Codimension Two Bifurcation Analysis of a Discrete Coupled Competition Duopoly Game
Main Article Content
Abstract
This paper analytically examines the coupled competition duopoly game model. This study examines the codimension-two bifurcations of different types of the model through bifurcation theory and numerical continuation methods. The model undergoes codimension-two bifurcation, heteroclinic bifurcation near the 1:2 point, a homoclinic structure near the 1:3 resonance point, and an invariant cycle bifurcated by a period 4 orbit near the 1:4 resonance point. Subsequently, numerical simulations are performed to validate the theoretical study.
Article Details
References
- J.R. Beddington, Mutual Interference Between Parasites or Predators and Its Effect on Searching Efficiency, J. Anim. Ecol. 44 (1975), 331–340. https://doi.org/10.2307/3866.
- R.M. May, Simple Mathematical Models with Very Complicated Dynamics, Nature 261 (1976), 459–467. https://doi.org/10.1038/261459a0.
- R.K. Pearson, Discrete-Time Dynamic Models, Oxford University Press, Oxford, (1999).
- J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Springer, (2001).
- Y. Yang, J. Zhou, X. Ma, T. Zhang, Nonstandard Finite Difference Scheme for a Diffusive Within-Host Virus Dynamics Model with Both Virus-To-Cell and Cell-To-Cell Transmissions, Comput. Math. Appl. 72 (2016), 1013–1020. https://doi.org/10.1016/j.camwa.2016.06.015.
- B.S. Chen, X.X. Liao, Y.Q. Liu, Normal Forms and Bifurcations for the Differential-Algebraic Systems, Acta Math. Appl. Sin. 23 (2000), 429–443.
- S.R. Jang, J. Yu, Discrete-Time Host–Parasitoid Models with Pest Control, J. Biol. Dyn. 6 (2012), 718–739. https://doi.org/10.1080/17513758.2012.700074.
- S. Tang, L. Chen, Chaos in Functional Response Host–Parasitoid Ecosystem Models, Chaos Solitons Fractals 13 (2002), 875–884. https://doi.org/10.1016/s0960-0779(01)00063-7.
- A. Elsadany, A. Yousef, A. Elsonbaty, Further Analytical Bifurcation Analysis and Applications of Coupled Logistic Maps, Appl. Math. Comput. 338 (2018), 314–336. https://doi.org/10.1016/j.amc.2018.06.008.
- J. Andaluz, A.A. Elsadany, G. Jarne, Dynamic Cournot Oligopoly Game Based on General Isoelastic Demand, Nonlinear Dyn. 99 (2019), 1053–1063. https://doi.org/10.1007/s11071-019-05333-7.
- A. Singh, A.A. Elsadany, A. Elsonbaty, Complex Dynamics of a Discrete Fractional‐order Leslie‐Gower Predator‐prey Model, Math. Methods Appl. Sci. 42 (2019), 3992–4007. https://doi.org/10.1002/mma.5628.
- J. Huang, M. Lu, C. Xiang, L. Zou, Bifurcations of Codimension 4 in a Leslie-Type Predator-Prey Model with Allee Effects, J. Differ. Equ. 414 (2025), 201–241. https://doi.org/10.1016/j.jde.2024.09.009.
- W. Govaerts, R.K. Ghaziani, Y.A. Kuznetsov, H.G.E. Meijer, Numerical Methods for Two-Parameter Local Bifurcation Analysis of Maps, SIAM J. Sci. Comput. 29 (2007), 2644–2667. https://doi.org/10.1137/060653858.
- X.S. Luo, G. Chen, B. Hong Wang, J. Qing Fang, Hybrid Control of Period-Doubling Bifurcation and Chaos in Discrete Nonlinear Dynamical Systems, Chaos Solitons Fractals 18 (2003), 775–783. https://doi.org/10.1016/s0960-0779(03)00028-6.
- A. Elsadany, Dynamics of a Cournot Duopoly Game with Bounded Rationality Based on Relative Profit Maximization, Appl. Math. Comput. 294 (2017), 253–263. https://doi.org/10.1016/j.amc.2016.09.018.
- L. Zhang, L. Zou, Bifurcations and Control in a Discrete Predator–Prey Model with Strong Allee Effect, Int. J. Bifurc. Chaos 28 (2018), 1850062. https://doi.org/10.1142/s0218127418500621.
- Y. Li, L. Liu, Y. Chen, Z. Yu, Bifurcations and Marotto’s Chaos of a Discrete Lotka–Volterra Predator–Prey Model, Physica D: Nonlinear Phenom. 472 (2025), 134524. https://doi.org/10.1016/j.physd.2025.134524.
- A. Yousef, A.M. Algelany, A. Elsadany, Codimension One and Codimension Two Bifurcations in a Discrete Kolmogorov Type Predator–Prey Model, J. Comput. Appl. Math. 428 (2023), 115171. https://doi.org/10.1016/j.cam.2023.115171.
- J. Huang, M. Lu, C. Xiang, L. Zou, Bifurcations of Codimension 4 in a Leslie-Type Predator-Prey Model with Allee Effects, J. Differ. Equ. 414 (2025), 201–241. https://doi.org/10.1016/j.jde.2024.09.009.
- A. Elsadany, A.M. Yousef, Codimension-One Bifurcation Analysis and Chaos of a Discrete Competition Duopoly Game, Int. J. Anal. Appl. 23 (2025), 303. https://doi.org/10.28924/2291-8639-23-2025-303.
- M.R. Kulenovic, G. Ladas, Dynamics of Second Order Rational Difference Equations, Chapman and Hall/CRC, 2001. https://doi.org/10.1201/9781420035384.
- Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, Cham, 2023. https://doi.org/10.1007/978-3-031-22007-4.
- J. Carr, Applications of Centre Manifold Theory, Springer, New York, 1981. https://doi.org/10.1007/978-1-4612-5929-9.
- S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 2003. https://doi.org/10.1007/b97481.
- Y.A. Kuznetsov, H.G.E. Meijer, Numerical Bifurcation Analysis of Maps, Cambridge University Press, Cambridge, (2019).
- B. Li, Z. He, 1:3 Resonance and Chaos in a Discrete Hindmarsh-Rose Model, J. Appl. Math. 2014 (2014), 896478. https://doi.org/10.1155/2014/896478.