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Abstract. The primary objective of this study is to introduce the concept of a-interpolative proximal contractions within
the framework of #-metric spaces and to derive corresponding best proximity point results for these newly defined
contractions. As a direct implication of the main theorems, best proximity results for single-valued mappings are
also established. Moreover, we extend our investigation to partially ordered #-metric spaces, examining how graph
structures influence best proximity point theory in this context. In addition, several fixed point theorems are obtained as
immediate consequences of the proposed results. To illustrate the validity of our theoretical developments, non-trivial

examples are provided.

1. INTRODUCTION

The idea of a metric space (MS), first formulated by the French mathematician Fréchet [1],
served as a foundation for the study of fixed point (FP) theory. In 1989, I. A. Bakhtin expanded
this concept by introducing b-metric spaces (b-MSs), which relaxed some of the rigid constraints
of classical metric spaces. Subsequently, in 1993, Czerwik [3] provided a detailed investigation of
b-MSs, emphasizing their flexibility through the replacement of the standard triangle inequality
with the b-metric inequality. This extension allowed for a more general notion of distance and
enabled the study of a wider variety of mathematical structures. More recently, Jleli et al. [4]
proposed ¥ -metric spaces (¥ -MSs), which further generalize both classical and b-MSs, offering a
versatile framework that has significantly contributed to the advancement of FP theory and has
opened new directions in functional analysis and topology.

By formalizing the concept of distance between points, metric spaces provide a natural setting
for fixed point (FP) theorems to establish conditions under which certain mappings admit fixed

points. The foundational result in this area is the renowned Banach contraction principle (BCP) [5],
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introduced by Stefan Banach in 1922. Later, Kannan [6] relaxed the continuity assumption which
was necessary in BCP and established a FP theorem under a weaker contractive framework. This
study of obtaining FPs has undergone significant generalizations beyond classical metric spaces
(MSs) to accommodate more complex structures and relationships among elements. One such
direction was initiated by Jachymski [7], who in 2008 introduced the notion of graphic contractions
in MSs endowed with a directed graph. This approach arose from the observation that many
mappings arising in applied sciences, economics, and computer science naturally preserve certain
relational structures, which cannot be captured by the ordinary metric framework alone. By
embedding a graph structure on the underlying set, Jachymski [7] unified and extended several
existing FP theorems, particularly the BCP to cases where the contractive condition is required only
along edges of the graph rather than globally. Subsequently, Bojor [8] advanced the incorporation
of graph structures into FP theory and established a result that generalizes Kannan’s FP theorem.
Additional insights can be found in [9, 10].

Building on this framework, Samet et al. [11] later introduced the notion of a-admissibility within
MSs and derived fixed point results for mappings satisfying this property. Motivated by this trend,
Karapinar [12] introduced the concept of interpolative Kannan-type contractions, offering a deeper
understanding of the structural relationships between classical and modern contraction principles,
and paving the way for further exploration in generalized metric frameworks.

Since FP results usually require self-mappings, a natural generalization arises through best
proximity point (BPP) theory, which extends the FP framework to non-self mappings 8 : () — A,
where (), A) denotes a pair of subsets of a MS (®,d). In situations where a genuine FP may not
exist, BPPs provide the optimal approximate solution, ensuring that the distance between a point
and its image attains the minimum possible separation between the two sets. Instead, the aim is

to locate points v* € () whenever
d(v",Nv*) = dist(Q), A),

where
dist(Q), A) = inf{d(v,0) : v e O, 0 € A}

These points are known as BPPs of the mapping N. The foundation for this area was laid by
Fan [13] in 1969 through a seminal theorem on best approximations. Later, Sadiq Basha [14]
provided necessary and sufficient conditions ensuring the attainment of the minimum distance
between two subsets for specific classes of mappings. More recently, Lateef [15] advanced this line
of study in the framework of #-MS, proving BPP results for generalized contractions and coupled
BPPs under arbitrary binary relations. For comprehensive treatments and further developments
in this direction, we refer the reader to [16-23].

The present work is devoted to introduce the concept of a-interpolative proximal contraction

within the setting of #-MSs, thereby extending and generalizing several existing results in BPP
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theory. The study establishes a series of BPP theorems corresponding to this new class of contrac-
tions, highlighting their structural properties and the conditions under which such points exist
and are unique.

