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Abstract. This paper set up a Closure–operator scheme for semi–α–Lindelöfness in bitopological spaces to manage

covering behavior generated by two interacting topologies. With the Čech–closure hull Hi j = jcl iint jcl iint, we

reformulate i j–semi–α–open sets and obtain operator–level criteria for i j–semi–α–Lindelöfness. We prove a network

estimate that bounds LSα
i j by the size of an i j–Sα–network, and a star criterion underρ–discrete network decompositions of

such networks. Structural consequences include hereditary and transfer over dense subsets, stability under countable

sums, and a tube–type product when the second topology is discrete and the first factor is i–compact. Also, we

introduce i j–Sα–perfect mappings and show preservation of i j–Sα–Lindelöfness with explicit cardinal bounds; images

under i j–Sα– and i j–S∗α–continuous maps are correspondingly controlled. Pairwise invariants are examined via L̂Sα
pair,

which lies between the one–sided quantities and equals their maximum whenever at least one is infinite.

1. Introduction

Contemporary scholarship on almost open sets begins with Levine’s semi-open sets and Njas-

tad’s α-open sets [20, 23]. Building on these, Navalagi developed semi-α-open sets, by compining

the semi and α-open to represent a category that is solely amongst α-open and semi-open fami-

lies [22]. Since then, the concept has spread in multiple directions: variants such as semi*α and

simply*α sets and their associated mappings, compactness and Lindelöfness, and transfers to soft,
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neutrosophic, nano, and rough-set structure [5, 6, 9, 11, 13, 14, 26–28].

Through a conventional compactness to a dynamic covering foundation, the Lindelöf property

has evolved. The evolution of it followed two stages: expanding the background classifications

(broader topologies, soft and nano conditions, fuzzy and neutrosophic models, and bitopological

spaces) and improving the covering classes (nearly open, α-open, semi-open, semi-α). Through

the use of continuity and idealistic assumptions, scholars were able to extract Lindelöf, introduced

cardinal invariants tied to bases and networks, and established stability under sums, images, and

controlled products, often via continuity and perfect-type hypotheses. In this article we position

the semi-α–Lindelöf property within bitopology, define and compare its cardinal invariants, give

base and network tests, prove preservation and decomposition results, and supply examples that

separate the main implications [2–4, 7, 8, 10, 19, 24].

On identical set, bitopology records two conflicting different types of openness. Between or-

dinary i–open sets and the broader i j–pre– and i j–semi–open sets one finds the i j–α–open fam-

ily [10, 17]. In this paper, we examine the Lindelöf phenomena for the semi–α level in the bitopo-

logical context, with emphasis on cardinal invariants and stability under standard constructions.

We begin by transforming the family of i j–semi–α–open sets into preopen sets of a Čech–closure

space using the hull Hi j = jcl iint jcl iint, The functional convenience of this operator approach

is that it enables us to transfer many Lindelöf arguments that are expressed using the concept of

reductions local bases.

We work throughout with i , j ∈ {1, 2}; the topological index is used to indicate interiors and

closures. In this article we introduce the i j–semi–α–Lindelöf number LSα
i j (M) and its pairwise

version, and relate them to the classical i–Lindelöf number and to the α– and pre–Lindelöf num-

bers. Obtain network and star criteria: a countable i j–Sα–network implies i j–Sα–Lindelöf, and

a ρ–locally finite i j–Sα–network yields the star variant, prove hereditary and dense-set transfer,

and stability under countable sums, introduce i j–Sα–perfect functions and show they preserve

i j–Sα–Lindelöfness with explicit cardinal bounds. For pairwise covers we establish sharp inequal-

ities and identify conditions under which the pairwise number equals max{LSα
12 , LSα

21}, Additionally,

simulations based on ordinal, Sorgenfrey, discrete, and co-countable structures demonstrate that

our predictions are almost optimal by separating all concepts.

Our results refine the known relationships among i j–pre–, i j–semi–, and i j–α–openness [1,10,17]

by isolating the covering behavior that is specific to the semi–α level. The Hi j foundation allows

standard Lindelof proofs to adjust with little modification while maintaining the explicitness of

truly bitopological consequences (the j–closure stages).

The hull Hi j is introduced in section 2, which also fixes notation and recalls the open-set classes.

Section 3 develops the semi–α–Lindelöf number, network and star criteria, sums and a tube

product, hereditary and dense-set transfer, image theorems, and i j–Sα–perfect maps together with

cardinal bounds. The section closes with examples that separate implications and calibrate the

sharpness of our assumptions.
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2. Preliminaries

In this section we fix notation and basic tools for the bitopological spaces and recall the i j–pre,

i j–semi, and i j–α–open classes and record their standard characterizations, then define the

i j–semi–α–open family together with an equivalent hull form. We introduce the three i j–semi–α

continuity variants and the pairwise Lindelöf perfect maps that will mediate our transfer results.

Finally, we package the semi–α calculus into the Čech–closure hull Hi j, note its monotonicity and

extensiveness, and identify i j–Sα–covers with covers by Hi j–preopen sets.

Definition 2.1. Let (M,γ1,γ2) be bitopological and A ⊆ M, with i , j ∈ {1, 2}. Then

(1) i j–pre–open [17] if A ⊆ i-int
(
j-cl(A)

)
;

(2) i j–semi–open [10] if A ⊆ j-cl
(
i-int(A)

)
;

(3) i j–α–open [29] if A ⊆ i-int
(
j-cl(i-int(A))

)
.

Proposition 2.1 ( [21]). A is i j–semi–open iff ∃U ∈ γi with U ⊆ A ⊆ j-cl(U).

Proposition 2.2 ( [15]). A is i j–pre–open iff ∃U ∈ γi with A ⊆ U ⊆ j-cl(A).

Theorem 2.1. [1] A is i j–α–open iff A is both i j–semi–open and ij–pre–open.

Definition 2.2 ( [1]). A ⊆ M is i j–semi–α–open if there exists U ∈ i j-αO(M) with U ⊆ A ⊆ j-cl(U).
Denote the family by i j-SαO(M).

