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Abstract. This paper analytically examines the coupled competition duopoly game model. This study examines the

codimension-two bifurcations of different types of the model through bifurcation theory and numerical continuation

methods. The model undergoes codimension-two bifurcation, heteroclinic bifurcation near the 1:2 point, a homoclinic

structure near the 1:3 resonance point, and an invariant cycle bifurcated by a period 4 orbit near the 1:4 resonance point.

Subsequently, numerical simulations are performed to validate the theoretical study.

1. Introduction

In recent years, there has been an increase in interest in discrete-time dynamical systems. One

of the primary reasons for this scenario is that they may exhibit more complicated and diverse

dynamic behaviors than their counterparts who operate in continuous time, such as [1–5]. Using

bifurcation theory and center manifold theory, it has been demonstrated that various discrete-time

species, discrete economic models and epidemic models can exhibit a variety of codimension one

bifurcations. This applies to multiple different models. Fold, flip, transcritical, and Neimark-Sacker

bifurcations are a few examples [6–10]. Recent studies [11–14] have shown that some discrete-time

models can exhibit codimension-two bifurcations. We’ll focus on resonance bifurcations at 1:2,

1:3, and 1:4. To be more clear, this is the primary purpose of this study for coupled competition

duopoly game model [15]. Recent research [16–19] have demonstrated that some discrete-time

models can display codimension-two bifurcations. We will focus on codimension-two bifurcations
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of 1:2, 1:3, and 1:4 resonances. That is the primary objective of this research. The proposed coupled

competition maps have been numerically studied in [15]. xn+1 = xn + α1xn(A1 − 2xn − Byn),

yn+1 = yn + α2yn(A2 − 2yn + Bxn),
(1.1)

The stability and the codimension bifurcations of model (1.1) have been investigated, as concluded

in [20]. This model has been shown to exhibit chaotic behavior and undergo bifurcations of the flip,

pitchfork, and Neimark-Sacker types through numerical and analytical experiments. Numerous

instances have demonstrated this. The present study aims to examine a specific competition model

(1.1) for the existence of codimension-two bifurcation sets and codimension-two bifurcations at

equilibrium points associated with 1:2, 1:3, and 1:4 strong resonances. The investigation will

specifically assess the feasibility of these occurrences. The findings of our theoretical analyses are

verified by numerical simulations.

The structure of the paper is as follows: Section 2 identifies the presence of codimension-two

bifurcation sets at the equilibrium points of a discrete competition model (1.1), whereas Section

3 examines the codimension-two bifurcation of the same competition model (1.1). To validate

theoretical findings, simulations are provided in Section 4, while the conclusion is presented in

Section 5.

2. Codimension-two Bifurcation Analysis

This section provides an extensive investigation to show that the map defined in equation (1.1)

exhibits a codimension-two bifurcation. This result is derived from the methodical implementation

of normal form theory and bifurcation theory, as elucidated in references [21–24]. We can find

the important combinations of parameters that cause qualitative changes in the dynamics by

transforming the original map into its simplified normal form. The research shows that there is a

codimension-two bifurcation point, where two different bifurcation scenarios come simultaneously

or cooperate at the same time. This makes the local dynamical behavior around this critical point

more interesting. We select α1 and α2 as bifurcation parameters to conduct a bifurcation analysis at

E∗(x∗, y∗). We define three bifurcation sets F1 j = {(α1,α2, A1, A2, B) : α1α2H = 6 − j, G = j − 6, j =
2, 3, 4}, corresponding to the occurrences of 1 : 2, 1 : 3 and 1 : 4 resonances, respectively.

2.1. 1:2 Resonance. Considering the parameters (α̃1, α̃2, A1, A2, B) arbitrarily from F12. We exam-

ine map (1.1) characterized by the parameters (α̃1, α̃2, A1, A2, B) as follows: x→ x + α̃1x(A1 − 2x− By),
y→ y + α̃2y(A2 − 2y + Bx),

(2.1)

The map (2.1) possesses a unique interior fixed point denoted as E∗(x∗, y∗), with corresponding

eigenvalues λ1 = λ2 = −1. Let α̃1 and α̃2 be bifurcation parameters. We examine a perturbation
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of map (2.1) as follows:  x→ x + (α̃1 + α∗1)x(A1 − 2x− By),
y→ y + (α̃2 + α∗2)y(A2 − 2y + Bx),

(2.2)

the perturbation parameters |α∗1|, |α
∗

2| � 1 are small.

Let u = x− x∗, v = y− y∗, α1 = α̃1 + α∗1 and α2 = α̃2 + α∗2. Then, map (2.2) becomes u→ (1− 2α1x∗)u− α1Bx∗v− 2α1u2
− α1Buv,

v→ α2By∗u + (1− 2α2y∗)v + α2Buv− 2α2v2.
(2.3)

Let

T =

 α1Bx∗ α1Bx∗
2−2α1x∗

2− 2α1x∗ 0

 ,

and utilize the transform  u
v

 = T

 x̂
ŷ

 ,

Then, map (2.3) is changed into x̂
ŷ

→  −1 + a(α1,α2) 1 + b(α1,α2)

c(α1,α2) −1 + d(α1,α2)

  x̂
ŷ

+  ĝ(x̂, ŷ,α1,α2)

ĥ(x̂, ŷ,α1,α2)