As a natural consequence of our primary results, we derive BPP results for single-valued self-
mappings, demonstrating that these outcomes serve as special cases of the general framework.
Furthermore, we explore partially ordered ¥ -MSs, where the ordering relation enables the deriva-
tion of more refined and generalized results. The role of graph structures in enhancing the
analytical framework of BPP theory within ¥-MSs is also examined, providing deeper insight into
the interplay between order, topology, and contraction mappings.

In addition, the paper presents FP theorems that emerge as direct corollaries of the established
BPP results, thereby bridging the gap between proximity theory and classical FP theory. To validate
the theoretical findings, we construct non-trivial and illustrative examples that demonstrate the

applicability and non-vacuity of the developed results.

2. PRELIMINARIES

Frechet [1] introduced the notion of MS in this way.

Definition 2.1. Let ® # Q and d : DXP — [0, +00) be a function satisfying the following conditions

(Dy) d(v,0) =0 v =y,

(D2) d(v,0) = d(o,v),

(D3) d(v, 0) < d(v,v) +d(v,0),

for all v,v, p € ®, then (P, d) is said to be a MS.

In the setting of MS, Stefan Banach [5] proved the following result which is considered as a

pioneer theorem in this theory.

Theorem 2.1. ( [5]) Let (®,d) be a complete MS and X : & — O be a self mapping.If there exists some
constant A € [0, 1) such that
d(Nv,Np) < Ad(v, )

forall v, o € O, then N has a unique FP.

From the contractive condition in the BCP, it follows directly that the mapping J is necessarily
continuous. This observation naturally leads to the question: is it possible for a mapping to
have a FP without being continuous? In response, Kannan [6] (1968) proved a FP theorem for
self-mappings in CMSs, showing that even in the absence of continuity, certain contractive-type

conditions are sufficient to ensure the existence of a unique FP.
Theorem 2.2. [6]Let N : & — ®. Suppose that there is A € [0, 3) such that
d(Nv,Np) < A (d(v,8v) +d(o,N0)),

Vv, 0 € ©, then N has a unique FP in P.
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To extend the classical notion of BCP to settings involving graph structures, Jachymski [7]
introduced the concept of a graphic contraction, which incorporates the edge-preserving property
of a directed graph.

A directed graph G is an ordered pair G = (V(G), E(G)), where

e V(G) is a nonempty set whose elements are called vertices, and
e E(G) C V(G) x V(G) is a set of directed edges (or arcs) between the vertices.

The graph G is said to be loop-inclusive if every vertex is connected to itself, that is,
A ={(v,v):veV(G)} CE(G).

Furthermore, G is assumed to contain no multiple edges, meaning that between any ordered pair
of vertices there exists at most one directed edge.

A path from v to g in G of length N (a natural number) is a sequence {vi}fi o of N + 1 vertices
such that v9 = v, vy = g and (vi-1,vi) € E(G),Yi=1,--- ,N. Let G denote the symmetric graph

obtained from G by ignoring the direction of edges, i.e.,
E(G) = E(G)UE(G™),
where G™! is the converse graph of G, defined by
E(G™) = {(v,0) e ®x®: (,0) € E(G)).

The graph G is said to be weakly connected if the symmetric graph G is connected, i.e., if for
any two distinct vertices v, o € V(G), there exists a path from v to g in G.
Jachymski [7] proved the following foundational result.

Theorem 2.3. ([7]) Let (®,d) be a MS associated with a directed graph G = (®,E(G)) and N : & — .
Suppose that

Definition 2.2. (a) N is edge-preserving, that is, for all v, o € ® with (v, p) € E(G), we have (Nv,Np) €
E(G),
(b) there exists A € (0,1) such that,¥ v, p € ® with (v,v) € E(G), we have

d(Nv,Np) < Ad(v,0). (2.1)

Then N is called a graphic contraction on (®,d, G). Moreover, if (®,d) is complete and there exists vy € P
with (v, Nvo) € E(G), then N has a FP in ®. Moreover, if G is weakly connetced, then this FP is unique.

In [12], Karapinar examined Theorem 2.2 in the framework of interpolation theory, where the

main result was derived using an interpolative Kannan-type contraction.
Theorem 2.4. [12] Let N : & — . Assume that thereis A € [0,1) and B € (0, 1) such that
d(Nv, No) < Ald(v,No)l [d(e,No)]",

forall v, 0 € ® with v, p € P\Fix(N), with Fix(N) = {v € ® : Nv = v}, then N has a unique FP in P.
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Sadiq Basha [14] introduced the concept of best proximity point in this way.