Proposition 2.3 ( [1]). A is i j–semi–α–open iff

A ⊆ j-cl
(
i-int

(
j-cl

(
i-int(A)

)))
.

Definition 2.3 ( [2]). A function Γ : (M,γ1,γ2) → (C,ρ1,ρ2) is pairwise Lindelöf perfect if Γ is closed,
continuous, and Γ−1(c) is pairwise Lindelöf in the pairwise Lindelöf sense.

Definition 2.4. [1] Let Γ : (M,γ1,γ2)→ (C,ρ1,ρ2) and i , j ∈ {1, 2}. Then

(1) Γ is i j–semi–α–continuous iff f−1(V) ∈ i j-SαO(M) for every V ∈ ρi.
(2) Γ is i j–semi–α∗–continuous iff Γ−1(W) ∈ i j-SαO(M) for every W ∈ i j-SαO(C).
(3) Γ is i j–semi–α′–continuous iff Γ−1(W) ∈ γi for every W ∈ i j-SαO(C).

Definition 2.5. [22] For A ⊆ M set

Hi j(A) := j-cl
(
i-int( j-cl(i-intA))

)
.

Then A is i j–semi–α–open iff A ⊆ Hi j(A).

Proposition 2.4. [25] Hi j is monotone and extensive, i.e. A ⊆ B ⇒ Hi j(A) ⊆ Hi j(B) and A ⊆ Hi j(A).
Hence (M, Hi j) is a Čech closure space. i j–Sα–covers coincide with covers by Hi j–preopen sets.
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3. i j–Semi–α–Lindelöf in Bitopological Spaces

This section introduces the i j–Sα–Lindelöf property for sets and spaces and the cardinal invariants

LSα
i j and L̂Sα

pair. We establish monotonicity and refinement rules, network and σ–discrete star criteria,

and stability under closed subspaces, dense–set transfer, finite unions, countable sums, and a

product when ρ j is discrete and the second factor is i–compact.

Definition 3.1. Let (M,γ1,γ2) be bitopological space and A ⊆ M. A is i j–Sα–Lindelöf if every i j–Sα–open
cover of A contains a countable subcover.
Define

LSα
i j (A) := min{κ : every i j–Sα–open cover of A has a subcover of size ≤ κ}.

And write LSα
i j (M) when A =M.

The pairwise invariant is LSα
pair(A) = max{LSα

12(A), LSα
21(A)}.

Proposition 3.1. For A ⊆ B ⊆ M:

LSα
i j (A) ≤ LSα

i j (B) ≤ LSα
i j (M).

If A is i j–Sα–Lindelöf then A is i j–α–Lindelöf.

Proof. Let A ⊆ B ⊆ M. Any i j–Sα–cover of B also covers A. Hence subcover bounds transfer.

LSα
i j (A) ≤ LSα

i j (B).

Applying the same argument to B ⊆ M gives LSα
i j (B) ≤ LSα

i j (M).

The implication follows since i j–α–open ⊆ i j–Sα–open. �

Proposition 3.2. If W is an i j–Sα–open cover of A and U ⊆ i j-SαO(M) refines W, then U is an
i j–Sα–open cover of A.

Proof. LetW be an i j–Sα–open cover of A and let U ⊆ i j-SαO(M) refineW (relative to A). For

each a ∈ A choose Wa ∈ W with a ∈ Wa. By refinement, there exists Ua ∈ U with a ∈ Ua ⊆ Wa.

Hence a ∈
⋃
U, soU covers A. Since every member ofU is i j–Sα–open,U is an i j–Sα–open cover

of A. �

Definition 3.2. A bitopological space (M,γ1,γ2) is i j–semi–α–Lindelöf iff every i j–semi–α–open cover
ofM has a countable subcover. Define the cardinal invariant

LSα
i j (M) := min

{
κ : every i j–Sα–open cover ofM has a subcover of size ≤ κ

}
.

The spaceM is pairwise Sα–Lindelöf if it is both 12–Sα–Lindelöf and 21–Sα–Lindelöf; set LSα
pair(M) :=

max{LSα
12(M), LSα

21(M)}.

Remark 3.1. Every i j–semi–α–Lindelöf space is i–Lindelöf. Consequently Li(M) ≤ LSα
i j (M).

Definition 3.3. A familyN is an i j–Sα–network if for every i j–Sα–open W and every m ∈ W there exists
N ∈ N with m ∈ N ⊆W.
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Definition 3.4. A subfamilyP ⊆ i j-SαO(M) is an i j–Sα–π–base if for every nonempty V ∈ γi there exists
P ∈ P with P ⊆ Hi j(V).

Theorem 3.1. IfM has an i j–Sα–networkN , then LSα
i j (M) ≤ |N|.

Proof. LetW ⊆ i j-SαO(M) coverM. Set N ′ := {Nm : m ∈ M} ⊆ N . For each N ∈ N ′ select one

WN ∈ W with N ⊆WN. Then {WN : N ∈ N ′} coversM, and∣∣∣{WN : N ∈ N ′}
∣∣∣ ≤ |N ′| ≤ |N|.

Hence LSα
i j (M) ≤ |N|. �

Definition 3.5. A spaceM is i j–Sα–star–Lindelöf if for every i j–Sα–open coverU there exists a countable
subfamily (Un)n∈N ⊆ U such that

St
(
{Un : n ∈N},U

)
=M.

Theorem 3.2. If N =
⋃

n∈NNn is an i j–Sα–network with each Nn discrete, then M is
i j–Sα–star–Lindelöf.

Proof. LetU ⊆ i j-SαO(M) be a cover ofM. For each N ∈ N choose UN ∈ U with N ⊆ UN.

Fix n ∈N. SinceNn is discrete, the family{
St(UN,U) : N ∈ Nn

}
covers

⋃
Nn and is pointwise finite. There exists a countable subfamily {UNn

k
}k∈N whose cover⋃

Nn.