 (2.4)

where

ˆ̂g(x̂, ŷ,α1,α2) =
∑

2≤ j+k≤3

ĝ jkx̂ j ŷk,

ĥ(x̂, ŷ,α1,α2) =
∑

2≤ j+k≤3

ĥ jkx̂ j ŷk,

and

a(α1,α2) =
4− 4α1x∗ − 4α2y∗ + α1α2(B2 + 4)x∗y∗

2− 2α1x∗
,

b(α1,α2) =
α1α2B2x∗y∗ − (2− 2α1x∗)2

(2− 2α1x∗)2 ,

c(α1,α2) = −4 + 4α1x∗ + 4α2y∗ − α1α2(B2 + 4)x∗y∗,

d(α1,α2) =
(2− 2α1x∗)2

− α1α2B2x∗y∗

2− 2α1x∗
,

ĝ20 = α1α2(B2 + 4)x∗ − 4α2, ĝ11 =
α1α2B2x∗

2− 2α1x∗
,

ĥ20 = 2(1− α1x∗)
(
4α2 − 2α1B− α1α2(B2 + 4)x∗

)
,

ĥ11 = −α1B
(
2 + (2α1 + α2B)x∗

)
, ĥ02 = −

α2
1Bx∗

1− α1x∗
,

ĝ30 = ĝ02 = ĝ21 = ĝ12 = ĝ03 = ĥ30 = ĥ21 = ĥ12 = ĥ03 = 0.
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Propose the linear coordinate transformation that is not singular. x̂
ŷ

 =  1 + b(α1,α2) 0

−a(α1,α2) 1

  x̃
ỹ

 ,

the map (2.3) becomes x̃
ỹ

→  −1 1

θ1(α1,α2) −1 + θ2(α1,α2)

  x̃
ỹ

+  g̃(x̃, ỹ,α1,α2)

h̃(x̃, ỹ,α1,α2)

 (2.5)

where

θ1(α1,α2) = −4 + 4α1x∗ + 4α2y∗ − α1α2(B2 + 4)x∗y∗,

θ2(α1,α2) = 3− 2α1x∗ − 2α2y∗,

g̃20 = −
α1α2B2x∗

1− α1x∗
, g̃11 =

α1α2B2x∗

2− 2α1x∗
, ĝ02 = 0

h̃20 =
α1Bx∗(1− α2y∗)

(
− 4α1 − 2α2B + α1α2(B2 + 4)y∗

)
1− α1x∗

,

h̃11 =
α1Bx∗

(
8α1 + 2α2B− 2α2

2By∗ − α1α2(B2 + 8)y∗
)

2− 2α1x∗
, ĥ02 = −

α2
1Bx∗

1− α1x∗
,

ĝ30 = ĝ21 = ĝ12 = ĝ03 = ĥ30 = ĥ21 = ĥ12 = ĥ03 = 0.

Finally, we present the subsequent transformation:

x̃ = ξ+
∑

2≤ j+k≤3

ϕ jk(α1,α2)ξ
jηk,

ỹ = η+
∑

2≤ j+k≤3

ψ jk(α1,α2)ξ
jηk,

(2.6)

The inverse transformation of the variable from transformation (2.6) is given by the expression:

ξ = x̃−
∑

j+k=2

ϕ jk(α1,α2)x̃ j ỹk
−

∑
j+k=3

δ jk(α1,α2)x̃ j ỹk + O
(
(|x̃|+ |ỹ|)4

)
,

η = ỹ−
∑

j+k=2

ψ jk(α1,α2)x̃ j ỹk
−

∑
j+k=3

β jk(α1,α2)x̃ j ỹk + O
(
(|x̃|+ |ỹ|)4

)
,

(2.7)

By employing transformation (2.6) and its inverse transformation (2.7) within map (2.5), we obtain ξη
→  −1 1

θ1(α1,α2) −1 + θ2(α1,α2)

  ξη
+  ḡ(ξ, η,α1,α2)

h̄(ξ, η,α1,α2)

 (2.8)

where

ḡ(ξ, η,α1,α2) =
∑

2≤ j+k≤3

γ jk(α1,α2)ξ
jηk + O

(
(|ξ|+ |η|)4

)
,

h̄(ξ, η,α1,α2) =
∑

2≤ j+k≤3

σ jk(α1,α2)ξ
jηk + O

(
(|ξ|+ |η|)4

)
,
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γ20(α1,α2) = g̃20 +ψ20 − 2ϕ20 −ϕ02θ
2
1 + ϕ11θ1,

γ11(α1,α2) = g̃11 +ψ11 − 2ϕ02(θ2 − 1)θ1 + (θ2 − θ1 − 2)ϕ11 + 2ϕ20,

γ02(α1,α2) = ψ02 + (1− θ2)ϕ11 + (θ2
2 − 2θ2 + 2)ϕ02 −ϕ20,

γ30(α1,α2) = g̃11ψ20 + 2θ1(1− θ2)ϕ02ψ20 − (1 + θ1 − θ2)ϕ11ψ20 + 2ϕ20ψ20

+ψ30 − 2θ2
1ϕ02ϕ20 − 2θ1h̃20ϕ02 + 2θ1ϕ11ϕ20 + (h̃20 − g̃20θ1)ϕ11

− 2ϕ2
20 + 4g̃20ϕ20 + δ30 + δ12θ

2
1 −ϕ30 − δ21θ1 − δ03θ

3
1,

γ21(α1,α2) = ψ21 + 2ϕ2
20 −ϕ21 + 2g̃02ψ20 + g̃11ψ11 − (1 + θ1 − θ2)ϕ11ψ11

+ 2(1− θ2)ϕ11ψ20 − 2θ2
1ϕ02ϕ11 + 2

(
(1− θ2)h̃20 − θ1h̃11ϕ02

)
−

(
h̃20 − h̃11 + g̃11θ1 + (θ2 − 3)g̃20

)
+ (3g̃11 − 2g̃20)ϕ20 + 2ϕ20ψ11

+ 2θ1ϕ
2
11 − 2ϕ20ψ20 + (θ2 − θ1 − 3)ϕ11ϕ20 + 2(1− θ2)θ1ϕ02ψ11

− 2(1− θ2)
2ϕ02ψ20 + 2(1− θ2)θ1ϕ02ϕ20 + 3δ03(1− θ2)θ

2
1

+ δ21(1 + 2θ1 − θ2) − δ12(2− 2θ2 + θ1)θ1 − 3δ30,

γ12(α1,α2) = ψ12 −ϕ12 + 2ϕ20ψ02 − 2θ2
1ϕ

2
20 + 2(g̃02 − g̃11)ϕ20 + 2g̃11ϕ11

− 2(ϕ02 −ϕ11)ϕ20 + 2g̃02ψ11 + (θ2 − θ1 − 1)ϕ11ψ02 − 2(1− θ2)
2ϕ02ψ11

+ 2(1− θ2)ϕ11ψ11 − 2
(
h̃02θ1 − g̃20 − (1− θ2)h̃11

)
ϕ02 + (θ2 − θ1 − 1)ϕ2

11

+ 2δ12(1− θ2)θ1 − (g̃11θ2 + g̃02θ1 − h̃02 + h̃11)ϕ11 + g̃11ψ02 − 2ϕ20ψ11

− 2(θ2 − 2)θ1ϕ11ϕ02 + 2θ1(1− θ2)ϕ02ψ02 − 3δ03(1− θ2)
2θ1 − 2δ21(1− θ2)

