C ij-5,0(M) covers
M because for any m we have m € Uy,.

Since M is ij—-S,—Lindeldf, select a countable set I € M such that {U,, : m € I} covers M. Then

the countable family of rectangles
Ri={Upx Ve, - mel, 1< €< g(m)]

covers M x C, and each member of R is contained in some W, € ‘W. Hence ‘W has a countable

subcover. O

Definition 3.8. A bitopological space M is locally ij—S,—Lindelof if every m € Madmits U € ij-S,O(M)
with m € U and U ij-S,—Lindelof.

Proposition 3.7. If M = UU,, U, with each U, ij-S,—Lindelof and {U,} ij-S,—locally finite, then M is
ij=Sa—Lindelof.

Proof. Let W C ij-S,O(M) cover M. For each n, the trace

Wi U, ={WnU,: We W}
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is an ij—S,—open cover of U,, so choose a countable subfamily V,, € W with (JV, 2 U,. Then
Uen Vi is countable and covers M. Hence M is ij-S,~Lindelof. m]

Example 3.5. If y; is discrete, then 12-S,0(M) = y4, since
Hi(A) = 2-cl 1-int2-cl 1-int(A) = 1-int(A),

so A C Hipp(A) iff A ey

Let M be the Michael line on R. Set (M,y1,y2) = (M,discrete) and (i,j) = (1,2). Then
12-5,0(M) = 1, so locally 12-S,—Lindeldf is the same as locally Lindelof in y1. Every point has a
y1—open Lindelof neighborhood, hence M is locally 12-S,~Lindeldf. However, M is not Lindeldf, so M is
not 12-S,—Lindelof.

Example 3.6. For each a < w let I, = [0,1] with the Euclidean topology. Form the topological sum
M = Uy<w, Lo and set (y1,y2) = (sum of Euclidean, discrete), (i, j) = (1,2). Again 12-5,0(M) = 1.
Each point m € I, has a y1—open neighborhood contained in 1,, which is Lindeldf; hence M is locally
12-S,—Lindeldf. But the y1—open cover {1, : a < w1} has no countable subcover, so Mis not 12—S,—Lindelof.

Lemma 3.2. If W € ij-S,0(M) and A C M, then WN A € ij-S,0(A).
Proof. Since W is ij-S,—open, W C HZ/)A(W) Using the subspace identities
i-int4(BNA) = ANi-inty(B), jcla(BNA) = AN j-clp(B),

we obtain WNA C H;?(W NA). Hence WN A is ij-S,—open in A.
O

Theorem 3.7. If M = U,en Un with each U, € ij-SoO(M) and each U, ij-S,—Lindeldf, then M is
ij=Sn—Lindelof and
L (M) < ZH‘Vija(un) < No-sipoj“(Un).
ne

Proof. Let W C ij-S,0(M) cover M. For each n, the trace
WwWru,:={Wnlu,: We W}

is an ij-S,—open cover of U, by Lemma 3.2. Choose a subfamily ‘W, € W with [ W,| < ij“(un)
that covers U,. Then (J,en Wy covers M and has cardinality at most ), LI.S].“(U”), which is
< No - sup,, Lf}.” (Uy). Thus M is ij-S,~Lindel6f and the bound holds. O

Theorem 3.8. Let I' : (M, y1,v2) = (C, p1,p2) and fix i # j € {1,2}. The following are equivalent:
(1) I is ij—semi—a—continuous.
(2) For every i-regular open V C C, T1(V) € ij-S,O(M).
(3) For some every base B; of (C, p;), [1(B) € ij-SoO(M) for all B € B;.
(4) For every m € Mand every i—open I (m) € V, there exists U € ij-S,O(M) withm € U C T71(V).



Int. J. Anal. Appl. (2026), 24:6 11

Proof. (1)=(2)=(1) is immediate since i-regular open C p;.

(1)=(3): if B € B; C p; then "} (B) is ij-S,~open.

(3)=(1): for Ve p;, V=B € B;: B C V}, hence I'"}(V) = |UI'(B) is ij-S,~open since unions
of ij—S,—open sets are ij—S,—open.