Now set a countableU∗ := {UNn
k

: n, k ∈N}. Fix m ∈ M and pick W ∈ Uwith m ∈W. BecauseN

is an i j–Sα–network, there exists N ∈ N with m ∈ N ⊆W. This N lies inNn, hence N ⊆ St(UNn
k
,U)

for some k. Consequently W meets UNn
k

and therefore m ∈ St(U∗,U). Since m was arbitrary,

St(U∗,U) =M. �

Remark 3.2. If (M,γ1,γ2) is i j–semi–α–compact, then it is i j–semi–α–Lindelöf and LSα
i j (M) ≤ ℵ0.

Definition 3.6. The invariant L̂Sα
pair(M) is the least cardinal κ such that every pairwise Sα–open cover of

M admits a subcover of size ≤ κ; equivalently,

L̂Sα
pair(X) := min

{
κ : every pairwise Sα–open cover of X has a subcover of size ≤ κ

}
.

Proposition 3.3.
max{LSα

12(M), LSα
21(M)} ≤ L̂Sα

pair(M) ≤ LSα
12(M) + LSα

21(M).

Example 3.1. ConsiderM = R, γ1 = γEuc, γ2 = γdisc, and (i, j) = (1, 2). Then 12–SαO(M) = γ1

since for j discrete,
A ⊆ 2-cl 1-int 2-cl 1-intA = 1-intA ⇐⇒ A ∈ γ1.

Hence LSα
12(M) = ℵ0. For (i, j) = (2, 1), 2 is discrete, so for each A ⊆ M,

2-int 1-cl 2-intA = 1-cl(A), 1-cl(1-clA) = 1-clA,
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and A ⊆ 1-clA; thus every subset is 21–Sα–open. The cover by singletons yields LSα
21(X) = 2ℵ0 . By

Proposition 3.3,

L̂Sα
pair(M) = 2ℵ0 .

Example 3.2. ConsiderM = [0,ω1) with γ1 the order topology and γ2 = γdisc. As above, 12–SαO(M) =

γ1, so

LSα
12(M) = ω1

witnessed by the classical cover {[0,α) : α < ω1}. For (i, j) = (2, 1), every subset is 21–Sα–open, hence
LSα

21(M) = |M| = ω1. Therefore L̂Sα
pair(M) = ω1.

Theorem 3.3. For every bitopological spaceM,

max{LSα
12(M), LSα

21(M)} ≤ L̂Sα
pair(M) ≤ LSα

12(M) + LSα
21(M).

If at least one of LSα
12(M) or LSα

21(M) is infinite, then

L̂Sα
pair(M) = max{LSα

12(M), LSα
21(M)}.

Proof. For the lower bound, note that a pairwise Sα–open cover may consist solely of 12–Sα–open

sets (or solely of 21–Sα–open sets). Hence any universal bound for pairwise covers must dominate

both LSα
12(M) and LSα

21(M), giving

max{LSα
12(M), LSα

21(M)} ≤ L̂Sα
pair(M).

For the upper bound, letW be a pairwise Sα–open cover. Decompose

W =W12 ∪W21, W12 ⊆ 12-SαO(M), W21 ⊆ 21-SαO(M).

Set A =
⋃
W12 and B =M\A. Then B ⊆

⋃
W21. By the definitions of LSα

12 and LSα
21 there exist

V12 ⊆W12, |V12| ≤ LSα
12(M), covering A,

V21 ⊆W21, |V21| ≤ LSα
21(M), covering B.

ThusV12 ∪V21 coversM and

L̂Sα
pair(M) ≤ |V12 ∪V21| ≤ LSα

12(M) + LSα
21(M).

If at least one of LSα
12(M) or LSα

21(M) is infinite, then for cardinals

LSα
12(M) + LSα

21(M) = max{LSα
12(M), LSα

21(M)}.

Combining with the lower bound yields the stated equality. �

Proposition 3.4. Every i j–semi–α–closed subset of an i j–semi–α–Lindelöf space is i j–semi–α–Lindelöf.

Proof. Let A ⊆ M be i j–Sα–closed and assumeM is i j–Sα–Lindelöf. Given an i j–Sα–open coverW

of A, the familyW∪{M\A} is an i j–Sα–open cover ofM. By i j–Sα–Lindelöfness, it has a countable

subcover {Wn : n ∈N} ∪ {M\A}. DroppingM\A (if selected) leaves a countable subfamily ofW

that covers A. Hence A is i j–Sα–Lindelöf. �
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Definition 3.7. A subset D ⊆ M is i j–Sα–dense if its i j–Sα–hull equalsM, i.e., Hi j(D) =M.

Proposition 3.5. If D ⊆ M is i j–Sα–dense and i j–Sα–Lindelöf, thenM is i j–Sα–Lindelöf and

LSα
i j (M) ≤ LSα

i j (D).

Proof. LetW ⊆ i j-SαO(M) coverM. The trace

W� D := {W ∩D : W ∈ W}

is an i j–Sα–open cover of D. By i j–Sα–Lindelöfness of D there exists a subfamily {Wγ : γ < κ} ⊆ W

with κ ≤ LSα
i j (D) such that D ⊆

⋃
γ<κ(Wγ ∩D). For i j–Sα–open U,

M = Hi j(D) ⊆ Hi j

⋃
γ<κ

(Wγ ∩D)

 ⊆⋃
γ<κ

Hi j(Wγ ∩D) ⊆
⋃
γ<κ

Hi j(Wγ) =
⋃
γ<κ

Wγ.

Thus {Wξ : ξ < κ} is a subcover ofM of size ≤ LSα
i j (D). HenceM is i j–Sα–Lindelöf and LSα

i j (X) ≤

LSα
i j (D). �

Example 3.3. Consider M = R, γ1 = γEuc, γ2 = γcoc, and (i, j) = (1, 2). Set D = (0, 1). Then
1–int(D) = D , ∅ and 2–cl(D) =M. Hence

H12(D) = 2-cl
(
1-int 2-cl(1-intD)

)
= 2-cl

(
1-intM

)
= 2-cl(M) =M,

so D is 12–Sα–dense. But D is not 1–dense in (M,γ1), since 1–cl(D) = [0, 1] ,M.