Definition 2.3. ( [14]) Let (®,d) be a MS and let Q, A C ® be two nonempty subsets. For a mapping
N:Q — A, apoint v*° € Q) is said to be a best proximity point of N if

d(v',Rv") =d(Q, A),
where

d(Q,A) =inf{d(v,0) :veO,pe A}.

Consistent with the approach of Sadiq Basha [14], let (3, A C ® be two nonempty subsets of the
MS & and
Qg = {veQ:thereexists p € A such that d(v, o) = dist(Q, A)}
Ao = {o€ A:thereexists v € Q) such thatd(v, g) = dist(Q, A)}.

Definition 2.4. ( [14]) Let Q) and A are non-empty subsets of MS ®. Then, (Q), A) is said to satisfy the
weak P-property if for all v1,v2 € Q and 01, 02 € A, the following holds

d (v, ;) = dist(Q), A)
d (va, 00) = dist(Q), A)
Czerwik [3] introduced the idea of b-MSs by altering the triangle inequality inherent in standard
MSs.
forall v,v,0 € ® and for some b > 1,

d(v,0) <bld(v,v) +d(v,0)].

} =d (v1,v2) <d(01,02) -

Later on, Jleli et al. [4] unveiled a captivating generalization of MS and b-MS, known as #-MS.
Let E be the collection of functions 7 : (0, +c0) — R such that
(&1) forall 1,1, € (0,+00) such thatty < t, = fi(t) < fi(t2),
(&F2) for {t,} € (0, +0), 7}1_1)1010 t, = 0and 7}1_1)1()10% (t) = —oo are equivalent.

Definition 2.5. ([4]) Let ® # @ and d : PXP — [0, +o0) be a distance function such that

(D1) d(v,0) =0 = v =y,

(D2) d(v, 0) = d(o,v),
(D3) for every (ul)f:1 C ® with (uy,up) = (v, 0), we have

p-1
d(v,0) >0= h(d(v,0)) < h[z d (u, Mz+1)} + 0,

1=1
for all (v,0) € ®x®P and for p € IN with p > 2. If there exists a combination (%,0) €
2 % [0, +00) satisfying the aforementioned properties, then d is referred to as an ¥ - metric
on ®, and the combination (P, d) is termed an F-MS.
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Jleli et al. [4] proved the following Theorem in

Theorem 2.5. ( [4]) Let (®,d) be an F-metric space and 8 : & — O be a given mapping. Suppose that
the following conditions are satisfied:

(i) (P, d) is F-complete,
(i) there exists A € (0,1) such that

d(Nv,8p) < Ad(v, 0)

Then H has a unique fixed point v* € ®. Moreover, for any vy € P, the sequence {v,,} C ® defined
by

Uy = Nvy,, n €N,
is F-convergent to v".

In the context of F-MSs, Lateef [15] established BPP result for contraction mappings.

Theorem 2.6. ( [15]) Given two non-empty, closed subsets () and A embedded in the ¥ -complete F-MS
(®,d) such that Qy # O and the combination (Q), A) satisfies P-property. Suppose 8 : Q3 — A be a
contraction mapping such that 8(Qo) € Ao. Then N has a BPP.

Here we give the basic concepts in ¥-MS which are crucial in our main result.
Definition 2.6. ( [4]) Let (D, d) be an F-MS.

(i) Let {v,} be a sequence in ®. We say that {v,} is F -convergent to v € ® if {v,} is convergent to
v with respect to the #-metric d.
(ii) A sequence {v,} is F-Cauchy, if

lim d(v,,vm) = 0.

n,m— oo
(iii) We say that (®, d) is F -complete, if every #-Cauchy sequence in ® is ¥ -convergent to a certain

element in .

3. Main ResuLts

In this section, we introduce the concept of a-interpolative proximal contraction in the frame-
work of ¥-MS and establish corresponding BPP results. Initially, we prove the existence of a BPP
by assuming that the mapping N is continuous. Later, we replace the continuity condition with a
more general assumption, thereby extending and improving the obtained results.

Definition 3.1. Let (®,d) be an F-MS and let Q) and A be the nonempty subsets of ®. A mapping
N : Q) — Ais called an a-interpolative proximal contraction, if there exist a constant A € (0,1), a control
function a : QA x Q) — [0, 00) and positive real constants y, p with y + p < 1 such that a(v, ) > 1 implies

d(Nv, NQ) = /\(d(v, Q))y (d(v, Nv) - d(Q/ A))ﬁ (d(g, NQ) - d(Q/A))l_V_ﬁ 7 (3-1)
forall v, 0 € O\Best (N), where Best (N) = {v € Q1 d(v,8v) =d(Q, A)}
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Example 3.1. Let ® = [0, 3] be equipped with the F-metric d : & x & — R U {0} defined by

d(v,0) =|v—¢|

forall v,0 € D, then (®,d) is an F-MS with h(t) = Int, for t > 0 and O = 0. Let Q = [0,1] and
A = [2,3], then d(Q), A) = 1. Define the mapping N : Q3 — A by

v
Let the control function a : Q3 X Q) — [0, 00) be defined as follows

a(v,0) :1—|—|v—g|.