+ δ12(1− θ2)
2
− δ21θ1 + 3δ30,

γ03(α1,α2) = 2g̃02ψ02 − 2(1− θ2)
2ϕ02ψ02 + 2(1− θ2)ϕ11ψ02 − 2ϕ20ψ02 +ψ03

+ 2(1− θ2)θ
2
1ϕ

2
02 +

(
g̃11 + 2(1− θ2)h̃02

)
ϕ02 − (1 + θ1 − θ2)ϕ11ϕ02

+ 2ϕ02ϕ20 − δ30 − δ12(1− θ2)
2 + δ21(1− θ2) + δ03(1− θ2)

3
−ϕ03

−

(
h̃02 − (1− θ2)g̃02

)
ϕ11 − 2g̃02ϕ20,

σ20(α1,α2) = h̃20 −ψ02θ
2
1 + (ψ11 + ϕ20)θ1 − (2− θ2)ψ20,

σ11(α1,α2) = h̃11 + 2ψ02(1− θ2)θ1 − (2− 2θ2 + θ1)ψ11 + 2ψ20 + ϕ11θ1,

σ02(α1,α2) = h̃02 −
(
2− (3− θ2)θ2

)
ψ02 + (1− θ2)ψ11 −ψ20 + θ1ϕ02,

σ30(α1,α2) = 2θ1(1− θ2)ψ20ψ02 − 2θ2
1ϕ20ψ02 − 2θ1h̃20ψ02 − (1 + θ1 − θ2)ψ11ψ20

+ 2θ1ϕ20ψ11 − (g̃20θ1 − h̃20)ψ11 + 2ψ2
20 + (h̃11 + 2g̃20)ψ20 − 2ϕ20ψ20

− (1− θ2)ψ30 + 2h̃20ϕ20 + θ1ϕ30 − β03θ
3
1 − β21θ1 + β30 + β12θ

2
1,
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σ21(α1,α2) = −ψ21(1− θ2) + 2h̃20ϕ11 + ϕ21θ1 + 2ϕ20ψ20 + 2(1− θ2)θ1ψ02ψ11

− 2(1− θ2)
2ψ02ψ20 + 2(1− θ2)θ1ϕ20ψ02 − (1 + θ1 − θ2)ϕ20ψ11 + h̃11ϕ20

− (1 + θ1 − θ2)ψ
2
11 + 2(2− θ2)ψ11ψ20 + 2θ1ϕ11ψ11 − 2ϕ11ψ20 − 2ψ2

20

− 2θ2
1ϕ11ψ02 +

(
(1− θ2)g̃20 − h̃20 + 2h̃11 − g̃11θ1

)
ψ11 + 2(h̃02 − g̃20 + g̃11)ψ20

− β12θ
2
1 − 2β12(1− θ2)θ1 + 2

(
(1− θ2)h̃20 − θ1h̃11

)
ψ02 + 3β03(1− θ2)θ

2
1

+ β21(1− θ2) + 2β21θ1 − 3β30,

σ12(α1,α2) = h̃11ϕ11 − (1 + θ1 − θ2)ϕ11ψ11 +
(
(1− θ2)(3− 2θ2) − θ1

)
ψ02ψ11 + 2ϕ11ψ20

+ 2θ1(1− θ2)ϕ11ψ02 + θ1ϕ12 − (1− θ2)ψ12 + 2h̃20ϕ02 − 2ϕ02ψ20 − 2ψ11ψ20

+ 2(g̃02 − g̃11)ψ20 + 2(1− θ2)ψ
2
11 + 2θ1ϕ02ψ11 + 2θ1(1− θ2)ψ

2
02 − 2θ2

1ϕ02ψ02

−

(
g̃02θ1 − 3h̃02 + h̃11 − g̃11(1− θ2)

)
ψ11 +

(
2(1− θ2)h̃11 − 2h̃02θ1 + h̃11

)
ψ02

+ 2ψ02ψ20 − 3β03(1− θ2)
2θ1 − 2β21(1− θ2) + β12(1− θ2)

2
− β21θ1 + 3β30

+ 2β12(1− θ2)θ1,

σ03(α1,α2) = −2(1− θ2)
2ψ2

02 + 2(1− θ2)ψ02ψ11 − 2ψ02ψ20 + 2θ1(1− θ2)ϕ02ψ02

+ 2(2− θ2)h̃02ψ02 − (1− θ2)ψ03 − (1 + θ1 − θ2)ϕ02ψ11 − 2g̃02ψ20 + 2ϕ02ψ20

−

(
h̃02 − g̃02(1− θ2)

)
ψ11 + β21(1− θ2) − β12(1− θ2)

2 + h̃11ϕ02 + θ1ϕ03

+ β03(1− θ2)
3
− β30.