Example 3.4. For each α < ω1 let Iα = [0, 1] with the Euclidean topology. Define

M =
⊔
α<ω1

Iα, γ1 = topological sum of Euclidean topologies,

γ2 = topological sum of co–countable topologies.

Fix (i, j) = (1, 2) and define D =
⊔
α<ω1

(0, 1
2 ) ⊆ M. Then for each α, 1–int(D ∩ Iα) = (0, 1

2 ) , ∅ and
2–cl(D∩ Iα) = Iα. Therefore 2–cl(1–int D) =M, and as in Example 3.3 we get H12(D) = X. Thus D is
12–Sα–dense in X. Yet D is not 1–dense, since in each component 1–cl(D∩ Iα) = [0, 1

2 ] is a proper subset
of Iα.

Theorem 3.4. Let (M,γ1,γ2) be bitopological and fix i , j. For D ⊆ M the following are equivalent:

(1) D is i j–Sα–dense, i.e. Hi j(D) =M.

(2) Every nonempty i j–Sα–open set meets D.

(3) j–cl
(
i–int(D)

)
=M.

Moreover, for every A ⊆ M,

HA
ij (D∩A) = A∩HMi j (D),

so if D is i j–Sα–dense inM and A is any subspace, then D∩A is i j–Sα–dense in A.
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Proof. (1)⇒(2): If Hi j(D) = M and W is nonempty i j–Sα–open with W ∩D = ∅, this contradicts

the hull–based characterization of i j–Sα–openness. Hence every nonempty i j–Sα–open set meets

D.

(2)⇒(3): Suppose j–cl(i–int D) ,M. Then some c ∈ M admits a j–open V 3 c with V∩ i–int D =

∅. By definition, i–int V is i j–Sα–open and misses D, contradicting (2). Thus j–cl(i–int D) =M.

(3)⇒(1): Using the standard formula for the i j–Sα–hull,

Hi j(D) = j-cl
(
i-int j-cl(i-intD)

)
= j-cl

(
i-intM

)
= j-cl(M) =M.

For the subspace identity, use the subspace rules

i-intA(E) = A∩ i-intM(E), j-clA(E) = A∩ j-clM(E),

and compute directly:

HA
ij (D∩A) = j-clA

(
i-intA j-clA

(
i-intA(D∩A)

))
= A∩ j-clM

(
i-intM j-clM

(
i-intMD

))
= A∩HMi j (D).

This also yields the final statement. �

Proposition 3.6. If A and B are i j–semi–α–Lindelöf subsets of (M,γ1,γ2), then A ∪ B is
i j–semi–α–Lindelöf.

Proof. Let W ⊆ i j-SαO(M) cover A ∪ B. Since A is i j–Sα–Lindelöf, there exists a countable sub-

family {Wn}n∈N ⊆W covering A. Similarly, there is a countable subfamily {Vn}n∈N ⊆W covering

B. The union {Wn : n ∈ N} ∪ {Vn : n ∈ N} is countable and covers A ∪ B. Hence A ∪ B is

i j–Sα–Lindelöf. �

Corollary 3.1. Finite unions of i j–semi–α–Lindelöf subsets are i j–semi–α–Lindelöf.

Remark 3.3. For A, B ⊆ M,

LSα
i j (A∪ B) ≤ LSα

i j (A) + LSα
i j (B).

In particular, if both are ≤ ℵ0, then A∪ B is i j–Sα–Lindelöf.

Lemma 3.1. Let (M,γ1,γ2), (C,ρ1,ρ2) be bitopological and fix i , j. Assume ρ j is discrete. If W ∈

(i, j)–SαO(M×C) and (m, c) ∈W, then there exist U ∈ i j–SαO(M) and V ∈ ρi with (m, c) ∈ U×V ⊆W.

Theorem 3.5. If {Mk}k∈N are i j–Sα–Lindelöf, then the topological sum
⊕

kMk with componentwise
(γ1,γ2) is i j–Sα–Lindelöf and

LSα
i j

(⊕
k

Mk

)
= sup

k
LSα

i j (Mk).

Proof. LetW ⊆ i j-SαO(M) coverM. For each k, the trace

Wk := {W ∩Mk : W ∈ W}
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is an i j–Sα–open cover ofMk. SinceMk is i j–Sα–Lindelöf, choose a countable subfamilyVk ⊆ W

with
⋃
Vk ⊇ Mk. ThenV :=

⋃
k∈NVk is countable and coversM, soM is i j–Sα–Lindelöf.

Set κk := LSα
i j (Mk) and κ := supk κk. For the lower bound,Mk is a clopen subspace ofM, so by

monotonicity

κk ≤ LSα
i j (M) for all k, ⇒ sup

k
κk ≤ LSα

i j (M).

For the upper bound, from the construction above we may for each k selectUk ⊆Wwith |Uk| ≤ κk

and
⋃
Uk ⊇ Mk. Then

U :=
⋃
k∈N

Uk

covers M and satisfies |U| ≤ κ · ℵ0. If κ is infinite, cardinal arithmetic gives κ · ℵ0 = κ, hence

LSα
i j (M) ≤ κ. Combining with the lower bound yields

LSα
i j (M) = sup

k
LSα

i j (Mk).

�

Theorem 3.6. Assume ρ j on C is discrete. If (M,γ1,γ2) is i j–Sα–Lindelöf and (C,ρ1,ρ2) is i–compact,
then (M×C,γi × ρi,γ j × ρ j) is (i, j)–Sα–Lindelöf.

Proof. Let W ⊆ (i, j)–SαO(M×C) cover M×C. For each (m, c) ∈ M× C pick Wm,c ∈ W with

(m, c) ∈Wm,c. By Lemma 3.1 there exist Um,c ∈ i j–SαO(M) and Vm,c ∈ ρi with (m, c) ∈ Um,c ×Vm,c ⊆

Wm,c.