(I)e(d): if I"Y(V) is ij-S,—open, take U = I'}(V). Conversely, if (4) holds then I"}(V) =

Umer-1(vy Um is ij-So—0pen by union closure. ]

Example 3.7. Let M = R with y1 the Euclidean topology and y, the Sorgenfrey topology. Let C = R
with py Euclidean, py arbitrary. Fix (i,j) = (1,2). Define : M — C, T'(m) = m?>.

claim that f is 12-S,—continuous. Hence the base and local tests in Theorem 3.8 hold.

T is 1—continuous. Every y1-open set is 12-S,~open. Thus for every V € p1, T71(V) € 12-S,0(M).
For a base B = {(a,b)} of (C, p1), [ "\(a, b) is Euclidean open, hence 12-S,~open. For the local test: given
me MandV € py withT(m) € V, take U =T~ (V); thenm € U C T~Y(V) and U € 12-5,0(M).

Example 3.8. Let M = R with (y1,y2) as in 3.7. Let C = R? with p; the product Euclidean topology.
Fix (i,j) = (1,2). DefineI' : M — C, I'(m) = (m,sinm).
Claim that T is 12-S,—continuous. All equivalents in Theorem 3.8 hold.

Theorem 3.9. Let I': (M, y1,y2) = (C,p1,p2) and g : (C, p1,p2) = (Z,71,72).
(1) If T is ij—semi—a—continuous and g is i—continuous, then g o I' is ij—semi—a—continuous.
(2) If T and g are both ij—semi—a"—continuous, then g oI is ij—semi—a —continuous.
(3) If T is ij-semi—a—continuous and A C M, then fla : (A vila,y2la) — (C,p1,p2) is

i j-semi—a—continuous.

Proof. (1) For W € 1; we have (gol) ™' (W) = I'l(¢7'(W)) with ¢} (W) € p; apply
ij-Sq—continuity of I'.
(2) For W € ij-5,0(Z), (go ) '(W) = IY(g'(W)) and ¢7'(W) € ij-S,0(C); apply
ij-S;—continuity of I'.
(3) If V € p;, then (I'|4)~}(V) = ANT71(V), which is ij-S,~open in A since I'"(V) € ij-S,0(M)
and ij-S,—openness is preserved by taking subspace intersections with A. m|

Example 3.9. Use M,C and I from 3.7 with (i,j) = (1,2). Let Z = (0,00) with 71 Euclidean, 1,
arbitrary, and define ¢ : C — Z, g(c) = e¢. Claim that goI' : M — Z is 12-S,~continuous. g is
1—continuous. T is 12-S,~continuous by 3.7. For any W € 71, (¢o )1 (W) = F‘l(g‘l(W)) with
g1 (W) € py, s0 7§71 (W)) € 12-5,0(M) by Definition 2.4.

Example 3.10. Fix (i,j) = (1,2). Let M be any set with y1 discrete and y, arbitrary. Let C = R with
p1 discrete and py arbitrary. Let Z be any bitopological space. Choose any functions I : M — C and
g:C— Z

Claims that I and g are 12-S;—continuous; hence g o I' is 12-S}—continuous. If A C M, then I'|4 :
(A, v1la,721a) — C is 12-S ,—continuous.
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Since py is discrete, for every W C C we have W 12—a—open and hence 12-S,—open in C. Thus
g is 12-S;—continuous by definition. Since y1 is discrete, every subset of M is 12—a—open and hence
12-S,—open, so I is also 12-S;—continuous. By Theorem 3.9(2), g o I is 12-S}—continuous.

For the restriction, if V € py then ([|4) (V) = ANTY(V) with T1(V) € 12-S,0(M). By the
subspace definition, ANT~(V) is 12-S,~open in A. Hence I'|4 is 12-S,~continuous (Theorem 3.9(3)).

Theorem 3.10. The ij—semi—a—continuous image of an ij—semi—a—Lindeldf space is i—Lindeldf.