We remove quadratic terms by taking

γ20(α1,α2) = γ11(α1,α2) = γ02(α1,α2) = σ20(α1,α2) = σ11(α1,α2)

= σ02(α1,α2) = 0

and can obtain ϕ jk(α1,α2) and ψ jk(α1,α2) for j + k = 2. Further, in order to annihilate all cubic but

those resonant terms, the vanishing conditions

γ30(α1,α2) = γ21(α1,α2) = γ12(α1,α2) = γ03(α1,α2) = σ12(α1,α2)

= σ03(α1,α2) = 0

yield the system forϕ jk(α1,α2) andψ jk(α1,α2), from which we can obtainϕ jk(α1,α2) andψ jk(α1,α2)

for j + k = 3. After these transformations, map (2.8) can finally be transformed into the following

normal form for 1 : 2 resonance at the critical condition ξη
→

 −ξ+ η

θ1(α1,α2)ξ+ [−1 + θ2(α1,α2)]η+ C(α1,α2)ξ3 + D(α1,α2)ξ2η+ O
(
(|ξ|+ |η|)4

) 
where C(α1,α2) = σ30(α1,α2) and D(α1,α2) = σ21(α1,α2). When (α1,α2) = (α̃1, α̃2), we have

θ1(α̃1, α̃2) = θ2(α̃1, α̃2) = 0, and

C(α̃1, α̃2) = h̃30(α̃1, α̃2) + g̃20h̃20(α̃1, α̃2) +
1
2

h̃2
20(α̃1, α̃2) +

1
2

h̃20h̃11(α̃1, α̃2),
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D(α̃1, α̃2) = h̃21(α̃1, α̃2) + 3g̃20h̃11(α̃1, α̃2) +
5
4

h̃20(α̃1, α̃2)h̃11(α̃1, α̃2)

+ h̃20(α̃1, α̃2)h̃02(α̃1, α̃2) + 3g̃2
20(α̃1, α̃2) +

5
2

g̃20(α̃1, α̃2)h̃20(α̃1, α̃2)

+
5
2

g̃11(α̃1, α̃2)h̃20(α̃1, α̃2) + h̃2
20(α̃1, α̃2) +

1
2

h̃2
11(α̃1, α̃2).

We get the following results by using the 1 : 2 resonance theorems from [25, 26].

Theorem 2.1. The following bifurcation behaviors are admitted by map (1.1) if C(α̃1, α̃2) , 0 and
D(α̃1, α̃2) + 3C(α̃1, α̃2) , 0

(i) The critical point is elliptic if C(α̃1, α̃2) > 0, and saddle if C(α̃1, α̃2) < 0. The bifurcation scenario
close to the 1 : 2 points is determined by D(α̃1, α̃2) + 3C(α̃1, α̃2) , 0.

(ii) A pitchfork bifurcation curve is defined as PF = {(θ1,θ2) : θ1 = 0}, and non-trivial fixed points
exist for θ1 < 0.

(iii) A non-degenerate Neimark-Sacker bifurcation curve exists H = {(θ1,θ2) : θ1 = −θ2 +O
(
(|θ1|+

|θ2|)2
)
,θ1 < 0};

(iv) A heteroclinic bifurcation curve exists HL = {(θ1,θ2) : θ1 = − 5
3θ2 + O

(
(|θ1|+ |θ2|)2

)
,θ1 < 0}.

3. 1 : 3 Resonance

This section aims to elucidate the dynamic behavior of map (1.1) at the 1 : 3 resonance point. We

can choose the parameters (α̂1, α̂2, A1, A2, B) from F13 and analyze the mapping (1.1) using these

parameters:  x→ x + α̂1x(A1 − 2x− By),
y→ y + α̂2y(A2 − 2y + Bx),

(3.1)

Now let’s examine this map in this way: x→ x + α1x(A1 − 2x− By),
y→ y + α2y(A2 − 2y + Bx),

(3.2)

where |α1 − α̂1|, |α2 − α̂2| � 1. Bifurcation theory [22,24,25] will be used to show the normal form at

the 1 : 3 resonance point next. Consider û = x− x∗, v̂ = y− y∗, if we move the fixed point E∗(x∗, y∗)
to the starting point:  û→ (1− 2α1x∗)û− α1Bx∗v̂− 2α1û2

− α1Bûv̂,

v̂→ α2By∗û + (1− 2α2y∗)v̂ + α2Bûv̂− 2α2v̂2.
(3.3)

The matrix of the Jacobian at E∗ for the map (3.3) is

A(α1,α2) =

 1− 2α1x∗ −α1Bx∗

α2By∗ 1− 2α2y∗

 ,

The eigenvalues that correspond to the map (3.3) are λ1,2 = (±
√

3i− 1)/2. The adjoint eigenvector

p(α1,α2) ∈ C and the corresponding eigenvector q(α1,α2) ∈ C may be easily derived in the same
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way:

A(α̂1, α̂2)q(α̂1, α̂2) =

√
3i− 1
2

q(α̂1, α̂2),

AT(α̂1, α̂2)p(α̂1, α̂2) = −

√
3i + 1

2
p(α̂1, α̂2), 〈p(α̂1, α̂2), q(α̂1, α̂2)〉 = 1,

the standard scalar product in C, 〈p, q〉 = p̄1q1 + p̄2q2, where 〈., .〉 denotes this. Take

q(α̂1, α̂2) =

 α̂1Bx∗
3−
√

3i
2 − 2α̂1x∗

 ,

p(α̂1, α̂2) =

 3−
√

3i(3−4α̂2 y∗)
6α̂1Bx∗

−

√
3i

3

 ,

Any vector U = (û, v̂)T
∈ R2 can be expressed in the following manner:

U = zq(α̂1, α̂2) + z̄q̄(α̂1, α̂2), z ∈ C.

Consequently, (3.3) can be change into

z 7→
√

3i− 1
2

z +
∑

2≤k+l≤3

1
k!l!

gklzkz̄l, (3.4)

where

g20 =
1
2

4α̂2

(
3 + i

√

3− 4α̂2y∗
)
+ α̂2B2

(
1−
√

3i
)
(3− 2α̂2y∗)

− 2α̂1α̂2B
(
3 + i

√

3−
(
2 + 2i

√

3
)
y∗

) ,

g11 =
B
√

3i
2

α̂2B(−3 + 2α̂2y∗) − α̂1

(
3−
√

3i− 4α̂2y∗
) ,

g02 =
1
2

α̂2B2
(
1 + i

√

3
)
(−3 + 2α̂2y∗) + 4α̂2

(
−3 + i

√

3 + 4α̂2y∗
)

− 4α̂1B
(√

3i +
(
1−
√

3i
)
α̂2y∗

) ,

g30 = g21 = g12 = g03 = 0.