Fix m ∈ M. Then {Vm,c : c ∈ C} is an i–open cover ofC. By i–compactness ofC choose c1, . . . , cg(m)

with C =
⋃g(m)

`=1 Vm,c` . Set Um :=
⋂g(m)

`=1 Um,c` ∈ i j–SαO(M) (finite intersections are allowed since

Um ⊆ Um,c` will only be used to form rectangles), and note that {Um : m ∈ M} ⊆ i j–SαO(M) covers

M because for any m we have m ∈ Um.

SinceM is i j–Sα–Lindelöf, select a countable set I ⊆ M such that {Um : m ∈ I} coversM. Then

the countable family of rectangles

R :=
{

Um ×Vm,c` : m ∈ I, 1 ≤ ` ≤ g(m)
}

coversM×C, and each member of R is contained in some Wm,c` ∈ W. HenceW has a countable

subcover. �

Definition 3.8. A bitopological spaceM is locally i j–Sα–Lindelöf if every m ∈ M admits U ∈ i j-SαO(M)

with m ∈ U and U ij–Sα–Lindelöf.

Proposition 3.7. IfM =
⋃

n Un with each Un i j–Sα–Lindelöf and {Un} i j–Sα–locally finite, thenM is
i j–Sα–Lindelöf.

Proof. LetW ⊆ i j-SαO(M) coverM. For each n, the trace

W� Un := {W ∩Un : W ∈ W}
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is an i j–Sα–open cover of Un, so choose a countable subfamily Vn ⊆ W with
⋃
Vn ⊇ Un. Then⋃

n∈NVn is countable and coversM. HenceM is i j–Sα–Lindelöf. �

Example 3.5. If γ2 is discrete, then 12–SαO(M) = γ1, since

H12(A) = 2-cl 1-int 2-cl 1-int(A) = 1-int(A),

so A ⊆ H12(A) iff A ∈ γ1.
Let M be the Michael line on R. Set (M,γ1,γ2) = (M, discrete) and (i, j) = (1, 2). Then

12–SαO(M) = γ1, so locally 12–Sα–Lindelöf is the same as locally Lindelöf in γ1. Every point has a
γ1–open Lindelöf neighborhood, henceM is locally 12–Sα–Lindelöf. However, M is not Lindelöf, soM is
not 12–Sα–Lindelöf.

Example 3.6. For each α < ω1 let Iα = [0, 1] with the Euclidean topology. Form the topological sum
M =

⊔
α<ω1

Iα and set (γ1,γ2) = (sum of Euclidean, discrete), (i, j) = (1, 2). Again 12–SαO(M) = γ1.
Each point m ∈ Iα has a γ1–open neighborhood contained in Iα, which is Lindelöf; hence M is locally
12–Sα–Lindelöf. But theγ1–open cover {Iα : α < ω1} has no countable subcover, soM is not 12–Sα–Lindelöf.

Lemma 3.2. If W ∈ i j–SαO(M) and A ⊆ M, then W ∩A ∈ i j–SαO(A).

Proof. Since W is i j–Sα–open, W ⊆ HMi j (W). Using the subspace identities

i-intA(B∩A) = A∩ i-intM(B), j-clA(B∩A) = A∩ j-clM(B),

we obtain W ∩A ⊆ HA
ij (W ∩A). Hence W ∩A is i j–Sα–open in A.

�

Theorem 3.7. If M =
⋃

n∈N Un with each Un ∈ i j-SαO(M) and each Un i j–Sα–Lindelöf, then M is
i j–Sα–Lindelöf and

LSα
i j (M) ≤

∑
n∈N

LSα
i j (Un) ≤ ℵ0 · sup

n
LSα

i j (Un).

Proof. LetW ⊆ i j-SαO(M) coverM. For each n, the trace

W� Un := {W ∩Un : W ∈ W}

is an i j–Sα–open cover of Un by Lemma 3.2. Choose a subfamilyWn ⊆ W with |Wn| ≤ LSα
i j (Un)

that covers Un. Then
⋃

n∈NWn covers M and has cardinality at most
∑

n LSα
i j (Un), which is

≤ ℵ0 · supn LSα
i j (Un). ThusM is i j–Sα–Lindelöf and the bound holds. �

Theorem 3.8. Let Γ : (M,γ1,γ2)→ (C,ρ1,ρ2) and fix i , j ∈ {1, 2}. The following are equivalent:

(1) Γ is i j–semi–α–continuous.
(2) For every i–regular open V ⊆ C, Γ−1(V) ∈ i j-SαO(M).
(3) For some every base Bi of (C,ρi), Γ−1(B) ∈ i j-SαO(M) for all B ∈ Bi.
(4) For every m ∈ M and every i–open Γ(m) ∈ V, there exists U ∈ i j-SαO(M) with m ∈ U ⊆ Γ−1(V).
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Proof. (1)⇒(2)⇒(1) is immediate since i–regular open ⊆ ρi.

(1)⇒(3): if B ∈ Bi ⊆ ρi then Γ−1(B) is i j–Sα–open.

(3)⇒(1): for V ∈ ρi, V =
⋃
{B ∈ Bi : B ⊆ V}, hence Γ−1(V) =

⋃
Γ−1(B) is i j–Sα–open since unions

of i j–Sα–open sets are i j–Sα–open.

(1)⇔(d): if Γ−1(V) is i j–Sα–open, take U = Γ−1(V). Conversely, if (4) holds then Γ−1(V) =⋃
m∈Γ−1(V) Um is i j–Sα–open by union closure. �

Example 3.7. LetM = R with γ1 the Euclidean topology and γ2 the Sorgenfrey topology. Let C = R

with ρ1 Euclidean, ρ2 arbitrary. Fix (i, j) = (1, 2). Define Γ :M→ C, Γ(m) = m3.
claim that f is 12–Sα–continuous. Hence the base and local tests in Theorem 3.8 hold.
Γ is 1–continuous. Every γ1–open set is 12–Sα–open. Thus for every V ∈ ρ1, Γ−1(V) ∈ 12-SαO(M).

