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Abstract. This paper analytically examines the coupled competition duopoly game model. This study examines the
codimension-two bifurcations of different types of the model through bifurcation theory and numerical continuation
methods. The model undergoes codimension-two bifurcation, heteroclinic bifurcation near the 1:2 point, a homoclinic
structure near the 1:3 resonance point, and an invariant cycle bifurcated by a period 4 orbit near the 1:4 resonance point.

Subsequently, numerical simulations are performed to validate the theoretical study.

1. INTRODUCTION

In recent years, there has been an increase in interest in discrete-time dynamical systems. One
of the primary reasons for this scenario is that they may exhibit more complicated and diverse
dynamic behaviors than their counterparts who operate in continuous time, such as [1-5]. Using
bifurcation theory and center manifold theory, it has been demonstrated that various discrete-time
species, discrete economic models and epidemic models can exhibit a variety of codimension one
bifurcations. This applies to multiple different models. Fold, flip, transcritical, and Neimark-Sacker
bifurcations are a few examples [6-10]. Recent studies [11-14] have shown that some discrete-time
models can exhibit codimension-two bifurcations. We’ll focus on resonance bifurcations at 1:2,
1:3, and 1:4. To be more clear, this is the primary purpose of this study for coupled competition
duopoly game model [15]. Recent research [16-19] have demonstrated that some discrete-time

models can display codimension-two bifurcations. We will focus on codimension-two bifurcations

Received: Nov. 12, 2025.
2020 Mathematics Subject Classification. 37G35.

Key words and phrases. competition duopoly game; codimension-two bifurcation; chaos.

https://doi.org/10.28924/2291-8639-24-2026-12 © 2026 the author(s).
ISSN: 2291-8639


https://doi.org/10.28924/2291-8639-24-2026-12

2 Int. . Anal. Appl. (2026), 24:12

of 1:2,1:3, and 1:4 resonances. That is the primary objective of this research. The proposed coupled

competition maps have been numerically studied in [15].

{ Xp+1 = Xn + 1%, (A1 — 2%, — Byn), (L.1)

Yn+1 = Yn + a2yn (A2 = 2y, + Bxy),

The stability and the codimension bifurcations of model (1.1) have been investigated, as concluded
in [20]. This model has been shown to exhibit chaotic behavior and undergo bifurcations of the flip,
pitchfork, and Neimark-Sacker types through numerical and analytical experiments. Numerous
instances have demonstrated this. The present study aims to examine a specific competition model
(1.1) for the existence of codimension-two bifurcation sets and codimension-two bifurcations at
equilibrium points associated with 1:2, 1:3, and 1:4 strong resonances. The investigation will
specifically assess the feasibility of these occurrences. The findings of our theoretical analyses are
verified by numerical simulations.

The structure of the paper is as follows: Section 2 identifies the presence of codimension-two
bifurcation sets at the equilibrium points of a discrete competition model (1.1), whereas Section
3 examines the codimension-two bifurcation of the same competition model (1.1). To validate
theoretical findings, simulations are provided in Section 4, while the conclusion is presented in

Section 5.

2. CODIMENSION-TWO BIFURCATION ANALYSIS

This section provides an extensive investigation to show that the map defined in equation (1.1)
exhibits a codimension-two bifurcation. This resultis derived from the methodical implementation
of normal form theory and bifurcation theory, as elucidated in references [21-24]. We can find
the important combinations of parameters that cause qualitative changes in the dynamics by
transforming the original map into its simplified normal form. The research shows that there is a
codimension-two bifurcation point, where two different bifurcation scenarios come simultaneously
or cooperate at the same time. This makes the local dynamical behavior around this critical point
more interesting. We select a1 and a; as bifurcation parameters to conduct a bifurcation analysis at
E*(x",y"). We define three bifurcation sets F1; = {(a1,a2,A1,A2,B) : ajaoH = 6—-j,G = j—6,j =

2,3,4}, corresponding to the occurrences of 1:2,1: 3 and 1 : 4 resonances, respectively.

2.1. 1:2 Resonance. Considering the parameters (&1, &2, A1, A2, B) arbitrarily from Fq,. We exam-

ine map (1.1) characterized by the parameters (@1, &2, A1, A2, B) as follows:

{ x — x + ax(A; - 2x — By), @.1)

y — y+adoy(A» -2y + Bx),

The map (2.1) possesses a unique interior fixed point denoted as E*(x*, y*), with corresponding

eigenvalues A1 = A, = —1. Let &; and &; be bifurcation parameters. We examine a perturbation
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of map (2.1) as follows:

x = x+ (a1 +aj)x(A; — 2x — By), 2.2)
y = y+ (A2 +a;)y(A2 -2y + Bx), '
the perturbation parameters |a}], |a}| < 1 are small.
Letu =x-x" v =y-y", &1 = & +a] and az = &, + &;. Then, map (2.2) becomes
u — (1-2a1x")u — a1Bx*v — 2aqu® — ay Buv, 23)
v — aByu + (1 - 200y")v + apBuv — 2a,0%. '
Let
T— ale* —22121231{;*
2-2mx" 0 ’
and utilize the transform
u X
4 y
Then, map (2.3) is changed into
( JE ) . [ —1+a(a,a2) 1+4+b(ag, ) )[ Df ] N ( 3(3:6,]?,011,012) ) 2.4)
7 c(ag, @) -1+4+d(a,x2) 7 h(%,9,01,a2)
where
S(& 9 a1, a0) = Z Sy,
2<j+k<3
(2,9, a1, 2) Z h]kx]y ,
2<j+k<3
and
4—daix* —dary* + apan(B? +4)xy
ala, az) = 2 2a1x° /
a1 B2xtyt — (2 = 2aqx*)?
b 4 - 7
(a1, a2) 220 )

clay, ) = -4+ 4 x" +4ary” — alaz(Bz +4)xy",
(2= 2a1x")? — a1 B?x"y*

d(ay, o) =
(a,02) 2-2a1x*
. ) a1apB2x*

— B2 4 X _4 , — —’
$20 = a1az(B° +4)x" —4as, $11 P —2or
fiog = 2(1- alx*)(4a2 —2a1B - ajay(B* + 4)x*),

a?Bx*

1
1—axt’

fln = —0(18(2 + (20(1 + azB)x*), floz = -

$30 = §o0 = 821 = 812 = 803 = hao = hoy = o = fipz = 0.
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Propose the linear coordinate transformation that is not singular.

)
7 —a(a,a) 1) 7))
the map (2.3) becomes

. -1 1 X g(fz y/allaz)
[ v J { O1(a1, @) —14 02(ay, a2) )( by )+[ h(z, 7,01, ) ] 9

01 (0(1, az) = -4 +4ax" + 46K2y’e - 0(10(2(B2 + 4)X*y*,

=1

where

92(0(1,0é2) =3- 2a1x* - 20(2]/*,

5 a1aBixt a1aB2xt
820 = _1——01136*, 811 = m, 802=0
. a1Bx*(1 —azy*)(—4a1 —2a5B + ajap (B? +4)y*)

20 = " ,

1—-a1x
B a1Bx*(8a1 + 20,B - 2a3By" — aqap(B* + 8)]/*) . a3 Bx*
hi = " » hop = = oy
2 —-2a1x 1-ax

830 = 821 = 812 = 803 = hia0 = hyy = h1p = bz = 0.

Finally, we present the subsequent transformation:

Y=<+ Z Qjlar, a2)E",

2<j+k<3

y=n+ Z Vo, a2) &,

2<j+k<3

(2.6)

The inverse transformation of the variable from transformation (2.6) is given by the expression:

E=x- Y pplan,a)P = Y dplan,a) @ + O (1 +19)*),
jHk=2 j+k=3
‘ 4 (2.7)
n=7- ), vila,a)F - ) ﬁjk(alraz)f]9k+0((lfl+|?|)4)/
jAk=2 j+k=3
By employing transformation (2.6) and its inverse transformation (2.7) within map (2.5), we obtain
-1 1 (e, 1, a1,
[ [ el I
n O1(a1,02) -1+ 62(a1,a2) J\ 7 h(&n, a1, a2)
where
g(&na,a) = Z ij(al,az)éjnk+o((|5| + |T]|)4),
2<j+k<3

h(&n,a1,00) = Z oj(ar, a2)&m* + O((lél + |77|)4),

2<j+k<3
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y20(a1,a2) = G20 + P20 — 2920 — 207 + 01101,

yi(a, a) = g1+ P11 = 2002(02 —1)01 + (02 — 61 — 2)p11 + 220,
yoa(a1,a2) = Yo + (1= 02)p11 + (03 — 202 + 2) o2 — @0,