We now present the subsequent transformation to exclude certain second-order terms:

z = ω+
1
2

h20ω
2 + h11ωω̄+

1
2

h02ω̄
2 (3.5)

The coefficients hkl, where k+ l = 2, will be provided subsequently. Consequently, we can acquire:
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ω = z−
1
2

h20z2
− h11zz̄−

1
2

h02z̄2 +
1
2
(h2

20 + h11h̄02)z3

+
(3
2

h20h11 + |h11|
2 +

1
2
|h02|

2
)

z2z̄ +
(1
2

h11h̄20 + h2
11 + h02h̄11

+
1
2

h02h20

)
zz̄2 +

1
2

(
h02h̄20 + h11h02

)
z̄3 + O

(
|z|4

)
,

(3.6)

By applying transformation (3.5) and its inverse transformation (3.6), model (3.4) is reformulated

as

ω 7→

√
3i− 1
2

ω+
∑

2≤k+l≤3

1
k!l!

Qklω
kω̄l + O

(
|ω|4

)
, (3.7)

where

Q20 = g20 +
√

3h20i, Q11 = g11 −
1
2
(3−

√

3i)h11, Q02 = g02

Q30 =
3
2

(
3−
√

3i
)

h20g20 + 3g11h̄02 −
3
2

(√
3i− 1

)
h11 ḡ02

+
3
2

(
3 +
√

3i
)

h2
20 + g30,

Q21 =
1
2

(
5 +
√

3i
)

h11g20 +
(
2−
√

3i
)

h20g11 + 2h̄11g11

+
(
1−
√

3i
)

h11 ḡ11 + g02h̄02 +
1
2

(
1 +
√

3i
)

h02 ḡ02

+ g21 −
1
2

(
3− 5

√

3i
)

h11h20 −
(
3−
√

3i
)

h̄11h11,

Q12 = g20h02 +
1
2

(
1−
√

3i
)

h11 ḡ20 +
(
h̄20 +

(
3 +
√

3i
)

h11

)
g11

+
(
1 +
√

3i
)

h02 ḡ11 + g12 +
(1
2

(
1−
√

3i
)

h20 + 2h̄11

)
g02

−
1
2

(
3 +
√

3i
)

h11h̄20 −
(
3 +
√

3i
)

h2
11 − 2

√

3ih02h̄11,

Q30 =
3
2

(
1 +
√

3i
)

h02 ḡ20 + 3g11h̄02 + 3h̄20g02

+
3
2

(
1 +
√

3i
)

h11g02 +
3
2

(
3−
√

3i
)

h02h̄20 + g03.

By setting

h20 =

√
3i

3
g20, h11 =

3 +
√

3i
6

g11, h02 = 0. (3.8)

Subsequently, we possess Q20 = Q11 = 0, Q02 = g02 and Q30, Q21, Q12, Q03 can be simplified as

follows. Consequently, the transformation (3.5) is established and

Q30 =
3−
√

3i
2

g11 ḡ02 +
√

3ig2
20 + g30

Q21 =
3 + 2

√
3i

3
g11g20 +

3−
√

3i
3
|g11|

2 + g21
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Q12 =
3 +
√

3i
6

g20g02 +
3−
√

3i
3

ḡ11g02 +
3 +
√

3i
3

g2
11 −

√
3i

3
g11 ḡ20 + g12

Q03 =
√

3ig11g02 −
√

3iḡ20g02 + g03.

To further eliminate some cubic terms, we take

ω = ζ+
1
6

h30ζ
3 +

1
2

h21ζ
2ζ̄+

1
2

h12ζζ̄
2 +

1
6

h03ζ̄
3 (3.9)

Utilizing (3.9) and its inverse transformation, the map (3.6) is transformed into the subsequent

form:

ζ 7→

√
3i− 1
2

ζ+
g02

2
ζ̄2 +

∑
k+l=3

1
k!l!

Q̃klζ
kζ̄l + O

(
|ζ|4

)
, (3.10)

where

Q̃30 = Q30 −
3−
√

3i
2

h30, Q̃21 = Q21, Q̃12 = Q12 +
√

3ih12,

Q̃03 = Q03 −
3−
√

3i
2

h03.

By setting

h30 =
3 +
√

3i
6

Q30, h21 = 0, h12 =

√
3i

3
Q12, h03 =

3 +
√

3i
6

Q03,

Consequently, we have Q̃30 = Q̃21 = Q̃03 = 0. Therefore, the transformation (3.9) is established.

By employing transformation (3.9), map (3.10) ultimately assumes the subsequent normal form of

the bifurcation exhibiting 1 : 3 resonance:

ζ 7→

√
3i− 1
2

ζ+ B̂(α̂1, α̂2)ζ̄
2 + Ĉ(α̂1, α̂2)ζ|ζ|

2 + O
(
|ζ|4

)
, (3.11)

where

B̂(α̂1, α̂2) =
g02

2
,

Ĉ(α̂1, α̂2) =

(
3 + 2

√
3i
)

g20g11

6
+

(
3−
√

3i
)

g2
11

6
+

g21

2
.

Let

B1(α̂1, α̂2) = −
3
2

(
1 +
√

3i
)

B̂(α̂1, α̂2),

C1(α̂1, α̂2) = −3|B̂(α̂1, α̂2)|
2
−

3
2

(
1 +
√

3i
)

Ĉ(α̂1, α̂2).