For a baseB1 = {(a, b)} of (C,ρ1), Γ−1(a, b) is Euclidean open, hence 12–Sα–open. For the local test: given
m ∈ M and V ∈ ρ1 with Γ(m) ∈ V, take U = Γ−1(V); then m ∈ U ⊆ Γ−1(V) and U ∈ 12-SαO(M).

Example 3.8. LetM = R with (γ1,γ2) as in 3.7. Let C = R2 with ρ1 the product Euclidean topology.
Fix (i, j) = (1, 2). Define Γ :M→ C, Γ(m) = (m, sin m).

Claim that Γ is 12–Sα–continuous. All equivalents in Theorem 3.8 hold.

Theorem 3.9. Let Γ : (M,γ1,γ2)→ (C,ρ1,ρ2) and g : (C,ρ1,ρ2)→ (Z, τ1, τ2).

(1) If Γ is i j–semi–α–continuous and g is i–continuous, then g ◦ Γ is i j–semi–α–continuous.
(2) If Γ and g are both i j–semi–α∗–continuous, then g ◦ Γ is i j–semi–α∗–continuous.
(3) If Γ is i j–semi–α–continuous and A ⊆ M, then f |A : (A,γ1|A,γ2|A) → (C,ρ1,ρ2) is

i j–semi–α–continuous.

Proof. (1) For W ∈ τi we have (g ◦ Γ)−1(W) = Γ−1(g−1(W)) with g−1(W) ∈ ρi; apply

i j–Sα–continuity of Γ.

(2) For W ∈ i j–SαO(Z), (g ◦ Γ)−1(W) = Γ−1(g−1(W)) and g−1(W) ∈ i j–SαO(C); apply

i j–S∗α–continuity of Γ.

(3) If V ∈ ρi, then (Γ|A)−1(V) = A∩ Γ−1(V), which is i j–Sα–open in A since Γ−1(V) ∈ i j–SαO(M)

and i j–Sα–openness is preserved by taking subspace intersections with A. �

Example 3.9. Use M,C and Γ from 3.7 with (i, j) = (1, 2). Let Z = (0,∞) with τ1 Euclidean, τ2

arbitrary, and define g : C → Z, g(c) = e c. Claim that g ◦ Γ : M → Z is 12–Sα–continuous. g is
1–continuous. Γ is 12–Sα–continuous by 3.7. For any W ∈ τ1, (g ◦ Γ)−1(W) = Γ−1

(
g−1(W)

)
with

g−1(W) ∈ ρ1, so Γ−1
(
g−1(W)

)
∈ 12-SαO(M) by Definition 2.4.

Example 3.10. Fix (i, j) = (1, 2). LetM be any set with γ1 discrete and γ2 arbitrary. Let C = R with
ρ1 discrete and ρ2 arbitrary. Let Z be any bitopological space. Choose any functions Γ : M → C and
g : C → Z.

Claims that Γ and g are 12–S∗α–continuous; hence g ◦ Γ is 12–S∗α–continuous. If A ⊆ M, then Γ|A :

(A,γ1|A,γ2|A)→ C is 12–Sα–continuous.
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Since ρ1 is discrete, for every W ⊆ C we have W 12–α–open and hence 12–Sα–open in C. Thus
g is 12–S∗α–continuous by definition. Since γ1 is discrete, every subset of M is 12–α–open and hence
12–Sα–open, so Γ is also 12–S∗α–continuous. By Theorem 3.9(2), g ◦ Γ is 12–S∗α–continuous.

For the restriction, if V ∈ ρ1 then (Γ|A)−1(V) = A ∩ Γ−1(V) with Γ−1(V) ∈ 12-SαO(M). By the
subspace definition, A∩ Γ−1(V) is 12–Sα–open in A. Hence Γ|A is 12–Sα–continuous (Theorem 3.9(3)).

Theorem 3.10. The i j–semi–α–continuous image of an i j–semi–α–Lindelöf space is i–Lindelöf.

Proof. Let Γ : M → C be i j–Sα–continuous and M i j–Sα–Lindelöf. Given an i–open cover {Vλ}

of Γ(M) in C, the family {Γ−1(Vλ)} ⊆ i j-SαO(M) covers M. Take a countable subcover; the

corresponding Vλ’s cover Γ(M). �

Example 3.11. LetM = R with γ1 Euclidean and γ2 discrete; then 12–Sα–open sets are exactly γ1–open,
soM is 12–Sα–Lindelöf. Let C be any bitopological space with ρ1 Euclidean on R and define Γ(m) = m3.
Then Γ is 1–continuous, hence 12–Sα–continuous. By Theorem 3.10, Γ(M) = R is 1–Lindelöf.

Corollary 3.2. If Γ :M→ C is onto and i j–Sα–continuous, then
M i j–Sα–Lindelöf⇒C i–Lindelöf.

Proposition 3.8. If A ⊆ M is i j–Sα–closed andM is i j–Sα–Lindelöf, then A is i j–Sα–Lindelöf.

Remark 3.4. For A, B ⊆ M,

LSα
i j (Γ(M)) ≤ LSα

i j (M), LSα
i j (A∪ B) ≤ LSα

i j (A) + LSα
i j (B).

Theorem 3.11. The i j–semi–α∗–continuous image of an i j–semi–α–Lindelöf space is i j–semi–α–Lindelöf.
Equivalently,

LSα
i j

(
Γ(M)

)
≤ LSα

i j (M).

Proof. Let Γ :M→ C be i j–S∗α–continuous andM i j–Sα–Lindelöf.

Let {Wλ} ⊆ i j-SαO(C) cover Γ(M). Then {Γ−1(Wλ)} ⊆ i j-SαO(M) coversM. Choose a countable

subfamily {Γ−1(Wλk)}k∈NcoveringM. Then {Wλk}
m
k=1 covers Γ(M). �

Corollary 3.3. If Γ :M→ C is onto and i j–S∗α–continuous, then

M i j–Sα–Lindelöf ⇒ C i j–Sα–Lindelöf.

Definition 3.9. Γ : (M,γ1,γ2) → (C,ρ1,ρ2) is i j–Sα–perfect if it is onto, i j–Sα–closed, and every fiber
Γ−1(c) is i j–Sα–Lindelöf.