Proof. Let I : M — C be ij-S,—continuous and M ij-S,~Lindel6f. Given an i—open cover {V,}
of I'(M) in C, the family {I"!(V,)} C ij-S,O(M) covers M. Take a countable subcover; the

corresponding V,’s cover I'(M). o

Example 3.11. Let M = R with y1 Euclidean and y, discrete; then 12—S,—open sets are exactly y1—open,
so M is 12-S,~Lindeléf. Let C be any bitopological space with py Euclidean on R and define I'(m) = m?.
Then I is 1—continuous, hence 12-S,—continuous. By Theorem 3.10, I' (M) = R is 1-Lindeldf.

Corollary 3.2. If ' : M — C is onto and ij-S,—continuous, then
M ij-S,~Lindelof = C i—Lindeldf.

Proposition 3.8. If A C Mis ij-Sy—closed and M is ij—S,—Lindeldf, then A is ij—S,—Lindeldf.
Remark 3.4. For A,BC M,
Ly (T(M) <L (M), Lj*(AUB) <L} (A) + L (B).

Theorem 3.11. The ij—semi—a*—continuous image of an ij—semi—a—Lindeldf space is ij—semi—a—Lindelof.
Equivalently,
Sa Sa
LAT(M)) < L (M).

Proof. LetI' : M — C be ij-S;—continuous and M ij-S,—Lindelof.
Let {W,} C ij-S,0(C) cover I'(M). Then {1 (W,)} C ij-S,O(M) covers M. Choose a countable
subfamily {1 (W), ) kencoveringM. Then (W, }I* | covers I'(M). mi

Corollary 3.3. IfI' : M — C is onto and ij—S,,—continuous, then
M ij-S,~Lindelof = C ij-S,—Lindelof.

Definition 3.9. I : (M, y1,72) = (C, p1, p2) is ij-Sa—perfect if it is onto, ij—S,—closed, and every fiber
I(c) is ij-So~Lindeldf.

Example 3.12. Let C = R with p; = ygpyc and arbitrary py, let K = [0, 1] with k1 = Yguc and arbitrary
k2. Put M = Cx K with yq1 = p1 X1 and y» = pp X «p. Fix (i,j) = (1,2) and letI = g : M - C
be the first projection. T is onto ,12-S,—closed: if F € 12-S,C(M) then F is y1—closed, and mc(F) is
p1—closed because K is «1—compact; hence ric(F) € 12-S,C(C). T7'(c) = {c} x K are x1—compact, thus
12-S,~Lindelof.

Therefore I is 12—S,—perfect.
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Theorem 3.12. If I' : (M, y1,72) — (C,p1,p2) is ij-Sa—perfect and M is i-Lindeldf, then C is
ij=Sq—Lindelof and

L (C) < Li(M)-sup LT (c)).
ceC

Proof. Let W Cij-5,0(C) cover C. For each ¢ € C, the subfamily
We)={WeW: ceW

induces a cover

r*w)ynr=(c) : we w(c)}
of F. = I''}(c) by ij-S,—open sets in the subspace F.. By ij-S,~Lindeldfness of F, there exists a
subfamily ‘W, € ‘W (c) with

W, < x:=sup Lff* (I(2))
zeC J
and

FEc | ([ wne)c | rimw.
WeW, WeW.
Define the closed set

Ec:=M\ | IH(w).
WeW,
Then I'(E,) is ij-S,—closed in C because I' is ij-S,—closed, and ¢ ¢ I'(E,).
Set V. := C\TI'(E.). Each V. is ij-S,—open, contains ¢, and satisfies
vy e | rim. (%)
WeW.
Hence {V. : c € C} is an ij—-S,—open cover of C refining ‘W with countable-x control on preimages via
(+)-

Consider the family {I"!(V,) : ¢ € C}; it covers M. Since every y;—open set is ij-S,~open, for
each m € M choose a y;—open O,, with m € O,, C T‘l(Vr(m)). Then {Oy, : m € M} is a y;—open
cover of M. By i-Lindelofness, there exists a subfamily indexed by I € M with |I| < L;(M) such
that {O,, : m € I} covers M. Let