Theorem 9.11 in Kuznetsov [22] and Theorem 2 in Li and He [25] allow us to get the following

theorem:

Theorem 3.1. Let (α̂1, α̂2) ∈ F13. Assume B1(α̂1, α̂2) , 0 and Re (C1(α̂1, α̂2)) , 0, then (1.1) has the
following dynamical behaviors at the fixed point E∗

(i) The invariant closed curve near the 1 : 3 resonance point is unstable if Re (C1(α̂1, α̂2)) > 0;
conversely, if Re (C1(α̂1, α̂2)) < 0, the invariant closed curve is stable;
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(ii) The map’s trivial fixed point E0 has a non-degenerate Neimark-Sacker bifurcation (3.11).;
(iii) The saddle fixed Ek(k = 1, 2, 3) of (3.11) corresponds to a saddle cycle of period three;
(iv) There is a homoclinic structure formed by the stable and unstable invariant manifolds of the period

three cycle intersecting transversally in an exponentially narrow parameter region.

In Sect. 6, we will give some values of parameters such that 1 : 3 resonance occurs as α̂1 and α̂2

varying with B1(α̂1, α̂2) , 0 and< (C1(α̂1, α̂2)) , 0.

4. 1:4 Resonance ofMap (1.1) at E∗

Subsequently, we examine the 1 : 4 resonance of map (1.1) at E∗, with parameters (α1,α2) fluctu-

ating within a minor vicinity of F14. We examine system (1.1) utilizing parameters (ᾱ1, ᾱ2, A1, A2, B)
from F14 as follows:  x→ x + ᾱ1x(A1 − 2x− By),

y→ y + ᾱ2y(A2 − 2y + Bx),
(4.1)

We now examine this map in the following manner: x→ x + α1x(A1 − 2x− By),
y→ y + α2y(A2 − 2y + Bx),

(4.2)

where |α1 − ᾱ1|, |α2 − ᾱ2| � 1. Let ū = x− x∗, v̄ = y− y∗, Transform the fixed point E∗(x∗, y∗) to the

origin, we obtain  ū→ (1− 2α1x∗)ū− α1Bx∗v̄− 2α1ū2
− α1Būv̄,

v̄→ α2By∗ū + (1− 2α2y∗)v̄ + α2Būv̄− 2α2v̄2.
(4.3)

A map (4.3) at E∗ has a Jacobian matrix that is

A(α1,α2) =

 1− 2α1x∗ −α1Bx∗

α2By∗ 1− 2α2y∗

 ,

The corresponding eigenvalues of map (4.3) are λ1,2 = ±i. We choose

q(ᾱ1, ᾱ2) =

 ᾱ1Bx∗

1− 2ᾱ1x∗ − i

 ,

p(ᾱ1, ᾱ2) =

 1−i(1−2ᾱ2 y∗)
2ᾱ1Bx∗

−
i
2

 .

We can get any vector U = (ū, v̄)T
∈ R2 is put as follows

U = zq(ᾱ1, ᾱ2) + z̄q̄(ᾱ1, ᾱ2), z ∈ C.

In this way, (4.3) can be changed into the following shape:

z 7→ iz +
∑

2≤k+l≤3

1
k!l!

gklzkz̄l, (4.4)
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where

g20 = (4 + 4i)α2 − 8α2
2y∗ + α2B2(1− i)(1− α2y∗)

− 2α1B
(
1− (1 + i)α2y∗

)
,

g11 = iB

α2B(−1 + α2y∗) + α1

(
(−1 + i) + 2α2y∗

),

g02 = (1 + i)

α2B2(−1 + α2y∗) + 4α2

(
i + (1− i)α2y∗

)
+ α1B(1 + i)

(
− 1 + (1 + i)α2y∗

),

g30 = g21 = g12 = g03 = 0.

We apply a transformation in order to eliminate certain quadratic terms

z = ω+
1
2

h20ω
2 + h11ωω̄+

1
2

h02ω̄
2 (4.5)

the following will give the coefficients hkl where k + l = 2. Model (4.4) is transformed into by

utilizing transformation (4.5) and its inverse transformation.

ω 7→ iω+
∑

2≤k+l≤3

1
k!l!

Qklω
kω̄l + O

(
|ω|4

)
, (4.6)

where

Q20 = g20 + (1 + i)h20, Q11 = g11 − (1− i)h11, Q02 = g02 + (1 + i)h02,

Q30 = 3 (1− i) h20g20 − 3
(
iḡ02 + (1 + i)h̄02

)
h11 + 3(1− i)h2

20 + 3g11h̄02 + g30

Q21 =
(
iḡ02 + (1 + i)h̄02

)
h02 + (1− 2i)g11h20 + 2g11h̄11 + g02h̄02 + g21

+
(
(1 + 3i)h20 − 2iḡ11 − 2(1− i)h̄11 + (2 + i)g20

)
h11,

Q12 =
(
2(1 + i)h11 + h̄20

)
g11 + g20h02 +

(
(1− i)h20 + 2iḡ11 + 2(1− i)h̄11

)
h02,

− 2(1 + i)h2
11 −

(
iḡ20 + (1 + i)h̄20

)
h11 + g12 − ih20g02 + 2g02h̄11,

Q30 = g03 + 3g11h02 + 3
(
(i− 1)h11 + iḡ20 + (1 + i)h̄20

)
h02

3g02h̄20 + 3ih11g02.

By setting

h20 =
1
2

g20(i− 1), h11 =
1
2

g11(i + 1), h02 =
1
2

g02(i + 1), (4.7)

then we have Q20 = Q11 = Q02 = 0 and Q30, Q21, Q12, Q03 can be simplified. This leads to the

definition of the transformation (4.5). The following transformation is introduced to better simplify

the system:

ω = ζ+
1
6

h30ζ
3 +

1
2

h21ζ
2ζ̄+

1
2

h12ζζ̄
2 +

1
6

h03ζ̄
3 (4.8)
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Map (4.6) takes on the following shape after employing (4.8) and its inverse transformation:

ζ 7→ iζ+
∑

k+l=3

1
k!l!

Q̃klζ
kζ̄l + O

(
|ζ|4

)
, (4.9)

where

Q̃30 = Q30 + 2ih30, Q̃21 = Q21, Q̃12 = Q12 + 2ih12,

Q̃03 = Q03.