Choose the constants
A =0.80, y=040, p=0.50,

so that y 4 < 1. Here

Best (N) = {veQ:d(v,Nv) =d(Q,A)}

but the equation 2 — 5 = 1 gives v = 2. So in fact
Best (N) — 0.
Hence O\B,st (N) = Q. Now, for any v, 0 € Q\Best (N), we have
d(Nv,Np) = % |v - Q| <0.80 |v - Q|0'4O (d(v,8v) = 1) (d(o,80) — 1)1
Thus, N satisfies the inequality (3.1) and is an a-interpolative proximal contraction.

Theorem 3.1. Let (®,d) be an F-complete F-MS and let Q) and A be the nonempty closed subsets of O
satisfying the weak P-property and Qg # 0. Let N : () — A is an a-interpolative proximal contraction and
N (Qo) € Ag. Assume that the following conditions holds

(i) N is an a-proximal admissible;

(ii) there exist vo, v1 € O such that d (v1, Nvy) = d(Q, A) and a (v, v1) = 1;
(iii) N is continuous.

Then N has a unique BPP in Q).

Proof. Let (i,0) € F X [0, +0) be such that (D) is satisfied. Let € > 0 be fixed. By (#2), there exists
0 > 0 such that

0<t<do=M(t) <h(e) —o. (3.2)

In view of condition (ii), there exist elements vg, v1 € Qg such that O



8 Int. J. Anal. Appl. (2026), 24:27

d (v1,Nvo) =d(Q, A) and a (v, v1) > 1. (3.3)

Since N (Qg) € Ay, it follows that Nv; belongs to N (), which is contained in Ag. Hence, there
exists some v; € () satisfying

d (vz,Nv1) =d(Q, A). (3.4)

Now, by combining Equations (3.3) and (3.4) together with the definition of a-proximal admissi-
bility, we obtain

a(vo,v1) = 1
d(vavo) = d(Q,A)
d(vz, Nvl) = d(Q,A),

which leads to a (v1,v2) > 1. Hence,

d (vg,Nv1) =d(Q, A) and a (v1,v2) > 1.

Proceeding in a similar manner, since Nv; € A, there exists an element v3 € )y such that

d (U3, sz) = d(Q, A)

Because N is a-proximal admissible, it follows that a (v, v3) > 1. Therefore,

d (vs3,Nvy) =d(Q,A) and a (vp,v3) > 1.

By continuing this process inductively, we can construct a sequence {v,} in () satisfying

d (vy41,Nv,) =d(Q,N) and & (v, vy41) 2 1, (3.5)

for every n € IN U {0}. If, for some 1y € IN, we have v, = vy,+1, then

d (Uny, Ny ) = d (Vyg11, Nvp,) = d(Q, A).
which shows that vy, is a BPP of X. Assuming instead that v, # v,y for all n € IN. Then,
d (vn, Nvy) > 0and d (vy41, Nvyy1) > 0, for every n € N U {0}. Applying (D3) to the points v, and
Nv,, we get

fi (d (v, Nvy)) < h(d (Vn, Vp11) +d (Vyg1, Nvp)) + O.
Since d (v,41, 8vy,) = d(Q, A), so the above inequality becomes
fi(d (v, Nvy)) < H(d(Vn,Vp1) +d(Q,A)) +O
< fi(d(vn, V1) +d(Q,A)),

which implies by (#7) that

d (vy, Nvy) <d (vy,vp41) +d(Q, A). (3.6)
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Similarly
d (Un+1, an+1) <d (Un+], U?’H—Z) + d(Q, A) (37)
By (3.1), we have
d (83, 8vy41) < A(d (0, V1) (d (v, N0w) = d(Q, A)) (d (031, R0ps1) = d(Q, A))T7F).
Using (3.6) and (3.7) in above inequaliy, we get
d (Nvy, Rvpi1) <A ((d (Un, vn11))" (d (vn, vnH))ﬁ (d (vnt1, Un+2))l_y_ﬁ)- (3.8)

Since the pair (Q), A) satisfies the weak P-property, we have d (v,,41, Uy42) < d (Nvy,, Nvy,41). Hence,

from (3.8), it follows that

d (Nv,, Rvy1) <A ((d (U, Un+1))y+ﬁ (d (vns1, vn+2))1—(}/+ﬁ))

and therefore,

(d (vns1, Un+2))Y+ﬂ < A(d (vn, vn+1))Y+ﬂ .

