Codimension Two Bifurcation Analysis of a Discrete Coupled Competition Duopoly Game

Main Article Content

A.A. Elsadany, Abdulaziz Almaslokh, S. M. Salman

Abstract

This paper analytically examines the coupled competition duopoly game model. This study examines the codimension-two bifurcations of different types of the model through bifurcation theory and numerical continuation methods. The model undergoes codimension-two bifurcation, heteroclinic bifurcation near the 1:2 point, a homoclinic structure near the 1:3 resonance point, and an invariant cycle bifurcated by a period 4 orbit near the 1:4 resonance point. Subsequently, numerical simulations are performed to validate the theoretical study.

Article Details

References

  1. J.R. Beddington, Mutual Interference Between Parasites or Predators and Its Effect on Searching Efficiency, J. Anim. Ecol. 44 (1975), 331–340. https://doi.org/10.2307/3866.
  2. R.M. May, Simple Mathematical Models with Very Complicated Dynamics, Nature 261 (1976), 459–467. https://doi.org/10.1038/261459a0.
  3. R.K. Pearson, Discrete-Time Dynamic Models, Oxford University Press, Oxford, (1999).
  4. J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Springer, (2001).
  5. Y. Yang, J. Zhou, X. Ma, T. Zhang, Nonstandard Finite Difference Scheme for a Diffusive Within-Host Virus Dynamics Model with Both Virus-To-Cell and Cell-To-Cell Transmissions, Comput. Math. Appl. 72 (2016), 1013–1020. https://doi.org/10.1016/j.camwa.2016.06.015.
  6. B.S. Chen, X.X. Liao, Y.Q. Liu, Normal Forms and Bifurcations for the Differential-Algebraic Systems, Acta Math. Appl. Sin. 23 (2000), 429–443.
  7. S.R. Jang, J. Yu, Discrete-Time Host–Parasitoid Models with Pest Control, J. Biol. Dyn. 6 (2012), 718–739. https://doi.org/10.1080/17513758.2012.700074.
  8. S. Tang, L. Chen, Chaos in Functional Response Host–Parasitoid Ecosystem Models, Chaos Solitons Fractals 13 (2002), 875–884. https://doi.org/10.1016/s0960-0779(01)00063-7.
  9. A. Elsadany, A. Yousef, A. Elsonbaty, Further Analytical Bifurcation Analysis and Applications of Coupled Logistic Maps, Appl. Math. Comput. 338 (2018), 314–336. https://doi.org/10.1016/j.amc.2018.06.008.
  10. J. Andaluz, A.A. Elsadany, G. Jarne, Dynamic Cournot Oligopoly Game Based on General Isoelastic Demand, Nonlinear Dyn. 99 (2019), 1053–1063. https://doi.org/10.1007/s11071-019-05333-7.
  11. A. Singh, A.A. Elsadany, A. Elsonbaty, Complex Dynamics of a Discrete Fractional‐order Leslie‐Gower Predator‐prey Model, Math. Methods Appl. Sci. 42 (2019), 3992–4007. https://doi.org/10.1002/mma.5628.
  12. J. Huang, M. Lu, C. Xiang, L. Zou, Bifurcations of Codimension 4 in a Leslie-Type Predator-Prey Model with Allee Effects, J. Differ. Equ. 414 (2025), 201–241. https://doi.org/10.1016/j.jde.2024.09.009.
  13. W. Govaerts, R.K. Ghaziani, Y.A. Kuznetsov, H.G.E. Meijer, Numerical Methods for Two-Parameter Local Bifurcation Analysis of Maps, SIAM J. Sci. Comput. 29 (2007), 2644–2667. https://doi.org/10.1137/060653858.
  14. X.S. Luo, G. Chen, B. Hong Wang, J. Qing Fang, Hybrid Control of Period-Doubling Bifurcation and Chaos in Discrete Nonlinear Dynamical Systems, Chaos Solitons Fractals 18 (2003), 775–783. https://doi.org/10.1016/s0960-0779(03)00028-6.
  15. A. Elsadany, Dynamics of a Cournot Duopoly Game with Bounded Rationality Based on Relative Profit Maximization, Appl. Math. Comput. 294 (2017), 253–263. https://doi.org/10.1016/j.amc.2016.09.018.
  16. L. Zhang, L. Zou, Bifurcations and Control in a Discrete Predator–Prey Model with Strong Allee Effect, Int. J. Bifurc. Chaos 28 (2018), 1850062. https://doi.org/10.1142/s0218127418500621.
  17. Y. Li, L. Liu, Y. Chen, Z. Yu, Bifurcations and Marotto’s Chaos of a Discrete Lotka–Volterra Predator–Prey Model, Physica D: Nonlinear Phenom. 472 (2025), 134524. https://doi.org/10.1016/j.physd.2025.134524.
  18. A. Yousef, A.M. Algelany, A. Elsadany, Codimension One and Codimension Two Bifurcations in a Discrete Kolmogorov Type Predator–Prey Model, J. Comput. Appl. Math. 428 (2023), 115171. https://doi.org/10.1016/j.cam.2023.115171.
  19. J. Huang, M. Lu, C. Xiang, L. Zou, Bifurcations of Codimension 4 in a Leslie-Type Predator-Prey Model with Allee Effects, J. Differ. Equ. 414 (2025), 201–241. https://doi.org/10.1016/j.jde.2024.09.009.
  20. A. Elsadany, A.M. Yousef, Codimension-One Bifurcation Analysis and Chaos of a Discrete Competition Duopoly Game, Int. J. Anal. Appl. 23 (2025), 303. https://doi.org/10.28924/2291-8639-23-2025-303.
  21. M.R. Kulenovic, G. Ladas, Dynamics of Second Order Rational Difference Equations, Chapman and Hall/CRC, 2001. https://doi.org/10.1201/9781420035384.
  22. Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, Cham, 2023. https://doi.org/10.1007/978-3-031-22007-4.
  23. J. Carr, Applications of Centre Manifold Theory, Springer, New York, 1981. https://doi.org/10.1007/978-1-4612-5929-9.
  24. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 2003. https://doi.org/10.1007/b97481.
  25. Y.A. Kuznetsov, H.G.E. Meijer, Numerical Bifurcation Analysis of Maps, Cambridge University Press, Cambridge, (2019).
  26. B. Li, Z. He, 1:3 Resonance and Chaos in a Discrete Hindmarsh-Rose Model, J. Appl. Math. 2014 (2014), 896478. https://doi.org/10.1155/2014/896478.