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Abstract. The primary objective of this study is to introduce the concept of α-interpolative proximal contractions within

the framework of F -metric spaces and to derive corresponding best proximity point results for these newly defined

contractions. As a direct implication of the main theorems, best proximity results for single-valued mappings are

also established. Moreover, we extend our investigation to partially ordered F -metric spaces, examining how graph

structures influence best proximity point theory in this context. In addition, several fixed point theorems are obtained as

immediate consequences of the proposed results. To illustrate the validity of our theoretical developments, non-trivial

examples are provided.

1. Introduction

The idea of a metric space (MS), first formulated by the French mathematician Fréchet [1],

served as a foundation for the study of fixed point (FP) theory. In 1989, I. A. Bakhtin expanded

this concept by introducing b-metric spaces (b-MSs), which relaxed some of the rigid constraints

of classical metric spaces. Subsequently, in 1993, Czerwik [3] provided a detailed investigation of

b-MSs, emphasizing their flexibility through the replacement of the standard triangle inequality

with the b-metric inequality. This extension allowed for a more general notion of distance and

enabled the study of a wider variety of mathematical structures. More recently, Jleli et al. [4]

proposed F -metric spaces (F -MSs), which further generalize both classical and b-MSs, offering a

versatile framework that has significantly contributed to the advancement of FP theory and has

opened new directions in functional analysis and topology.

By formalizing the concept of distance between points, metric spaces provide a natural setting

for fixed point (FP) theorems to establish conditions under which certain mappings admit fixed

points. The foundational result in this area is the renowned Banach contraction principle (BCP) [5],
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introduced by Stefan Banach in 1922. Later, Kannan [6] relaxed the continuity assumption which

was necessary in BCP and established a FP theorem under a weaker contractive framework. This

study of obtaining FPs has undergone significant generalizations beyond classical metric spaces

(MSs) to accommodate more complex structures and relationships among elements. One such

direction was initiated by Jachymski [7], who in 2008 introduced the notion of graphic contractions

in MSs endowed with a directed graph. This approach arose from the observation that many

mappings arising in applied sciences, economics, and computer science naturally preserve certain

relational structures, which cannot be captured by the ordinary metric framework alone. By

embedding a graph structure on the underlying set, Jachymski [7] unified and extended several

existing FP theorems, particularly the BCP to cases where the contractive condition is required only

along edges of the graph rather than globally. Subsequently, Bojor [8] advanced the incorporation

of graph structures into FP theory and established a result that generalizes Kannan’s FP theorem.

Additional insights can be found in [9, 10].

Building on this framework, Samet et al. [11] later introduced the notion ofα-admissibility within

MSs and derived fixed point results for mappings satisfying this property. Motivated by this trend,

Karapınar [12] introduced the concept of interpolative Kannan-type contractions, offering a deeper

understanding of the structural relationships between classical and modern contraction principles,

and paving the way for further exploration in generalized metric frameworks.

Since FP results usually require self-mappings, a natural generalization arises through best

proximity point (BPP) theory, which extends the FP framework to non-self mappings ℵ : Ω → Λ,

where (Ω, Λ) denotes a pair of subsets of a MS (Φ, d). In situations where a genuine FP may not

exist, BPPs provide the optimal approximate solution, ensuring that the distance between a point

and its image attains the minimum possible separation between the two sets. Instead, the aim is

to locate points υ∗ ∈ Ω whenever

d(υ∗,ℵυ∗) = dist(Ω, Λ),

where

dist(Ω, Λ) = inf{d(υ, %) : υ ∈ Ω, % ∈ Λ}.

These points are known as BPPs of the mapping ℵ. The foundation for this area was laid by

Fan [13] in 1969 through a seminal theorem on best approximations. Later, Sadiq Basha [14]

provided necessary and sufficient conditions ensuring the attainment of the minimum distance

between two subsets for specific classes of mappings. More recently, Lateef [15] advanced this line

of study in the framework of F -MS, proving BPP results for generalized contractions and coupled

BPPs under arbitrary binary relations. For comprehensive treatments and further developments

in this direction, we refer the reader to [16-23].