And so,

1
d (Vnt1, Vnv2) < ATHA (Un, Vni1),

for every n € N U {0}. Set u = AT € (0,1) . Then we get

d (UnJrl; Un+2) < [Jd (Unz vn+1) ’

for every n € IN U {0}. By repeating this argument, we deduce that

d (Vn41, Vns2) < pd (U, Uy11) < yzd (Vp-1,0p) < +++ < lu”“d (vo,v1),

which yields
m—1 n
Z d (vi,vi41) < 1” d(vo,v1), form >n.
i=nt1 —H
Since ;
lim d (vo, 1)1) =0,

n—-+4o0 — H
so there exists some N € IN such that

n

u
0<1_H

d (vo,v1) <06, forn > N.

Hence, by (3.2) and (¥71), we get

m—1 n
h[ y d(vi,viﬂ)) < h(lﬁyd(vo,vl)) <h(e)=D

i=n+1
for m > n > N. Using (D3) and (3.12), we obtain

d(vy,v,) >0, m>n>N

(3.9)

(3.10)

(3.11)

(3.12)
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implies
m=1

1 (d (Vg vm)) < ﬁ[ Z d(vi,vi+1))—|— O < i(e)

i=n+1
which implies by (77) that
d(vy,vy) <€

for m > n > N. Thus, {v,} is a Cauchy sequence in Q). Since (®,d) is an F-complete F-MS and ()

is a closed subset of @, so there exists v € () such that v, — v asn — oo, that is,

lim d (v, v) = 0. (3.13)
n—oo
Since N is continuous, one writes
lim d (Nv,, Nv) = 0. (3.14)
n—oo

Combining (3.5), (3.13) and (3.14), we get

d(Q,A) = lim d (vy41, Nv,) = d(v,Nv).

n—-o0
Consequently, v is a BPP of N.
Now, to prove uniqueness of the BPP of mapping N, on contrary, suppose that g € () is another
BPP (different from v ) of the mapping N such that
a(v,0) =2 1

d(v,Nv) = d(Q,A)

d(o,N0) = d(Q,A),
Since the pair of subsets (Q2, A) satisfies the weak property, then we have d(v, 0) < d(8v, Np), and
mapping N is a-interpolative proximal contraction, then we have

d(v,0) < d(Nv,Rg)<a(v,0)d(Nv,Ng)

Ad(v, 0))" (d(v,¥v) =d(0, )’ (d(e,Ng) —d(0, A))" "
- 0,

IA

which is a contradiction, hence BPP of the mapping N is unique.
Next, we provide a result where the continuity of the mapping N is substituted with a more

general assumption.

Theorem 3.2. Let (D,d) be an F-complete F-MS and let () and A be the nonempty closed subsets of ®
satisfying the weak P-property and Qg # 0. Let N : Q) — A is an a-interpolative proximal contraction and
N (Qo) S Ao. Assume that the following conditions holds
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(i) N is an a-proximal admissible;

(ii) there exist vy, v1 € O such that d (v1,Nvg) = d(Q, A) and a (v, v1) > 1;

(iii) if there exists a sequence {v,,} in Q) such that a (v,, v,41) > 1 for all n, and v, —» v € Q as
n — oo, then a (v, v) > 1, for every n.

Then, N possesses a unique BPP in ().
Proof. Pursuing the proof of Theorem 3.1, there exists a Cauchy sequence {v,} C () satisfying
d (vy41,Nv,) =d(Q, A) and a (v, v41) =1,

for every n € IN U {0}. Also, there exists v € Q) such that v, — v as n — co. Thus, from the
assumption (iii), we infer that & (v,,v) > 1 forall n € N. As X (Q)g) C Ay, there is g € () so that

d(o,8v) =d(Q, A).

Thus, we get

\
—_

a (vy,v)
d(vp41,Nvy) = d(Q,A)
d(o,Nv) = d(Q,N).

By (3.1) and (1), we have
fi(d (Nvy, Nv)) < #i(d(Nvy, Nv)) (3.15)
< (A (d (04, ) (d (4, Ry) = d(Q, A))F (d(v,Rv) —d(Q, A)) 7 7F).