vao(a1, a2) = 1120 + 201 (1 = 02)Poatpa0 — (1 + 01 — 02)@11¢20 + 2920920

+ P30 — 202002020 — 20171209002 + 201011920 + (20 — §2061) P11
— 203 + 4820920 + 030 + 61205 — Q30 — 62101 — 60303,
yar(a1,a2) = o1 + 293, — 21 + 280220 + §111 — (1 + 61 — 02)p11¢1
+2(1 = 02)p11920 — 20300211 + 2((1 = 02)h20 — 617111 002)
= (720 = Fuu1 + §1101 + (02— 3)320) + (3311 — 2520) P20 + 202011
+ 291@%1 —2p20P20 + (02 — 01 = 3)p11920 + 2(1 = 62) 1900211
—2(1 = 02)?@oatpa0 + 2(1 = 02) 0190220 + 3603(1 — 02) 62
+ 021(1 4261 — 02) — 012(2 — 260, + 01)01 — 3030,
yi2(a1, @2) = P12 — Q12 + 202002 — 203903, + 2(Zo2 — §11) P20 + 2811011
—2(po2 — @11)P20 + 2802911 + (62 — 01 = 1) p119ho2 — 2(1 = 62)*poathn
+2(1-62)p11¢11 — 2(f10291 -80-(1- Qz)fln)(Poz + (62— 61— 1)g7,
+2612(1 = 02)61 — (§1162 + 0261 — hop + h11) 11 + §119p02 — 2920911
—2(02 = 2)01911902 + 201 (1 = 02)Poathoz — 3603 (1 — 02)201 — 2651 (1 — 02)
+ 612(1 = 02)% = 62161 + 330,
yos(a1,a2) = 280202 — 2(1 = 62)* ooz + 2(1 = 02) 110z — 292002 + Y03
+2(1 - 02)029%, + (11 +2(1 = 0202 )02 — (1 + 61 = 02)P11902
+ 2002020 — 630 — 612(1 = 02)2 + 621 (1 = 02) + 603(1 — 02)% — Po3
- (7302 -(1- 92)§02)(P11 —2802¢20,
( ) = hao — Y0203 + (P11 + @20)601 — (2= 02) 2o,
( ) = It + 2902(1 = 62)61 — (2 =262 + 61) P11 + 220 + P1161,
o2 (a1, an) = hop — (2 -(3- 92)92)%2 + (1= 62)¢11 — P20 + O1902,
( ) =201(1 = 02)P20iP02 — 29%@20%2 —201h20P02 — (1 + 01 — 02) 1100
+ 201920011 — (§2001 — fr20) P11 + 235 + (11 + 2§20) P20 — 29020820
— (1= 02)y30 + 220920 + 1030 — o363 — 2161 + B30 + P1263,
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021 (a1, a2) = —P21(1 = 62) + 2ha0911 + 92161 + 20201020 + 2(1 — 02) 610211
-2(1- 92)2¢02¢20 +2(1 = 62) 019020002 — (1 + 61 — O2) 2011 + hy1¢20
— (1461 = 62)¢7, +2(2 = 62)Y11pa0 + 26191111 — 2011920 — 245
- 29%@11%2 + ((1 — 02)&20 — oo + 2h17 — g~1191)¢11 + 2(ho2 — §20 + §11) W20
— B1263 = 2B12(1 = 62)01 + 2((1 = 02) 0 — Or/iny )b + 3Pos (1 — 62) 67
+ B21(1 = 02) + 262101 — 3B30,

o121, a2) = hgn — (1+ 61 — 62) 11911 + ((1 - 67)(3-20,) — 61)41024;11 + 201110
+ 201 (1 = 02)p11¢02 + 01912 — (1 = 02) P12 + 220002 — 2002120 — 211820
+2(8o2 — §11)¥20 + 2(1 = 62)¢3, + 261002111 + 261 (1 = 02) 5, — 267 P02Y02
~ (80201 = 3hoa + in1 = §11.(1 = 02) )11 + (2(1 = 02) Iy = 2261 + T oz
+ 20at20 — 3Bo03 (1 — 02)?61 — 2B21(1 — 62) + B12(1 = 02)% — B2 61 + 3B30
+2B12(1-62)64,

o0s(a1, a2) = =2(1 = 02)*P%, +2(1 = 02) o211 — 20atpa0 + 201 (1 = 02)poatpon
+2(2-02)hoayo2 = (1= 02) 903 = (1 + 01 = 02)poaypnr — 2802920 + 2902420
- (floz —8o(1- 62))’1”11 + Bo1(1 = 62) = P12(1 = 62)* + 1oz + O1903
+ Bos(1 - 62)° - Bao.

We remove quadratic terms by taking

y20(ar, a2) = yu(ar, @2) = yoa(ar, az) = oz0(a1, @2) = on1(as, a2)
=om(a,a2) =0
and can obtain ¢ jk(al, ap) and ¢ jk(ozl, @) for j+k = 2. Further, in order to annihilate all cubic but
those resonant terms, the vanishing conditions
yao(a1,az) = ya (a1, @2) = ya(ar, a2) = yos(ar, a2) = op(a1, a2)
=oo(a,a2) =0
yield the system for ¢ (a1, az) and lp]-k(al, @), from which we can obtain Pjk (a1, az) and Vik (a1, az)

for j + k = 3. After these transformations, map (2.8) can finally be transformed into the following

normal form for 1 : 2 resonance at the critical condition

( & )_) —&E+1
n Or(ar, €2)& + [=1+ Oz(a1, @2)]n + Cla, @2) & + D(e, 22)E2n + O ((1€] + In)*)

where C(a1,ap) = o30(a1,22) and D(a1,a2) = 021(@1,@2). When (ay,a2) = (@1, az), we have
61(@1,072) = 92(5(1,542) = 0, and

~ ~ 1~ 1~ -~
C(ay, dn) = h3o(@1, d2) + Joohoo (@1, d2) + zhgo(@lzdz) + Ehzohn(ﬁq,@z),
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5
4

D(d1, &) = hy (a1, d2) + 3320011 (81, d2) + ~hoo (a1, d2)hi1 (&1, &)

+ hao (a1, @)oo (81, G2) + 335, (@1, &) + 5820 (a1, &2 )hoo (1, @)

5 o \r w2 A 1oy 0
+ Egu(al,az)hzo(m,az) + h5y(an, do) + Ehfl(m,az).
We get the following results by using the 1 : 2 resonance theorems from [25,26].