The present work is devoted to introduce the concept of α-interpolative proximal contraction

within the setting of F -MSs, thereby extending and generalizing several existing results in BPP
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theory. The study establishes a series of BPP theorems corresponding to this new class of contrac-

tions, highlighting their structural properties and the conditions under which such points exist

and are unique.

As a natural consequence of our primary results, we derive BPP results for single-valued self-

mappings, demonstrating that these outcomes serve as special cases of the general framework.

Furthermore, we explore partially ordered F -MSs, where the ordering relation enables the deriva-

tion of more refined and generalized results. The role of graph structures in enhancing the

analytical framework of BPP theory within F -MSs is also examined, providing deeper insight into

the interplay between order, topology, and contraction mappings.

In addition, the paper presents FP theorems that emerge as direct corollaries of the established

BPP results, thereby bridging the gap between proximity theory and classical FP theory. To validate

the theoretical findings, we construct non-trivial and illustrative examples that demonstrate the

applicability and non-vacuity of the developed results.

2. Preliminaries

Frechet [1] introduced the notion of MS in this way.

Definition 2.1. Let Φ , ∅ and d : Φ×Φ→ [0,+∞) be a function satisfying the following conditions

(D1) d(υ, %) = 0⇐⇒ υ = %,

(D2) d(υ, %) = d(%, υ),

(D3) d(υ, %) ≤ d(υ, v) + d(v, %),

for all υ, v, % ∈ Φ, then (Φ, d) is said to be a MS.

In the setting of MS, Stefan Banach [5] proved the following result which is considered as a

pioneer theorem in this theory.

Theorem 2.1. ( [5]) Let (Φ, d) be a complete MS and ℵ : Φ → Φ be a self mapping.If there exists some
constant λ ∈ [0, 1) such that

d(ℵυ,ℵ%) ≤ λd(υ, %)

for all υ, % ∈ Φ, then ℵ has a unique FP.

From the contractive condition in the BCP, it follows directly that the mapping = is necessarily

continuous. This observation naturally leads to the question: is it possible for a mapping to

have a FP without being continuous? In response, Kannan [6] (1968) proved a FP theorem for

self-mappings in CMSs, showing that even in the absence of continuity, certain contractive-type

conditions are sufficient to ensure the existence of a unique FP.

Theorem 2.2. [6]Let ℵ : Φ→ Φ. Suppose that there is λ ∈ [0, 1
2 ) such that

d(ℵυ,ℵ%) ≤ λ (d(υ,ℵυ) + d(%,ℵ%)) ,

∀υ, % ∈ Φ, then ℵ has a unique FP in Φ.
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To extend the classical notion of BCP to settings involving graph structures, Jachymski [7]

introduced the concept of a graphic contraction, which incorporates the edge-preserving property

of a directed graph.

A directed graph G is an ordered pair G = (V(G), E(G)), where

• V(G) is a nonempty set whose elements are called vertices, and

• E(G) ⊆ V(G) ×V(G) is a set of directed edges (or arcs) between the vertices.

The graph G is said to be loop-inclusive if every vertex is connected to itself, that is,

∆ =
{
(υ, υ) : υ ∈ V(G)

}
⊆ E(G).

Furthermore, G is assumed to contain no multiple edges, meaning that between any ordered pair

of vertices there exists at most one directed edge.

A path from υ to % in G of length N (a natural number) is a sequence {υi}
N
i=0 of N + 1 vertices

such that υ0 = υ, υN = % and (υi−1, υi) ∈ E(G), ∀ i = 1, · · · , N. Let G̃ denote the symmetric graph

obtained from G by ignoring the direction of edges, i.e.,

E(G̃) = E(G)∪ E(G−1),

where G−1 is the converse graph of G, defined by

E(G−1) =
{
(υ, %) ∈ Φ ×Φ : (%, υ) ∈ E(G)

}
.

