Analysis of Best Proximity Points in F-Metric Spaces with Applications

Main Article Content

Wejdan Yahya Marzuq Alhelali, Afrah Ahmad Noman Abdou, Jamshaid Ahmad

Abstract

The primary objective of this study is to introduce the concept of α-interpolative proximal contractions within the framework of F-metric spaces and to derive corresponding best proximity point results for these newly defined contractions. As a direct implication of the main theorems, best proximity results for single-valued mappings are also established. Moreover, we extend our investigation to partially ordered F-metric spaces, examining how graph structures influence best proximity point theory in this context. In addition, several fixed point theorems are obtained as immediate consequences of the proposed results. To illustrate the validity of our theoretical developments, non-trivial examples are provided.

Article Details

References

  1. M.M. Fréchet, Sur Quelques Points du Calcul Fonctionnel, Rend. Circ. Mat. Palermo 22 (1906), 1–72. https://doi.org/10.1007/bf03018603.
  2. I.A. Bakhtin, The Contraction Mapping Principle in Almost Metric Spaces, Funct. Anal., Gos. Ped. Inst. Unianowsk 30 (1989), 26–37.
  3. S. Czerwik, Contraction Mappings in $b$-Metric Spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5–11. https://eudml.org/doc/23748.
  4. M. Jleli, B. Samet, On a New Generalization of Metric Spaces, J. Fixed Point Theory Appl. 20 (2018), 128. https://doi.org/10.1007/s11784-018-0606-6.
  5. S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application aux Équations Intégrales, Fundam. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
  6. R. Kannan, Some Results on Fixed Points, Bull. Calcutta Math. Soc. 60 (1968), 71–76. https://cir.nii.ac.jp/crid/1572543024587220992.
  7. J. Jachymski, The Contraction Principle for Mappings on a Metric Space with a Graph, Proc. Am. Math. Soc. 136 (2007), 1359–1373. https://doi.org/10.1090/s0002-9939-07-09110-1.
  8. F. Bojor, Fixed Points of Kannan Mappings in Metric Spaces Endowed with a Graph, An. S¸t. Univ. Ovidius Constanta 20 (2012), 31–40. https://doi.org/10.2478/v10309-012-0003-x.
  9. Ö. Acar, H. Aydi, M. De la Sen, New Fixed Point Results via a Graph Structure, Mathematics 9 (2021), 1013. https://doi.org/10.3390/math9091013.
  10. B.S. Choudhury, Common Fixed Point Results in Metric Spaces Endowed With a Directed Graph, J. Nonlinear Convex Anal. 14 (2013), 1–12.
  11. B. Samet, C. Vetro, P. Vetro, Fixed Point Theorems for $alpha $-$psi$-Contractive Type Mappings, Nonlinear Anal.: Theory Methods Appl. 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014.
  12. E. Karapinar, Revisiting the Kannan Type Contractions via Interpolation, Adv. Theory Nonlinear Anal. Appl. 2 (2018), 85–87. https://doi.org/10.31197/atnaa.431135.
  13. K. Fan, Extensions of Two Fixed Point Theorems of F. E. Browder, Math. Z. 112 (1969), 234–240. https://doi.org/10.1007/bf01110225.
  14. S.S. Basha, Extensions of Banach's Contraction Principle, Numer. Funct. Anal. Optim. 31 2010), 569–576.
  15. D. Lateef, Best Proximity Points in F-Metric Spaces with Applications, Demonstr. Math. 56 (2023), 20220191. https://doi.org/10.1515/dema-2022-0191.
  16. A.H. Albargi, J. Ahmad, Integral Equations: New Solutions via Generalized Best Proximity Methods, Axioms 13 (2024), 467. https://doi.org/10.3390/axioms13070467.
  17. A. Asif, M. Nazam, M. Arshad, S.O. Kim, F-Metric, F-Contraction and Common Fixed-Point Theorems with Applications, Mathematics 7 (2019), 586. https://doi.org/10.3390/math7070586.
  18. A. Beraz, H. Garai, B. Damjanovic, A. Chanda, Some Interesting Results on F-Metric Spaces, Filomat 33 (2019), 3257–3268. https://doi.org/10.2298/fil1910257b.
  19. D. Lateef, J. Ahmad, Dass and Gupta's Fixed Point Theorem in F-Metric Spaces, J. Nonlinear Sci. Appl. 12 (2019), 405–411. https://doi.org/10.22436/jnsa.012.06.06.
  20. A. Hussain, H. Al-Sulami, N. Hussain, H. Farooq, Newly Fixed Disc Results Using Advanced Contractions on F-Metric Space, J. Appl. Anal. Comput. 10 (2020), 2313–2322. https://doi.org/10.11948/20190197.
  21. H. Isik, N. Hussain, A.R. Khan, Endpoint Results for Weakly Contractive Mappings in F-Metric Spaces With Application, Int. J. Nonlinear Anal. Appl. 11 (2020), 351–361.
  22. M. Gabeleh, H.A. Künzi, Equivalence of the Existence of Best Proximity Points and Best Proximity Pairs for Cyclic and Noncyclic Nonexpansive Mappings, Demonstr. Math. 53 (2020), 38–43. https://doi.org/10.1515/dema-2020-0005.
  23. A. Abkar, M. Gabeleh, The Existence of Best Proximity Points for Multivalued Non-Self-Mappings, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 107 (2012), 319–325. https://doi.org/10.1007/s13398-012-0074-6.