Theorem 2.1. The following bifurcation behaviors are admitted by map (1.1) if C(@1,d2) # 0 and
D(ay, a2) +3C(a, a2) # 0
(i) The critical point is elliptic if C(a1,az) > 0, and saddle if C(@1, @2) < 0. The bifurcation scenario
close to the 1 : 2 points is determined by D(@1,&,) + 3C(ay, @,) # 0.
(ii) A pitchfork bifurcation curve is defined as PF = {(61,02) : 61 = 0}, and non-trivial fixed points
exist for 01 < 0.
(iii) A non-degenerate Neimark-Sacker bifurcation curve exists H = {(61, 02) : 01 = —0, + O((|61| +

621)%), 61 <0}
(iv) A heteroclinic bifurcation curve exists HL = {(01,0;) : 61 = —g@z + O((I61| + |92|)2), 01 < 0}.

3. 1:3 RESONANCE

This section aims to elucidate the dynamic behavior of map (1.1) at the 1 : 3 resonance point. We
can choose the parameters (@1, &2, A1, Az, B) from Fi3 and analyze the mapping (1.1) using these

parameters:
{ x — x + &1x(A; — 2x — By), 3.1)
vy — y+ay(Ay -2y + Bx),
Now let’s examine this map in this way:
{ x — x + a;x(A; —2x — By), (3.2)
Yy — y+ay(A, -2y + Bx),

where |a1 — &1, oz — d2| < 1. Bifurcation theory [22,24,25] will be used to show the normal form at
the 1 : 3 resonance point next. Consider 1 = x —x*, 9 = y — y*, if we move the fixed point E*(x*, y*)

to the starting point:

1 — (1 -2a1x")0l — a1 Bx*0 — 201112 — a1 B9,
{ (1-2a12)0 - 12— ay 63

0 — apByfi + (1= 2a0y*)0 + apBld — 2a06°.
The matrix of the Jacobian at E* for the map (3.3) is

1-2a9x* —a1Bx”

Ao, ap) = [

By 1-2my" )

The eigenvalues that correspond to the map (3.3) are A, = (+ V3i—1)/2. The adjoint eigenvector

p(ai, az) € C and the corresponding eigenvector g(ay, a2) € C may be easily derived in the same
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way:
3i—

Al aa)q(an,iz) = 2

. V3i+1

A&, 2)p(tr,d2) = - 5 p(

the standard scalar product in C, {p, q) = p1q1 + p292, where (., .) denotes this. Take

q(as, &),

&1, &2), (p(a1,a2),q9(01,82)) =1,

(A A) @lex*
qlay, az) = ,
3— ‘/—l 20(1x

3- VBi(3-4dyy")
641 Bx*

p(ay, az) = i ,
T3

Any vector U = (4,0)" € R? can be expressed in the following manner:

u= Zq(OAll, 5[2) +Z[7(561,5(2),Z e C.

Consequently, (3.3) can be change into

zZ+ Z T guz'z, (3.4)

2<k+1<3

where
@20 = %{4&2 (3+iV3—4asy’) + aB* (1 - V3i) (3-2a2y")
~ 2B (3+1V3 - (2+2i V3)y') }

B\FZ{ 2B(=3 + 2ay") — (3—\/51‘—4@2;/*)},

811 = >

1 . . A . A%

—4:B(V3i + (1~ V3i) azy') }

830 = 821 = 812 = §o3 = 0.
We now present the subsequent transformation to exclude certain second-order terms
(3.5)

1 1
z=w+ EhZOwZ + hhwo + EhOZ(DZ

The coefficients hy;, where k 4- I = 2, will be provided subsequently. Consequently, we can acquire
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w—Z——hzoz —h11ZZ——h022 + = (h20+h11h02)
§hh h2—22_ —hfl W2 + hooh 3.6
+22011+|11|+2|h02| 2°Z + | yhithao + by + hohn (3.6)
1 1 _
+ Ehozhzo)zzz +3 (hozhzo + hnhoz) 240 (|Z|4) ,

By applying transformation (3.5) and its inverse transformation (3.6), model (3.4) is reformulated

as

V3i-1 1 _
> wt Y g Queta’ +0(jwl*), (3.7)

2 !
2<k—+1<3

where
Q20 = 20 + V3Io0i, Qu1 = g1 — %(3 = V3i)h11, Qo2 = 02
Q30 = ; (3 - \/§i) h20820 + 3g11h02 — % ( V3i - 1) h11802
+ % (3+ V3i) i3y + ga0,
Qo1 = % (5 + \/51) h11820 + (2 - ‘/51) hoog11 + 2h11811
+ (1 - ‘/51) h11811 + goohoo + % (1 + \/gl) ho2802
+ 91— % (3-5V3i) hiihao - (3= V3i) hnihny,
Q12 = g20h2 + % (1 - \/31') h11820 + (flzo + (3 + ‘/51') hu) g1
(1 + \/_l) hoa811 + g12 + ( (1 - ‘/_l) hao + Zhll)goz
- % (34 V3i) huahao — (3 + V3i) 2, — 2 V3ihoohns,
Q30 = (1 + \/_l) 2§20 + 3811702 4 3h20802