J:={'(m):mel} CC;
then [J| < |I| < Li(M) and {V, : ¢ € J} covers C by surjectivity of I': for any ¢y € C pick my € M with
I'(mg) = co; some m € I has moy € Oy, ST (Vi ), hence co € Vi),

Finally, for each ¢ € |, V. € U W, and ['W(| < k. Therefore J.c; W, is a subfamily of W of
cardinal < |J| - k¥ < L;(M) - x that covers C. This proves C is ij—S,~Lindelof and yields the stated
bound. m]

Lemma 3.3. The following are equivalent for I : (M, y1,7v2) = (C, p1,p2):
(1) I'is ij-S;—continuous;
(2) for every F € ij-S,C(C), I"1(F) € ij-S,C(M).

Proposition 3.9. For every A € Mand ij-S,,—continuous T, LZ.S]."(F (A)) < Lf].“ (A).
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Proposition 3.10. SupposeI : M — Cis onto and ij—S,—quotient in the sense that W € ij-S,O(C) <=
IY(W) €ij-SoO(M). Then C is ij—So~Lindeldf iff M is so.

Theorem 3.13. If I is ij—semi—a’—continuous and M is i-Lindelof, then I' (M) is ij—S,—Lindeldf. Equiv-
alently, LZ”(F(M)) < Li(M).

Proof. Let {W,} C ij-S,O(C) cover I'(M). By ij—a’—continuity, {I"}(W,)} C y; covers M. Use

i-Lindel6fness to extract a countable subfamily; push forward to cover I'(M). ]

Example 3.13. Fix (i,j) = (1,2). Let M = R with y; Euclidean (so 1-Lindeldf) and arbitrary y».
Let C = R? with py the product Euclidean topology and p; discrete, so again 12-S,0(C) = py. Define
I': M- Yby f(m) = (m,sinm); then I is 1-continuous and hence 12—a’—continuous. By Theorem 3.13,
I'(M) = {(m,sinm) : m € R} is 12-S,—Lindelof in C; here this is just Euclidean Lindeldfness of a

continuous curve in R?.

Proposition 3.11. For every W € ij-S,O(C) there exists V € p; with ["Y(W) = I'"1(V). Then i-Lindelof
of M implies ij—S,—Lindelof of I (M).

Definition 3.10. Let (M, y1,y2) be bitopological and i # j € {1,2}.

(1) Mis ij—a-Lindelof iff every ij—a—open cover of M has a countable subcover.
(2) Mis ij—pre-Lindeldf iff every ij—pre-open cover of M has a countable subcover.

Define cardinals
L;’;(M) := min{x : every ij—a—open cover of M has a subcover of size < x},
pre o . . ..
Ll.j (M) := min{x : every ij—pre—open cover has a subcover < x}.

Remark 3.5. ij—pre—open 2 ij—a—open, hence i j-pre-Lindeldf = i j—a—Lindelof and Lf;(/\/() < Lg.re( M). If
yj is discrete, then ij—a—open = ij-pre-open = y;—open, so ij—a-Lindeldf & ij—pre-Lindeldf & i-Lindeldf.
Example 3.14. Let M = [0,w1) with y1 the order topology and y, indiscrete; take (i,j) = (1,2).
Then 12—pre—open sets are all subsets (since 1lint(2clA) = lint M = M), so the cover by singletons
{{a} : a < w1} has no countable subcover. Hence M is not 12—pre—Lindelof and LEE(M) > No.

Moreover y1—-open C 12—a—open, so the classical open cover {[0, ) : & < w1} (no countable subcover in
(X, 1)) is a 12—a~open cover with no countable subcover. Thus X is not 12—a~Lindelof and L{, (X) > No.

Proposition 3.12. Every ij—pre—Lindeldf space is ij—a—Lindeldf. Equivalently Lf;(M) < Lg.re(/\/().
Proof. ij—a—open C ij—pre-open. Any ij—a—open cover is a special ij—pre—open cover, hence has a
countable subcover. m]

Proposition 3.13. Ifevery ij—pre—open set is ij—semi—open, then ij—a—open = i j—pre—open (by Theorem 2.9),
hence
M is ij—a-Lindelof &= M is ij—pre-Lindeldf,
__ 7bpre
and Lf;(M) = Li]. (M).
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Proposition 3.14. Every ij—pre—Lindelif space is i—Lindeldf. Hence Li(M) < Lg.re(M).
Proof. Every y;—open set is ij—pre—open. Any y;—open cover is an ij—pre—open cover. m|
Remark 3.6. Every ij-semi—a—Lindelof space is i j—a—Lindelof; thus Lf;(M) < Lf’j“ (M).