Since
d (vy, Nvy) <d (vy,vp41) +d(Q, A),
by the inequlaity (3.6). Thus the above inequality (3.15) becomes
7 (d (Rv, Nv)) <7 (A (d (04,)) (d (v, v041))F (d(v,Rv) —d(Q, A))' T 7F). (3.16)

Since (), A) satisfies the weak P-property, we deduce that d (v,,41,0) < d (Nv,, Nv). From (3.16),

we have
1(d (00:1,0)) < 1(1(d (00,0))" @ (00,002))P (@0, 80) = (€, 4))7F).
Taking limit as n — oo and using the fact that

lim 7 (/\ (d (vn, )" (d (v, vn+l))ﬁ (d(v,Nv) - d(Q,A))l—V—ﬁ) = —00,

n—oo

we get that lim, e d (v441,0) = 0. By the uniqueness of limit, we obtain ¢ = v. Therefore,
d(v,Nv) = d(Q, A). The uniqueness of the BPP followed on the same lines as proved in Theorem
3.1. O
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Example 3.2. Let ® = [0, 3] be equipped with the F-metric d : & x & — R U {0} defined by

d(v,0) = v
for all v,0 € ®, then (®,d) is an F-MS with #i(t) = Int, for t > 0 and O = 0. Let QO = [0,1] and
A = [2,3], then
d(Q,A) = inf{|v— Q| ve0,pe A} =1,
and
Qo={veQ:dvA) =dQ,A)}=({1}, Ao={2}.
Define the mapping 8 : QO — A by
Nv =2
for all v € Q). Let the control function a : QX Q) — [0, 00) be defined as follows
a(v,0) =1, forallv,pe Q)
Choose the constants
A =0.80, y=040, =050,
so that y + B < 1. Here
Best (N) ={veQ:d(v,8v) =d(Q,A)} = {1}
Hence O\Best (RX) = [0,1). Now, since () and A are closed in ® and Qg and N are singletons, so ) and A
satisfy the weak P-property trivially. Now 8 (Qo) = {2} C Ag. It is simple to verify that N is a-interpolative

proximal contraction and a-proximal admissible. Take
vo=v1 =1€Q)y.
Then
d (1)1,&1)0) =1= d(Q,A)
and
a(vg,v1) =a(1,1)=1>1.

Moreover, since N is constant, hence continuous. Hence all the conditions of Theorem 3.1 (respectively.
Theorem 3.2) are satisfied and N has a unique BPP 1 in Q).

Corollary 3.1. Let (®,d) be an F-complete F-MS and let Q) and A be the nonempty closed subsets of O
satisfying the weak P-property and Qg # 0. Assume that 8 : Q) — A be a single-valued mapping such that
N (Qo) € Ag and there exist a constant A € (0,1), a control function a : QA X Q) — [0, 00) and positive real
constants y, p with y + < 1 such that

0((1), Q)d(xv' 8@) < /\(d(l), Q))y (d(l), Nl)) - d(Q/ A))ﬁ (d(Q, NQ) - d(Q, A))l_y_ﬁ ’ (317)
forall v, 0 € O\Best (N), where Besy (N) = {v € O : d(v,Nv) = d(Q, A)}. Assume that the following

conditions holds
(i) N is an a-proximal admissible;
(ii) there exist vy, v1 € Qg such that d (v1,Nvg) = d(Q, A) and a (v, v1) = 1;
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(iii) N is continuous.
Then N has a unique BPP in Q).

Proof. Let v, 0 € O\Best (N) such that a(v, ¢) > 1. By (3.17), we have
4(Nv,No) < a(v, 0)d(Nv,Ng) < A(d(v,0))” (d(v,80) d(Q, A))" (d(0,N0) —d(Q, A)) 7
Thus
d(Nv,Rp) < A(d(v,0))” (d(v,Rv) —d(Q, A))F (d(g,Rp) —d(Q, A))' 7P,

for all v, 0 € O\Begst (N). Hence, the inequality (3.1) is satisfied, and consequently, the remaining
part of the proof proceeds directly from Theorem 3.1 (respectively, Theorem 3.2). m]

Corollary 3.2. Let (®,d) be an F-complete F-MS and let Q) and A be the nonempty closed subsets of O
satisfying the weak P-property and Qg # 0. Let N : OO — A be a single-valued continuous mapping such
that 8 (Qo) € Ag. Assume that there exists a constant A € (0,1) and positive real constants y, B with
y + B < 1 such that

d(Nv,Ro) < A(d(v,0))" (d(v,8v) =d(Q, A))F (d(g,Ro) = d(Q, )7,
forall v, 0 € O\Best (W), where Bes; (N) = {v € Q :d(v,Nv) = d(Q, A)}. Then N has a unique BPP in Q).