+ = 3 (1 + ‘/—1) h11802 + 3 ( ‘/_1) hoahao + go3-

By setting

V3i 34 V3i
hao = 8, hi1 = ¢ S ho2 = 0. (3.8)

Subsequently, we possess Q0 = Q11 = 0,Qo2 = o2 and Q3p, Q21, Q12, Qoz can be simplified as

follows. Consequently, the transformation (3.5) is established and

3- \/_

Q3 = g11300 + V3ig2, + g30
3+2«/‘ 3 3 - 3i

Qa = — 5 8118 + 3 lg11* + g21
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3+ V3i 3— V3i_ 3+ V3i V3i
Qu = ¢ 82082+ ———&ngn+—3 o - 5 81820 + 812
Qi = V3igii1gm — V3iga0gm + 03
To further eliminate some cubic terms, we take
1 1 - 1 - 1 -
w=C+ ghaoc?’ + §h21C2C + EhuCCz + 6h03C3 (3.9)
Utilizing (3.9) and its inverse transformation, the map (3.6) is transformed into the subsequent
form:
\f 02
L + 8224 Y Gul'T +O(), (3.10)
k+1=3
where
3 3-V3i, - .
Q30 = Q30 — h30, Qo1 = Qa1, Q2 = Quz2 + V3ila,
3 3 - V3i
Qoz = Qo3 — > hos.
By setting
3+ \/_ 3i V3i 3+ Va3i
h3p = Qz0, ho1 =0, hip = —Q12, hos = Qos,

Consequently, we have Q3o = Oy = Qpz = 0. Therefore, the transformation (3.9) is established.
By employing transformation (3.9), map (3.10) ultimately assumes the subsequent normal form of

the bifurcation exhibiting 1 : 3 resonance:

3i—1 o - a
(e ‘f; C+ B(an, a2) 2 + C(a, &) CICP + O(12), (3.11)
where
B(ay,a0) gzﬁ,
o (3 +2 \/51) 220811 (3 - \/51) g%l 901
C(al,az = 7 + 5 + 7
Let

X 3 DA A
Bl(al,az) = _E (1 + \/gl)B(Otl,Oéz),

A 3 A A
Ci(a1,82) = -3B(4, d2)F - 5 (14 V3i) C(an, a2).

Theorem 9.11 in Kuznetsov [22] and Theorem 2 in Li and He [25] allow us to get the following
theorem:

Theorem 3.1. Let (41,d;) € Fi3. Assume B1(a1,a2) # 0 and Re (C1(@1,a2)) # 0, then (1.1) has the
following dynamical behaviors at the fixed point E*

(i) The invariant closed curve near the 1 : 3 resonance point is unstable if Re (C1(d1,d2)) > 0;

conversely, if Re (C1(&1,a2)) < 0, the invariant closed curve is stable;
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(ii) The map’s trivial fixed point Eg has a non-degenerate Neimark-Sacker bifurcation (3.11).;
(iii) The saddle fixed Ex(k = 1,2,3) of (3.11) corresponds to a saddle cycle of period three;
(iv) There is a homoclinic structure formed by the stable and unstable invariant manifolds of the period

three cycle intersecting transversally in an exponentially narrow parameter region.

In Sect. 6, we will give some values of parameters such that 1 : 3 resonance occurs as &; and &,
varying with By (@1, &2) # 0 and R (C1(a1, &2)) # 0.

4. 1:4 ResoNaNCE oF Map (1.1) aT E*

Subsequently, we examine the 1 : 4 resonance of map (1.1) at E*, with parameters (a1, az) fluctu-
ating within a minor vicinity of F14. We examine system (1.1) utilizing parameters (@1, &2, A1, A2, B)

from Fy4 as follows:

x = x+ a;x(A; —2x — By), 1)

y— y+aday(A, -2y + Bx), '
We now examine this map in the following manner:

x — x + a1x(A; — 2x — By), (42)

y— y+ ay(A, -2y + Bx),

where |1 — a1, laz — @] < 1. Letii = x —x*, 5 = y — y*, Transform the fixed point E*(x*, y*) to the

origin, we obtain

: (4.3)

i1 — (1-2a1x")il — a1Bx*0 — 2o 11> — o B,
0 — aBy*ii + (1 - 2a2y")0 + apBiit — 2,0

A map (4.3) at E* has a Jacobian matrix that is

A(Otl,az) = [

1- 2a1x* —(XlBX*
arBy* 1-2ay" ’

The corresponding eigenvalues of map (4.3) are A1, = +i. We choose

q(o‘zl,c"m) _ [ a1 Bx* )

1-2ax" =i

1-i(1-2a,y")
p(ar, az) = ( 2B J

2

We can get any vector U = (i1,5)T € R? is put as follows
u= zq(o‘q,o‘zz) —1—217(071,&2),2 e C.