Proposition 3.15. If every y;—open subset of M is y;—closed, then ij—a—open = ij-semi—a—open (Re-
mark 2.17(ii)). Hence M is ij—a—Lindelof <= M is ij—semi—a—Lindeldf, and Lf;(/\/() = LZ.“ (M).

Proposition 3.16. If every y;—open set is y j—closed, then ij—pre-Lindeldf = ij-semi-a-Lindeldf, and
Lf} (M) < LEM) < LEE(M).

Proof. ij-pre-Lindelof = ij—a-Lindelof by 3.12. Under the hypothesis, ij-a—open = ij-S,—open
(3.15). o

Proposition 3.17. If every ij—pre—open is ij—semi—open, then ij—a—open = ij—pre—open. Hence
M ij-S,~Lindelof = M ij-a-Lindelof = XM ij—pre-Lindeldf,
and Lg.re(M) = LZ(M) < Lf].“ (M).

Corollary 3.4. If T : (M, y1,72) = (C, p1, p2) is ij—a’—continuous and M is i—Lindelof, then I (M) is
ij-S,—Lindelsf. Thus Lf].a(r(M)) < Li(M).

Proof. Let{W,} Cij-S,O(C) cover I'(M). Then {I'"1(W,)} C y; covers M; pick a countable subcover
and push forward. ]

Corollary 3.5. If I is ij—S;~continuous and M is ij-S,~Lindeldf, then I (M) is ij—S,~Lindelof. Hence
LAT(M)) < L (M),

4. CONCLUSION

Our goal was to comprehend the behavior of semi-a—openness at the level of covering prop-
erties in bitopological spaces. Two themes surfaced. First, the Cech—closure viewpoint via the
hull H;; = jcl iint jcl iint is the proper mechanism to convey arguments that classically rely on
closure operators. Second, once one works in the Hij—framework, several familiar Lindelof tools
carry over with minimal friction. On the structural side we proved network and star criteria for
ij-S,—-Lindeldfness, hereditary and dense-set transfer, p—glueing principles, and stable behavior
under countable sums. A tube-type product theorem was established when the second topology
is discrete and the i—side factor is compact. We introduced ij-S,—perfect maps and showed they
preserve ij—S,—Lindeldfness with sharp cardinal bounds. At the level of invariants we compared
LZ.S].“ with the a— and pre-Lindel6f numbers and analyzed the pairwise quantity fg‘;ir. Examples
drawn from ordinal, Sorgenfrey, Michael, discrete, and co—countable settings separate all notions
and show that our hypotheses are close to optimal. Beyond these core results, the picture that
emerges is that semi—a—Lindeldfness behaves like a robust shadow of i-Lindelofness, the outer-

most operator separates the change and permits the writing of proofs only once, which can then
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be applied in dicerent settings.

Directions for further work: Formulate ij-S, analogues of the Menger/Hurewicz properties and
corresponding games; compare with LZS]“ Study C;(M) with natural bitopologies and relate
their tightness, network weight, and Baire category to LI.S].“ (M). Characterize ij-S,—perfect maps
via closedness of graphs or inverse image operators; test stability under composition and pull-

backs. When both Lf‘z‘ and Lgi* are finite, determine exact values of Z}i o and identify extremal

examples. Find necessary and sufficient conditions under which ij—S,-star-Lindelof implies
ij-Sq—Lindeldf. The semi—a-Lindelof framework is flexible enough to encompass classical phe-
nomena and rigid enough to support clean cardinal bounds and preservation theorems. The tools
developed here—especially the H;;—operator and network methods—should be useful beyond the
topic at hand, wherever mixed topological information must be organized across two interacting

topologies.
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