Proof. Take a (v, p) = 1 in Theorem 3.1. mi

4. ForLow-uPr REsuLTs

In this segment, we are concerned with BPP deductions for ordered interpolative proximal
contractions on a -MS endowed with a partial ordering/graph, with the aid of results presented

in the preceding section. Define
A ={v,pe Qsuchthatv < porp<v}

and
1, if (v, 0) € A,

a:OXxQO - [0,00), wherea(v,o)= .
0, otherwise .

Definition 4.1. Let ® be a nonempty set. The triple ( ®,d, <) is said to be a partially ordered ¥ -MS if the

following conditions hold:

(i) d is a ¥ -metric on P,
(ii) < is a partial order on P.

Definition 4.2. Consider ( ®,d, < ) as a partially ordered F-MS, and let ) and A be two non-empty
subsets of ®. A mapping 8 : O — A is said to be proximally order-preserving if the following implication
holds:
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d(vl,Ngl) :d(Q,A) —> v1 < Uy,
d (1)2, Ngz) = d(Q,A)

for all vy, v, 01,00 € Q).

Definition 4.3. Let Q) and A be two non-empty subsets of partially ordered ¥-MS (®,d, < ). A mapping
N : Q) — Ais said to be ordered interpolative proximal contraction, if there exists a constant A € (0,1) and
the positive real numbers y, B satisfying y + p < 1 such that

d(Nv,80) < A((d(v,0)) (d(v,8v) = d(Q, A))F (d(g,Rg) —d(Q, A))' 7 7F),
for all v, p € O\Begt (N) with (v, 0) € A.

The next result follows directly from Theorem 3.1 (respectively, Theorem 3.2).

Theorem 4.1. Let (®,d, <) be a F-complete partially ordered F-MS and let () and A be a non-emtpy
closed subsets of @ satisfying weak P-property and Qg # 0. Let 8 : QO — A be an ordered interpolative
proximal contraction and X (Qg) C Ag. Assume that the following conditions hold:

(i) N is proximally order-preserving,

(ii) there exist vo, v1 € O such that d (v1, Nvg) = d(Q, A) and (vo, v1) € A,

(iii) either N is continuous or if there exists a sequence {v,} in Q) satisfying v, < v,1, for all n,
and v, = v € Qasn — oo, then it follows that v,, < v, for every n.

Then, N possesses a unique BPP in ().

Definition 4.4. Let ( ®,d ) be an F-MS endowed with a graph G, and let () and A be the non-empty
subsets of . A mapping N : QO — A is called proximally G-preserving, if for all v1,v2, 01,02 € €,

(01,02) € E(G)
d (1)1,8@1) = d(Q,A) = (vl,l)z) € E(G)
d (vz, Ngz) = d(Q,A)

Definition 4.5. Let ( ©,d ) be an F-MS endowed with a graph G, and let () and A be the non-empty
subsets of ®. A mapping N : Q) — A is said to be G-interpolative proximal contraction, if there exists
A € (0,1) and positive real numbers y, B satisfying y + p < 1 such that

d(Xv,No) < A(d(v, 0)) (d(v,8v) —d(Q,A))F (d(o,N0) —d(Q, A) 7P,
fO?’ all v,0€ Q\Best (N) with (U, Q) c E(G)

Therefore, the next result is a direct consequence of Theorem 3.1 (respectively. Theorem 3.2).
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Theorem 4.2. Let (D, d ) be an F-complete F-MS endowed with a graph G, and let () and A be non-empty
closed subsets of ® satisfying the weak P-property and Qg # 0. Let N : O3 — A be G-interpolative proximal
contraction and 8 (Qg) C Ag. Assume that the following conditions hold:

(i) N is proximally G-preserving;

(ii) there exist vo, v1 € O such that d (v1, Xvy) = d(Q, A) and (vo, v1) € E(G);

(iii) either N is continuous or if {v,} be a sequence in Q) such that (v,, v,11) € E(G), foralln € N
and v, » v € Qasn — oo, then (vy, v) € E(G) for each n.

Then, N possesses a unique BPP in ().