In this way, (4.3) can be changed into the following shape:

. 1 _
zZ iz 4+ Z T gkIZkZl, (4.4)
2<k+I<3 T
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where
20 = (4+4i)az — 803y + mB*(1-1)(1 - azy’)
~2mB(1 - (1 +i)azy’),

g = iB{azB<—1 + ay’) + al((—l +1i)+ Zazy*)},
202 = (1+1) {asz(—l + ay’) + 4a2(i +(1- i)azy*)

+aB(1+i)(-1+(1+ z’)azy*)},

830 = 821 = §12 = o3 = 0.
We apply a transformation in order to eliminate certain quadratic terms
1 2 — 1 -2
Z=w-+ El’lzoa) + hjiwo + Ehoza) (4.5)

the following will give the coefficients hy; where k 4+ 1 = 2. Model (4.4) is transformed into by
utilizing transformation (4.5) and its inverse transformation.

w - i+ Z % Quat@ + 0 (jwl*), (4.6)
2<k+I1<3
where
Q20 = 820 + (1 +i)h20, Qu = g11 — (1 =i)h11, Qo2 = go2 + (1 +i)ho2,
Q30 = 3 (1 - ) haogao = 3(iZ02 + (1 + i)oa) M1 + 3(1 = )3y + 3g11Fioz + 830
Qo1 = (i802 + (1 +1)02) hoa + (1= 20)guhao + 2811711 + goolton + g1
+ (1 +3i)hao — 2iguy —2(1 = i)ny + (2+ i) gao) huy,
Qun = (2(1 +1)h1 + flzo) g1 + g20h02 + ((1 —i)hyo +2ig11 +2(1 - i)F’ll)hOZ'
—2(1+i)h3, - (ig’zo +(1+ i)flzo) hi1 + g12 — ih2802 + 2802M11,
Qa0 = go3 + 3g11hor +3 (i = V1 + igao + (1 + i)izg) hoz
3g02h20 + 3ih11802.
By setting
oo = %gzo(i— 1), hiy = %gll(i"*’ 1), hop = %SOZ(Z'JF 1), (4.7)

then we have Qx = Q11 = Qo2 = 0 and Q3o, Q21, Q12, Qo3 can be simplified. This leads to the
definition of the transformation (4.5). The following transformation is introduced to better simplify

the system:

1 1 = 1 = 1 -
w=C+ 6h3OC3 + §h21C2C + EhuCCZ + 6h03C3 (4.8)



Int. J. Anal. Appl. (2026), 24:12 13

Map (4.6) takes on the following shape after employing (4.8) and its inverse transformation:

Gt Y o Qa4 o(ia), (49)
k+I=3
where
Qs0 = Q30 + 2ih30, Qo1 = Qo1, Q12 = Quz + 2ih1,
Qos = Qos.
By setting

1 ) 1 .
hzo = §Q301, hy1 =0, hip = EQHZ’ hos =0,

then we have Q) = Q12 = 0. Hence, transformation (4.8) is defined. Using transformation (4.8),

map (4.9) finally becomes the following normal form of the bifurcation with 1 : 4 strong resonance

C il 4+ Qo (dr, @) P+ Qua(dr, @) + O (|C|4) , (4.10)
where

. 143 =i 5 140 5 1

Qo = 1 820811 + - lg11l e |go2l” + 5821

- i—1 141 1

Qo3 = 8028 + 1 811820 + 5 803-
Let

Ci(a, ap) = —4iQy1 (a1, @), D1(d, az) = —4iQo3(ay, @2).

C1(d1,02)

If D1(aq, @) # 0, we denote A(dy,az) = B By employing a comparable reasoning found

" |Di(ma2)
in Lemma 9.15 of [22], we can get the subsequent results.

Theorem 4.1. The set F14 contains (@1, &y). When both ReA(dn, az) # 0 and ImA(ay, az) # 0, a number
of complex bifurcation curves are admissible in map (1.1):

(i) A Neimark-Sacker bifurcation curve exists at the trivial fixed point Eg of map (4.10). Moreover,

when A = —i, a stable invariant circle exists; conversely, when A = i, the invariant circle vanishes.

(ii) A fold bifurcation curve is present at eight nontrivial fixed points Sy, Ex(k = 1,2,3,4) of the
map (4.10). Eight nontrivial fixed points appear or vanish via the fold bifurcation curve at the
corresponding parameter values.

(iii) There are Neimark-Sacker bifurcations at Sy and Ex (k=1, 2, 3, 4). Furthermore, it is worth noting
that four “small” invariant circles bifurcate from Sy and E (k =1, 2, 3, 4).

(iv) A "small” homoclinic loop bifurcation curve is shown. Neimark-Sacker bifurcation curves generate
the "small” invariant circles from Sy, Ex(k = 1,2,3,4), and they vanish at homoclinic loop
bifurcation curves.