By setting

h30 =
1
2

Q30i, h21 = 0, h12 =
1
2

Q12i, h03 = 0,

then we have Q̃30 = Q̃12 = 0. Hence, transformation (4.8) is defined. Using transformation (4.8),

map (4.9) finally becomes the following normal form of the bifurcation with 1 : 4 strong resonance

ζ 7→ iζ+ Q̃21(ᾱ1, ᾱ2)ζ
2ζ̄+ Q̃03(ᾱ1, ᾱ2)ζ

3 + O
(
|ζ|4

)
, (4.10)

where

Q̃21 =
1 + 3i

4
g20g11 +

1− i
2
|g11|

2
−

1 + i
4
|g02|

2 +
1
2

g21,

Q̃03 =
i− 1

4
g02g11 +

1 + i
4

g11g20 +
1
6

g03.

Let

C1(ᾱ1, ᾱ2) = −4iQ̃21(ᾱ1, ᾱ2), D1(ᾱ1, ᾱ2) = −4iQ̃03(ᾱ1, ᾱ2).

If D1(ᾱ1, ᾱ2) , 0, we denote A(ᾱ1, ᾱ2) =
C1(ᾱ1,ᾱ2)

|D1(ᾱ1,ᾱ2)|
. By employing a comparable reasoning found

in Lemma 9.15 of [22], we can get the subsequent results.

Theorem 4.1. The set F14 contains (ᾱ1, ᾱ2). When both ReA(ᾱ1, ᾱ2) , 0 and ImA(ᾱ1, ᾱ2) , 0, a number
of complex bifurcation curves are admissible in map (1.1):

(i) A Neimark-Sacker bifurcation curve exists at the trivial fixed point E0 of map (4.10). Moreover,
when λ = −i, a stable invariant circle exists; conversely, when λ = i, the invariant circle vanishes.

(ii) A fold bifurcation curve is present at eight nontrivial fixed points Sk, Ek(k = 1, 2, 3, 4) of the
map (4.10). Eight nontrivial fixed points appear or vanish via the fold bifurcation curve at the
corresponding parameter values.

(iii) There are Neimark-Sacker bifurcations at Sk and Ek (k = 1, 2, 3, 4). Furthermore, it is worth noting
that four "small" invariant circles bifurcate from Sk and Ek (k = 1, 2, 3, 4).

(iv) A "small" homoclinic loop bifurcation curve is shown. Neimark-Sacker bifurcation curves generate
the "small" invariant circles from Sk, Ek(k = 1, 2, 3, 4), and they vanish at homoclinic loop
bifurcation curves.

(v) There is a "square" heteroclinic cycle located around E0.
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(vi) All fixed points Sk, Ek(k = 1, 2, 3, 4) are surrounded by a "clover" heteroclinic cycle. It generates
either a stable or an unstable "big" invariant circle, depending on the sign of the saddle quantity
σ = trΛ(Sk).

(vii) A fold bifurcation curve exists at two significant invariant circles. The outer invariant circle is
stable, while two invariant circles converge and disappear.

5. Numerical Results

5.1. Numerical continuation. The purpose of this section is to explore the local bifurcation struc-

ture around the fixed pointsE1 and E∗. To do this, we carry out a series of numerical continuation

operations by utilizing the MATLAB-based toolbox MATCONT [22, 25]. To verify the analytical

results, we used MatCont for numerical bifurcation analysis. This section shows a variety of

behaviors, starting with a 1:2 resonance bifurcation. A pair of complex conjugate eigenvalues tra-

verses the unit circle with a modulus ratio of 1:2. Higher-order resonances like 1:3 and 1:4 interact

with period-doubling bifurcations and quasi-periodic oscillations. We also detect phase-locking,

invariant tori, and chaotic dynamics, as described in the following parts.

Example 1: Fix A1 = 5.9, A2 = 5.8, B = 0.5, α2 = 0.25, and vary α1. The report of MATCONTM

is as follows.

label PD, x= (2.950000 0.000000 0.338983),

Normal form coefficient for PD = 4.296380e-01 ,

label NS, x= (2.950000 0.000000 0.104240),

Neutral Saddle

label BP, x= (2.950000 0.000000 -0.000000).

By Theorem 1, E1 has a flip bifurcation detected ad PD in Fig.(1)(a) and there is also a Neimark-

sacker bifurcation, which has not been shown theoretically, detected as NS.

Example 2: Fix A1 = 5.9, A2 = 5.8, B = 0.2, α2 = 0.42, and vary α1. The report of MATCONTM

is as follows.

label NS, x= (2.633663 3.163366 0.299604),

Neutral Saddle

label PD, x= (2.633663 3.163366 0.364944),

Normal form coefficient for PD = 5.583321e-01.

According to Theorems 2 and 3 the fixed point E∗ has flip and Neimark-sacker bifurcations,

respectively. It is depicted in Fig. (1).
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(a) (b)

Figure 1. The continuation of E1 and E∗ in (α1, x)-plane. The branch point (BP), Neimark-Sacker

point (NS), and period doubling point (PD) are found in Theorems 1 (a) and 2 and 3 (b).

Example 3: Fix A1 = 5.9, A2 = 5.8, B = 0.5, and vary α1 and α2. We have E∗ =

(2.0941176, 3.4235294) is a 1 : 2 resonance at (α1,α2)1 = (0.3617, 0.3629) and (α1,α2)2 =

(0.5933, 0.2213) according to Theorem 4, where |λ1| = 1 and |λ2| = 1.0786946 ' 1. This is de-

picted in Fig. (2). The MATCONTM report is as follows:

label R2, x= (2.094118 3.423529 0.593346 0.24252),

Normal form coefficient for R2: [c,d]= -5.576197e-01, -3.205910e+00,

label R2, x= (2.094118 3.423529 0.361711 0.362940),

Normal form coefficient for R2: [c,d]= 2.626999e-01, -3.872191e+00.

(a) (b)

Figure 2. Continuation of E∗ in (α1,α2)-plane where the 1 : 2 resonance point is labeled as R2.