Proof. It follows directly, if we define & : Q2 X Q) — [0, o) in this way

(v,0) 1, if (v,0) € E(G),
104 v, =
¢ 0, otherwise

in Theorem 3.1 (respectively. Theorem 3.2). O

5. Fixep PoinT CONSEQUENCES OF BEsT ProxiMITY RESULTS

This section presents results that are closely connected to FP theory, particularly for a-
interpolative contractions. When () = A = ®, the corresponding contractive condition simplifies
accordingly. In this case, since d(v, Nv) = d(Q), A) = 0 for a self mapping N, it follows that v = No.
Hence, the notion of a BPP naturally reduces to that of a FP. Consequently, an a-interpolative

proximal contraction becomes an a-interpolative FP problem.

Definition 5.1. Let (®,d) be an F-MS. A mapping 8 : & — D is said to be an a-interpolative contraction,
if there exist A € (0,1), a control function a : & x & — [0, c0) and positive real numbers y, B satisfying
y + B < 1 such that

4(Nv,Ne) < 2 ((d(v,0))" (A(v,%0)F(d(0,80)) 7 F),

forall v, o € ®\Fiv(N) with a(v,p) > 1.
The upcoming result is a consequence of Theorem 3.1 (resp. Theorem 3.2).

Theorem 5.1. Let (®,d) be an F-complete F-MS and 8 : & — & be an a-interpolative contraction.
Assume that the following conditions hold:

(i) N is a-admissible;

(i) There exists vy € ® such that a (vo, Nvo) > 1,

(iii) either N is continuous or if there exists a sequence {v,} in ® such as a (v,, v,+1) > 1 for each
nand v, » v € P asn — oo, then a (v, v) > 1 for every n.

Then N has unique FP in ®.



16 Int. ]. Anal. Appl. (2026), 24:27

Definition 5.2. Let ( ®,d, <) as a partially ordered F-MS. A mapping 8 : & — D is called an ordered
interpolative contraction if there exists a constant A € (0,1) and positive real numbers y, B satisfying

y + B < 1in a way that
d(Nv,No) < A ((d(v, 0))7 (d(v,Xv))P (d(g,80))' ),
for all v, o € ®\Fix(N) with (v, p) € A.
The following result is a direct consequence of Theorem 4.1.

Theorem 5.2. Let (®,d, <) be an F-complete partially ordered F-MS and 8 : & — & be an ordered

interpolative contraction. Assume that the following conditions hold.

(i) N is nondecreasing,

(ii) there exists vy € @ such that vy < Nvy;

(iii) either N is continuous or If there exists a sequence {v,} in ® such that v, < v, 41 for each n
and v, D vedasn — oo, then v, < v forall n.

Then N admits unique FP in .

Definition 5.3. Let (®,d) be an F-MS endowed with a graph G. A mapping X : & —  is said to be
G-interpolative contraction, if there exists a constant A € (0,1) and positive real numbers y, B satisfying
y + B < 1 such that

d(Rv,80) < A((d(v,0))" (d(v, 8))F(d(0,R0)) 7 F)
forall v, 0 € ®\Fix(N) with (v, 0) € E(G).

Definition 5.4. Let (®,d) be an F-MS endowed with a graph G. A mapping N : ® — P is called
G-preserving, if for all v1, v € P,

(1)1,1)2) S E(G) - (vaxvz) S E(G).
From Theorem 4.2, we directly obtain the following result.

Theorem 5.3. Let (®,d) be F-complete F-MS endowed with a graph G, and let 8 : & — D be the
G-interpolative contraction. Assume that the following conditions hold:

(i) N is G-preserving;

(ii) there exists vy € ® such that (vo,Nvo) € E(G),

(iii) either N is continuous or if {v,} is a sequence in ® such that (vy,vy41) € E(G) for each n and
vy > vEDasn — oo, then (v,,v) € E(G) for every n.

Then N has a unique FP.

6. CONCLUSION

In the framework of ¥-MSs, the present study has introduced the novel concept of a-
interpolative proximal contractions and established the existence of BPPs for this new class of map-

pings. By extending and refining previously known contractive conditions, the results achieved



Int. J. Anal. Appl. (2026), 24:27 17

in this work unify and generalize several well-established findings in the existing literature. To
demonstrate the applicability and validity of the theoretical results, explicit illustrative examples
have been provided.

The conclusions of this research open promising directions for future investigation in the theory
of BPPs for fuzzy and generalized mappings in #-MSs. In particular, the potential applications of
these results to fractional and classical differential equations offer a fertile area for continued study.
Additionally, exploring the connections between the present findings and the emerging theory of

orthogonal #-MSs may yield further significant developments in this growing field.
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