(v) There is a "square” heteroclinic cycle located around E,.
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(vi) All fixed points Sy, Ex(k = 1,2,3,4) are surrounded by a "clover” heteroclinic cycle. It generates
either a stable or an unstable "big” invariant circle, depending on the sign of the saddle quantity
o = trA(Sy).

(vii) A fold bifurcation curve exists at two significant invariant circles. The outer invariant circle is

stable, while two invariant circles converge and disappear.

5. NuMERricaL REsuLTs

5.1. Numerical continuation. The purpose of this section is to explore the local bifurcation struc-
ture around the fixed pointsE; and E*. To do this, we carry out a series of numerical continuation
operations by utilizing the MATLAB-based toolbox MATCONT [22,25]. To verify the analytical
results, we used MatCont for numerical bifurcation analysis. This section shows a variety of
behaviors, starting with a 1:2 resonance bifurcation. A pair of complex conjugate eigenvalues tra-
verses the unit circle with a modulus ratio of 1:2. Higher-order resonances like 1:3 and 1:4 interact
with period-doubling bifurcations and quasi-periodic oscillations. We also detect phase-locking,
invariant tori, and chaotic dynamics, as described in the following parts.
Example 1: Fix Ay = 5.9, A =5.8,B = 0.5, ap = 0.25, and vary a;. The report of MATCONTM

is as follows.

label PD, x= (2.950000 0.000000 0.338983),

Normal form coefficient for PD = 4.296380e-01 ,

label NS, x= (2.950000 0.000000 0.104240),

Neutral Saddle

label BP, x= (2.950000 0.000000 -0.000000).

By Theorem 1, E; has a flip bifurcation detected ad PD in Fig.(1)(a) and there is also a Neimark-
sacker bifurcation, which has not been shown theoretically, detected as NS.

Example 2: Fix A; = 5.9, A = 5.8,B = 0.2, ap = 0.42, and vary a;. The report of MATCONTM
is as follows.
label NS, x= (2.633663 3.163366 0.299604),
Neutral Saddle
label PD, x= (2.633663 3.163366 0.364944),
Normal form coefficient for PD = 5.583321e-01.

According to Theorems 2 and 3 the fixed point E* has flip and Neimark-sacker bifurcations,

respectively. It is depicted in Fig. (1).
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Figure 1. The continuation of E; and E* in (aj,x)-plane. The branch point (BP), Neimark-Sacker
point (NS), and period doubling point (PD) are found in Theorems 1 (a) and 2 and 3 (b).

Example 3: Fix Ay = 59, A, = 58,B = 05, and vary a; and a,. We have E°
(2.0941176,3.4235294) is a 1 : 2 resonance at (aj,a2)1 = (0.3617,0.3629) and (aj,az)2

(0.5933,0.2213) according to Theorem 4, where |A1] = 1 and |1, = 1.0786946 ~ 1. This is de-

picted in Fig. (2). The MATCONTM report is as follows:
label R2, x= (2.094118 3.423529 0.593346 0.24252),
Normal form coefficient for R2: [c,d]= -5.576197e-01, -3.205910e+00,
label R2, x= (2.094118 3.423529 0.361711 0.362940),
Normal form coefficient for R2: [c,d]= 2.626999e-01, -3.872191e+00.

1ir 1
09r 0.9
o8ar 0.8
0.7 1 0.7
0.6 - 0.6
051 0.5
LN
- 04t __N
: 0.4 o
0.3 r 0.3
02 0.2
0ar 0.1
o 0 ' L ' ' ' L L L L
o 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 01 02 0.3 0.4 0.5 0.6 0.7 0.8 0.0

ay a,

(a) (b)

Figure 2. Continuation of E* in (a1, @ )-plane where the 1 : 2 resonance point is labeled as Rj.

Further more, continuation of the bifurcation at E* is reported as follows:
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label R2, x= (2.094118 3.423529 0.593346 0.24252),

Normal form coefficient for R2: [c,d]= -5.576197e-01, -3.205910e+00,
label GPD, x= (2.094118 3.423529 0.636330 0.233594),

Normal form coefficient for GPD: [a/e,be]= -5.176538e-01, -1.135171e-09.

This is shown in Fig.(3)(a).

Example 4: Fix Ay = 1.9, A, = 1.8, B = 1.8, and vary a; and a,. We have E* = (0.0773,0.9696)
is a1 : 3 resonance at (aj,a2)1 = (14.6724,0.3766) according to Theorem 5 where [A1,] = 1
01, = £120.3334. This is depicted in Fig. (3)(b). The MATCONTM report is as follows

label = R1, x= (0.064618 0.955773 13.204553 0.398235 1.000000),
Normal form coefficient for R1: s=1,

label = R4, x= (0.037827 0.995080 13.749222 0.404998 -0.000000),
Normal form coefficient for R4: A= 3.153868e-02-3.273009e-011,
label= R3, x= (0.034550 0.996337 14.033526 0.405489 -0.500000),
Normal form coefficient for R3: Re(cl)= 1.081499e-02,