The graph G is said to be weakly connected if the symmetric graph G̃ is connected, i.e., if for

any two distinct vertices υ, % ∈ V(G), there exists a path from υ to % in G̃.

Jachymski [7] proved the following foundational result.

Theorem 2.3. ( [7]) Let (Φ, d) be a MS associated with a directed graph G = (Φ, E(G)) and ℵ : Φ→ Φ.

Suppose that

Definition 2.2. (a) ℵ is edge-preserving, that is, for all υ, % ∈ Φ with (υ, %) ∈ E(G), we have (ℵυ,ℵ%) ∈

E(G),

(b) there exists λ ∈ (0, 1) such that, ∀ υ, % ∈ Φ with (υ, v) ∈ E(G), we have

d(ℵυ,ℵ%) ≤ λd(υ, %). (2.1)

Then ℵ is called a graphic contraction on (Φ, d, G). Moreover, if (Φ, d) is complete and there exists υ0 ∈ Φ

with (υ0,ℵυ0) ∈ E(G), then ℵ has a FP in Φ. Moreover, if G is weakly connetced, then this FP is unique.

In [12], Karapınar examined Theorem 2.2 in the framework of interpolation theory, where the

main result was derived using an interpolative Kannan-type contraction.

Theorem 2.4. [12] Let ℵ : Φ→ Φ. Assume that there is λ ∈ [0, 1) and β ∈ (0, 1) such that

d(ℵυ,ℵ%) ≤ λ [d(υ,ℵυ)]β [d(%,ℵ%)]1−β ,

for all υ, % ∈ Φ with υ, % ∈ Φ\Fix(ℵ), with Fix(ℵ) = {υ ∈ Φ : ℵυ = υ}, then ℵ has a unique FP in Φ.
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Sadiq Basha [14] introduced the concept of best proximity point in this way.

Definition 2.3. ( [14]) Let (Φ, d) be a MS and let Ω, Λ ⊆ Φ be two nonempty subsets. For a mapping
ℵ : Ω→ Λ, a point υ∗ ∈ Ω is said to be a best proximity point of ℵ if

d(υ∗,ℵυ∗) = d(Ω, Λ),

where

d(Ω, Λ) = inf
{
d(υ, %) : υ ∈ Ω, % ∈ Λ

}
.

Consistent with the approach of Sadiq Basha [14], let Ω, Λ ⊆ Φ be two nonempty subsets of the

MS Φ and

Ω0 = {υ ∈ Ω : there exists % ∈ Λ such that d(υ, %) = dist(Ω, Λ)}

Λ0 = {% ∈ Λ : there exists υ ∈ Ω such that d(υ, %) = dist(Ω, Λ)}.

Definition 2.4. ( [14]) Let Ω and Λ are non-empty subsets of MS Φ. Then, (Ω, Λ) is said to satisfy the
weak P-property if for all υ1, υ2 ∈ Ω and %1, %2 ∈ Λ, the following holds

d (υ1, %1) = dist(Ω, Λ)

d (υ2, %2) = dist(Ω, Λ)

⇒ d (υ1, υ2) ≤ d (%1, %2) .

Czerwik [3] introduced the idea of b-MSs by altering the triangle inequality inherent in standard

MSs.

for all υ, v, % ∈ Φ and for some b ≥ 1,

d(υ, %) ≤ b [d(υ, v) + d(v, %)] .

Later on, Jleli et al. [4] unveiled a captivating generalization of MS and b-MS, known as F -MS.

Let Ξ be the collection of functions } : (0,+∞)→ R such that

(F1) for all t1, t2 ∈ (0,+∞) such that t1 < t2 =⇒ }(t1) < }(t2),

(F2) for {tn} ⊆ (0,+∞), lim
n→∞

tn = 0 and lim
n→∞
} (tn) = −∞ are equivalent.