Example 3.12. Let C = R with ρ1 = γEuc and arbitrary ρ2, let K = [0, 1] with κ1 = γEuc and arbitrary
κ2. PutM = C × K with γ1 = ρ1 × κ1 and γ2 = ρ2 × κ2. Fix (i, j) = (1, 2) and let Γ = πC : M→ C

be the first projection. Γ is onto ,12–Sα–closed: if F ∈ 12-SαC(M) then F is γ1–closed, and πC(F) is
ρ1–closed because K is κ1–compact; hence πC(F) ∈ 12-SαC(C). Γ−1(c) = {c} × K are κ1–compact, thus
12–Sα–Lindelöf.
Therefore Γ is 12–Sα–perfect.
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Theorem 3.12. If Γ : (M,γ1,γ2) → (C,ρ1,ρ2) is i j–Sα–perfect and M is i–Lindelöf, then C is
i j–Sα–Lindelöf and

LSα
i j (C) ≤ Li(M) · sup

c∈C
LSα

i j

(
Γ−1(c)

)
.

Proof. LetW ⊆ i j-SαO(C) cover C. For each c ∈ C, the subfamily

W(c) = {W ∈ W : c ∈W}

induces a cover

{Γ−1(W)∩ Γ−1(c) : W ∈ W(c)}

of Fc = Γ−1(c) by i j–Sα–open sets in the subspace Fc. By i j–Sα–Lindelöfness of Fc there exists a

subfamilyWc ⊆W(c) with

|Wc| ≤ κ := sup
z∈C

LSα
i j (Γ

−1(z))

and

Fc ⊆
⋃

W∈Wc

(
Γ−1(W)∩ Fc

)
⊆

⋃
W∈Wc

Γ−1(W).

Define the closed set

Ec :=M\
⋃

W∈Wc

Γ−1(W).

Then Γ(Ec) is i j–Sα–closed in C because Γ is i j–Sα–closed, and c < Γ(Ec).

Set Vc := C \ Γ(Ec). Each Vc is i j–Sα–open, contains c, and satisfies

Γ−1(Vc) ⊆
⋃

W∈Wc

Γ−1(W). (∗)

Hence {Vc : c ∈ C} is an i j–Sα–open cover of C refiningW with countable-κ control on preimages via

(∗).

Consider the family {Γ−1(Vc) : c ∈ C}; it coversM. Since every γi–open set is i j–Sα–open, for

each m ∈ M choose a γi–open Om with m ∈ Om ⊆ Γ−1(VΓ(m)). Then {Om : m ∈ M} is a γi–open

cover ofM. By i–Lindelöfness, there exists a subfamily indexed by I ⊆ M with |I| ≤ Li(M) such

that {Om : m ∈ I} coversM. Let

J := {Γ(m) : m ∈ I} ⊆ C;

then |J| ≤ |I| ≤ Li(M) and {Vc : c ∈ J} covers C by surjectivity of Γ: for any c0 ∈ C pick m0 ∈ Mwith

Γ(m0) = c0; some m ∈ I has m0 ∈ Om ⊆ Γ−1(VΓ(m)), hence c0 ∈ VΓ(m).

Finally, for each c ∈ J, Vc ⊆
⋃
Wc and |Wc| ≤ κ. Therefore

⋃
c∈JWc is a subfamily of W of

cardinal ≤ |J| · κ ≤ Li(M) · κ that covers C. This proves C is i j–Sα–Lindelöf and yields the stated

bound. �

Lemma 3.3. The following are equivalent for Γ : (M,γ1,γ2)→ (C,ρ1,ρ2):

(1) Γ is i j–S∗α–continuous;
(2) for every F ∈ i j-SαC(C), Γ−1(F) ∈ i j-SαC(M).

Proposition 3.9. For every A ⊆ M and ij–S∗α–continuous Γ, LSα
i j

(
Γ(A)

)
≤ LSα

i j (A).
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Proposition 3.10. Suppose Γ :M→ C is onto and i j–Sα–quotient in the sense that W ∈ i j-SαO(C) ⇐⇒

Γ−1(W) ∈ i j-SαO(M). Then C is i j–Sα–Lindelöf iffM is so.

Theorem 3.13. If Γ is i j–semi–α′–continuous andM is i–Lindelöf, then Γ(M) is i j–Sα–Lindelöf. Equiv-
alently, LSα

i j

(
Γ(M)

)
≤ Li(M).

Proof. Let {Wλ} ⊆ i j-SαO(C) cover Γ(M). By i j–α′–continuity, {Γ−1(Wλ)} ⊆ γi covers M. Use

i–Lindelöfness to extract a countable subfamily; push forward to cover Γ(M). �

Example 3.13. Fix (i, j) = (1, 2). Let M = R with γ1 Euclidean (so 1–Lindelöf) and arbitrary γ2.
Let C = R2 with ρ1 the product Euclidean topology and ρ2 discrete, so again 12–SαO(C) = ρ1. Define
Γ :M→ Y by f (m) = (m, sin m); then Γ is 1–continuous and hence 12–α′–continuous. By Theorem 3.13,
Γ(M) = {(m, sin m) : m ∈ R} is 12–Sα–Lindelöf in C; here this is just Euclidean Lindelöfness of a
continuous curve in R2.

Proposition 3.11. For every W ∈ i j-SαO(C) there exists V ∈ ρi with Γ−1(W) = Γ−1(V). Then i–Lindelöf
ofM implies i j–Sα–Lindelöf of Γ(M).

Definition 3.10. Let (M,γ1,γ2) be bitopological and i , j ∈ {1, 2}.

(1) M is i j–α–Lindelöf iff every i j–α–open cover ofM has a countable subcover.
(2) M is i j–pre–Lindelöf iff every i j–pre–open cover ofM has a countable subcover.

Define cardinals

Lαi j(M) := min{κ : every i j–α–open cover ofM has a subcover of size ≤ κ},

Lpre
i j (M) := min{κ : every i j–pre–open cover has a subcover ≤ κ}.