label =R2, x= (0.032050 0.997137 14.302355 0.405404 -1.000000),
Normal form coefficient for R2: [c,d]= -9.971172e+04, 1.7836789%e+3,
label =R2, x= (0.077348 0.969613 21.577330 0.341410),
Normal form coefficient for R2: [c,d]= -1.911158e+03, -6.495115e+01.
label= LPPD, x= (0.077348 0.969613 12.928571 -0.000000),
Normal form coefficient for LPPD: [a/e,be]l= 5.439640e-10, 1.836239e-06,
First Lyapunov coefficient for second iterate = 1.836239e-06,

label= R4, x= (0.077348 0.969613 17.589093 0.357487 0.000000),
Normal form coefficient for R4: A= -4.587149e+06+3.683014e+08i,
label = CP, x=(0.077962 0.970653 -0.000000 0.0000000),

Normal form coefficient for CP, s=-7.713883e-15.
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Figure 3. Continuation of E* in (a1, ap)-plane where (a)generalized period doubling bifurcation is
labeled GPD and limit point- period doubling is labeled LPPD, and (b)1:2, 1:3, and 1:4 resonance are
labeled as R2,R3, and R4, respectively.

A magnification of Fig.(3)(b) is illustrated in Fig.(4) below
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Figure 4. A magnification of Fig.(3)(b).

Example 5: Fix Ay = 1.9, A; = 1.8,B = 2.03, and vary a; and a», the continuation of the PD
curve is presented in Fig.(5). The MATCONTM report is as follows
label LPPD, x= (0.004352 0.901311 28.370567 1.250695),
Normal form coefficient for LPPD: [a/e,be]= -5.630804e-01, -1.884415e+07,
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label LPPD, x= (0.005792 0.902582 22.468995 1.724068),

Normal form coefficient for LPPD: [a/e,be]= -5.148009e-01, -1.620579e+08,
label R1, x= (0.006249 0.902897 20.509344 1.747401),

Normal form coefficient for R1=-1,

label LPPD, x= (0.007987 0.934518 33.838462 0.716497),

Normal form coefficient for LPPD: [a/e,be]l= 5.777744e-01, 1.437467e+05,

first Lyapunov coefficient for second iterate = 1.437467e+05.

.
*#R1 ppD
15+
o ¥ PPD
l
#LPPD
0.5 : ' : ' : ' ' :
15 20 25 30 35 40 45 50 55

LK

Figure 5. Period doubling curve of the second iterate.

Example 6: Fix A; = 0.9, A, = 0.8,B = 2.05, and vary a; and a», the continuation of E* =

(0.0195,0.4200) is presented in Fig.(6). The MATCONTM report is as follows

label LPPD, x= (0.034019 0.415123 47.594382 0.446535),

Normal form coefficient for LPPD: [a/e,bel= 4.229877e-01, 2.412199e+06,
first Lyapunov coefficient for the second iterate = 2.412199e+06,
label CP, x= (0.033655 0.414220 58.561701 -0.000000),

Normal form coefficient for CP s=4.129853e-03,
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label R1, x= (0.020582 0.420100 29.645462 1.004500),

Normal form coefficient for R1=-1,

label R1, x= (0.030749 0.417998 29.968556 1.120381),

Normal form coefficient for R1=1,

label R1, x= (0.039532 0.405203 98.168742 1.239945),

Normal form coefficient for R1=-1,

label =R2, x= (0.019506 0.419994 87.960632 0.676719 -1.000000),

Normal form coefficient for R2: [c,d]= -2.919289e+05, 3.442778e+03,

label LPPD, x= (0.025208 0.414432 39.670716 0.000000),

Normal form coefficient for LPPD: [a/e,be]= -4.219238e-19, -2.293202e-14,
label LPPD, x= (0.019471 0.420028 51.358679 0.000000),

Normal form coefficient for LPPD: [a/e,be]= -7.011869e-20, -8.381067e-15,
label CP, x= (0.026656 0.413017 0.000000 0.000000),

Normal form coefficient for CP s= -5.617315e-19.

3.5

2.5l

20 30 40 50 &0 0 80 =1

Figure 6. Period doubling curve of the second iterate.
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6. CONCLUSION

We employed bifurcation theory and numerical continuation methods to study resonance-
induced codimension-two bifurcations, specifically for 1:2, 1:3, and 1:4. We studied resonance
events in depth to uncover and describe crucial dynamical system changes. A variety of numerical
models supported our analytical results. These simulations confirmed our predictions and taught
us how the system’s structure moves. Mathematical theory and computer science demonstrate
how nonlinear dynamical system approaches can handle multidisciplinary challenges. This com-
bination of research and simulation improves our understanding of bifurcation and affords us
new real-world applications. We found that resonance-induced bifurcations can alter the stability
and longevity of economic models, adding to economic dynamics research. These findings affect
market regulation, company competition, and economic instability. This study applies advanced
mathematical methods to real-world systems. It highlights how versatile our method is and how

vital cross-disciplinary research is when examining complex, changing processes.
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