Further more, continuation of the bifurcation at E∗ is reported as follows:
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label R2, x= (2.094118 3.423529 0.593346 0.24252),

Normal form coefficient for R2: [c,d]= -5.576197e-01, -3.205910e+00,

label GPD, x= (2.094118 3.423529 0.636330 0.233594),

Normal form coefficient for GPD: [a/e,be]= -5.176538e-01, -1.135171e-09.

This is shown in Fig.(3)(a).

Example 4: Fix A1 = 1.9, A2 = 1.8, B = 1.8, and vary α1 and α2. We have E∗ = (0.0773, 0.9696)

is a 1 : 3 resonance at (α1,α2)1 = (14.6724, 0.3766) according to Theorem 5 where |λ1,2| = 1

θ1,2 = ±120.3334. This is depicted in Fig. (3)(b). The MATCONTM report is as follows

label = R1, x= (0.064618 0.955773 13.204553 0.398235 1.000000),

Normal form coefficient for R1: s=1,

label = R4, x= (0.037827 0.995080 13.749222 0.404998 -0.000000),

Normal form coefficient for R4: A= 3.153868e-02-3.273009e-01i,

label= R3, x= (0.034550 0.996337 14.033526 0.405489 -0.500000),

Normal form coefficient for R3: Re(c1)= 1.081499e-02,

label =R2, x= (0.032050 0.997137 14.302355 0.405404 -1.000000),

Normal form coefficient for R2: [c,d]= -9.971172e+04, 1.7836789e+3,

label =R2, x= (0.077348 0.969613 21.577330 0.341410),

Normal form coefficient for R2: [c,d]= -1.911158e+03, -6.495115e+01.

label= LPPD, x= (0.077348 0.969613 12.928571 -0.000000),

Normal form coefficient for LPPD: [a/e,be]= 5.439640e-10, 1.836239e-06,

First Lyapunov coefficient for second iterate = 1.836239e-06,

label= R4, x= (0.077348 0.969613 17.589093 0.357487 0.000000),

Normal form coefficient for R4: A= -4.587149e+06+3.683014e+08i,

label = CP, x=(0.077962 0.970653 -0.000000 0.0000000),

Normal form coefficient for CP, s=-7.713883e-15.
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(a) (b)

Figure 3. Continuation of E∗ in (α1,α2)-plane where (a)generalized period doubling bifurcation is

labeled GPD and limit point- period doubling is labeled LPPD, and (b)1:2, 1:3, and 1:4 resonance are

labeled as R2,R3, and R4, respectively.

A magnification of Fig.(3)(b) is illustrated in Fig.(4) below

Figure 4. A magnification of Fig.(3)(b).

Example 5: Fix A1 = 1.9, A2 = 1.8, B = 2.03, and vary α1 and α2, the continuation of the PD

curve is presented in Fig.(5). The MATCONTM report is as follows

label LPPD, x= (0.004352 0.901311 28.370567 1.250695),

Normal form coefficient for LPPD: [a/e,be]= -5.630804e-01, -1.884415e+07,
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label LPPD, x= (0.005792 0.902582 22.468995 1.724068),

Normal form coefficient for LPPD: [a/e,be]= -5.148009e-01, -1.620579e+08,

label R1, x= (0.006249 0.902897 20.509344 1.747401),

Normal form coefficient for R1=-1,

label LPPD, x= (0.007987 0.934518 33.838462 0.716497),

Normal form coefficient for LPPD: [a/e,be]= 5.777744e-01, 1.437467e+05,

first Lyapunov coefficient for second iterate = 1.437467e+05.

Figure 5. Period doubling curve of the second iterate.

Example 6: Fix A1 = 0.9, A2 = 0.8, B = 2.05, and vary α1 and α2, the continuation of E∗ =
(0.0195, 0.4200) is presented in Fig.(6). The MATCONTM report is as follows

label LPPD, x= (0.034019 0.415123 47.594382 0.446535),

Normal form coefficient for LPPD: [a/e,be]= 4.229877e-01, 2.412199e+06,

first Lyapunov coefficient for the second iterate = 2.412199e+06,

label CP, x= (0.033655 0.414220 58.561701 -0.000000),

Normal form coefficient for CP s=4.129853e-03,
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label R1, x= (0.020582 0.420100 29.645462 1.004500),

Normal form coefficient for R1=-1,

label R1, x= (0.030749 0.417998 29.968556 1.120381),

Normal form coefficient for R1=1,

label R1, x= (0.039532 0.405203 98.168742 1.239945),

Normal form coefficient for R1=-1,

label =R2, x= (0.019506 0.419994 87.960632 0.676719 -1.000000),

Normal form coefficient for R2: [c,d]= -2.919289e+05, 3.442778e+03,

label LPPD, x= (0.025208 0.414432 39.670716 0.000000),

Normal form coefficient for LPPD: [a/e,be]= -4.219238e-19, -2.293202e-14,

label LPPD, x= (0.019471 0.420028 51.358679 0.000000),

Normal form coefficient for LPPD: [a/e,be]= -7.011869e-20, -8.381067e-15,

label CP, x= (0.026656 0.413017 0.000000 0.000000),

Normal form coefficient for CP s= -5.617315e-19.

Figure 6. Period doubling curve of the second iterate.
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6. Conclusion

We employed bifurcation theory and numerical continuation methods to study resonance-

induced codimension-two bifurcations, specifically for 1:2, 1:3, and 1:4. We studied resonance

events in depth to uncover and describe crucial dynamical system changes. A variety of numerical

models supported our analytical results. These simulations confirmed our predictions and taught

us how the system’s structure moves. Mathematical theory and computer science demonstrate

how nonlinear dynamical system approaches can handle multidisciplinary challenges. This com-

bination of research and simulation improves our understanding of bifurcation and affords us

new real-world applications. We found that resonance-induced bifurcations can alter the stability

and longevity of economic models, adding to economic dynamics research. These findings affect

market regulation, company competition, and economic instability. This study applies advanced

mathematical methods to real-world systems. It highlights how versatile our method is and how

vital cross-disciplinary research is when examining complex, changing processes.
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