Remark 3.5. i j–pre–open⊇ i j–α–open, hence i j–pre–Lindelöf⇒ i j–α–Lindelöf and Lαi j(M) ≤ Lpre
i j (M). If

γ j is discrete, then i j–α–open = i j–pre–open = γi–open, so i j–α–Lindelöf⇔ i j–pre–Lindelöf⇔ i–Lindelöf.

Example 3.14. Let M = [0,ω1) with γ1 the order topology and γ2 indiscrete; take (i, j) = (1, 2).
Then 12–pre–open sets are all subsets (since 1int(2cl A) = 1intM = M), so the cover by singletons
{{α} : α < ω1} has no countable subcover. HenceM is not 12–pre–Lindelöf and Lpre

12 (M) > ℵ0.
Moreover γ1–open ⊆ 12–α–open, so the classical open cover {[0,α) : α < ω1} (no countable subcover in

(X,γ1)) is a 12–α–open cover with no countable subcover. Thus X is not 12–α–Lindelöf and Lα12(X) > ℵ0.

Proposition 3.12. Every i j–pre–Lindelöf space is i j–α–Lindelöf. Equivalently Lαi j(M) ≤ Lpre
i j (M).

Proof. i j–α–open ⊆ i j–pre–open. Any i j–α–open cover is a special i j–pre–open cover, hence has a

countable subcover. �

Proposition 3.13. If every i j–pre–open set is i j–semi–open, then i j–α–open= i j–pre–open (by Theorem 2.9),
hence

M is i j–α–Lindelöf ⇐⇒M is i j–pre–Lindelöf,

and Lαi j(M) = Lpre
i j (M).
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Proposition 3.14. Every i j–pre–Lindelöf space is i–Lindelöf. Hence Li(M) ≤ Lpre
i j (M).

Proof. Every γi–open set is i j–pre–open. Any γi–open cover is an i j–pre–open cover. �

Remark 3.6. Every i j–semi–α–Lindelöf space is i j–α–Lindelöf; thus Lαi j(M) ≤ LSα
i j (M).

Proposition 3.15. If every γi–open subset of M is γ j–closed, then i j–α–open = i j–semi–α–open (Re-
mark 2.17(ii)). HenceM is i j–α–Lindelöf ⇐⇒M is i j–semi–α–Lindelöf, and Lαi j(M) = LSα

i j (M).

Proposition 3.16. If every γi–open set is γ j–closed, then i j–pre–Lindelöf⇒ i j–semi–α–Lindelöf, and

LSα
i j (M) ≤ Lαi j(M) ≤ Lpre

i j (M).

Proof. i j–pre–Lindelöf ⇒ i j–α–Lindelöf by 3.12. Under the hypothesis, i j–α–open = i j–Sα–open

(3.15). �

Proposition 3.17. If every i j–pre–open is i j–semi–open, then i j–α–open = i j–pre–open. Hence

M i j–Sα–Lindelöf ⇒ M i j–α–Lindelöf ⇒ XM i j–pre–Lindelöf,

and Lpre
i j (M) = Lαi j(M) ≤ LSα

i j (M).

Corollary 3.4. If Γ : (M,γ1,γ2) → (C,ρ1,ρ2) is i j–α′–continuous andM is i–Lindelöf, then Γ(M) is
i j–Sα–Lindelöf. Thus LSα

i j

(
Γ(M)

)
≤ Li(M).

Proof. Let {Wλ} ⊆ i j-SαO(C) cover Γ(M). Then {Γ−1(Wλ)} ⊆ γi coversM; pick a countable subcover

and push forward. �

Corollary 3.5. If Γ is i j–S∗α–continuous andM is i j–Sα–Lindelöf, then Γ(M) is i j–Sα–Lindelöf. Hence
LSα

i j

(
Γ(M)

)
≤ LSα

i j (M).

4. Conclusion

Our goal was to comprehend the behavior of semi–α–openness at the level of covering prop-

erties in bitopological spaces. Two themes surfaced. First, the Čech–closure viewpoint via the

hull Hi j = jcl iint jcl iint is the proper mechanism to convey arguments that classically rely on

closure operators. Second, once one works in the Hi j–framework, several familiar Lindelöf tools

carry over with minimal friction. On the structural side we proved network and star criteria for

i j–Sα–Lindelöfness, hereditary and dense-set transfer, ρ–glueing principles, and stable behavior

under countable sums. A tube-type product theorem was established when the second topology

is discrete and the i–side factor is compact. We introduced i j–Sα–perfect maps and showed they

preserve i j–Sα–Lindelöfness with sharp cardinal bounds. At the level of invariants we compared

LSα
i j with the α– and pre–Lindelöf numbers and analyzed the pairwise quantity L̂Sα

pair. Examples

drawn from ordinal, Sorgenfrey, Michael, discrete, and co–countable settings separate all notions

and show that our hypotheses are close to optimal. Beyond these core results, the picture that

emerges is that semi–α–Lindelöfness behaves like a robust shadow of i–Lindelöfness, the outer-

most operator separates the change and permits the writing of proofs only once, which can then
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be applied in di¤erent settings.

Directions for further work: Formulate i j–Sα analogues of the Menger/Hurewicz properties and

corresponding games; compare with LSα
i j . Study Ci(M) with natural bitopologies and relate

their tightness, network weight, and Baire category to LSα
i j (M). Characterize i j–Sα–perfect maps

via closedness of graphs or inverse image operators; test stability under composition and pull-

backs. When both LSα
12 and LSα

21 are finite, determine exact values of L̂Sα
pair and identify extremal

examples. Find necessary and sufficient conditions under which i j–Sα–star–Lindelöf implies

i j–Sα–Lindelöf. The semi–α–Lindelöf framework is flexible enough to encompass classical phe-

nomena and rigid enough to support clean cardinal bounds and preservation theorems. The tools

developed here—especially the Hi j–operator and network methods—should be useful beyond the

topic at hand, wherever mixed topological information must be organized across two interacting

topologies.
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