Definition 2.5. ( [4]) Let Φ , ∅ and d : Φ×Φ→ [0,+∞) be a distance function such that

(D1) d(υ, %) = 0⇐⇒ υ = %,

(D2) d(υ, %) = d(%, υ),

(D3) for every (uı)
p
ı=1 ⊂ Φ with (u1, up) = (υ, %), we have

d(υ, %) > 0⇒ }(d(υ, %)) ≤ }


p−1∑
ı=1

d (uı, uı+1)

+a,

for all (υ, %) ∈ Φ×Φ and for p ∈ N with p ≥ 2. If there exists a combination (},a) ∈

Ξ × [0,+∞) satisfying the aforementioned properties, then d is referred to as an F - metric

on Φ, and the combination (Φ, d) is termed an F -MS.
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Jleli et al. [4] proved the following Theorem in

Theorem 2.5. ( [4]) Let (Φ, d) be an F -metric space and ℵ : Φ → Φ be a given mapping. Suppose that
the following conditions are satisfied:

(i) (Φ, d) is F -complete,

(ii) there exists λ ∈ (0, 1) such that

d(ℵυ,ℵ%) ≤ λd(υ, %)

ThenH has a unique fixed point υ∗ ∈ Φ. Moreover, for any υ0 ∈ Φ, the sequence {υn} ⊂ Φ defined

by

υn+1 = ℵυn, n ∈N,

is F -convergent to υ∗.

In the context of F -MSs, Lateef [15] established BPP result for contraction mappings.

Theorem 2.6. ( [15]) Given two non-empty, closed subsets Ω and Λ embedded in the F -complete F -MS
(Φ, d) such that Ω0 , ∅ and the combination (Ω, Λ) satisfies P-property. Suppose ℵ : Ω → Λ be a
contraction mapping such that ℵ(Ω0) ⊆ Λ0. Then ℵ has a BPP.

Here we give the basic concepts in F -MS which are crucial in our main result.

Definition 2.6. ( [4]) Let (Φ, d) be an F -MS.

(i) Let {υn} be a sequence in Φ. We say that {υn} is F -convergent to υ ∈ Φ if {υn} is convergent to

υ with respect to the F -metric d.

(ii) A sequence {υn} is F -Cauchy, if

lim
n,m→∞

d(υn, υm) = 0.

(iii) We say that (Φ, d) isF -complete, if everyF -Cauchy sequence in Φ isF -convergent to a certain

element in Φ.

3. Main Results

In this section, we introduce the concept of α-interpolative proximal contraction in the frame-

work of F -MS and establish corresponding BPP results. Initially, we prove the existence of a BPP

by assuming that the mapping ℵ is continuous. Later, we replace the continuity condition with a

more general assumption, thereby extending and improving the obtained results.

Definition 3.1. Let (Φ, d) be an F -MS and let Ω and Λ be the nonempty subsets of Φ. A mapping
ℵ : Ω → Λ is called an α-interpolative proximal contraction, if there exist a constant λ ∈ (0, 1), a control
function α : Ω×Ω→ [0,∞) and positive real constants γ, β with γ+ β < 1 such that α(υ, %) ≥ 1 implies

d(ℵυ,ℵ%) ≤ λ(d(υ, %))γ (d(υ,ℵυ) − d(Ω, Λ))β (d(%,ℵ%) − d(Ω, Λ))1−γ−β , (3.1)

for all υ, % ∈ Ω\Best (ℵ), where Best (ℵ) = {υ ∈ Ω : d(υ,ℵυ) = d(Ω, Λ)}.
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Example 3.1. Let Φ = [0, 3] be equipped with the F -metric d : Φ ×Φ→ R∪ {0} defined by

d(υ, %) =
∣∣∣υ− %∣∣∣

for all υ, % ∈ Φ, then (Φ, d) is an F -MS with }(t) = ln t, for t > 0 and a = 0. Let Ω = [0, 1] and
Λ = [2, 3], then d(Ω, Λ) = 1. Define the mapping ℵ : Ω→ Λ by

ℵυ = 2 +
υ
2

.

Let the control function α : Ω ×Ω→ [0,∞) be defined as follows

α(υ, %) = 1 +
∣∣∣υ− %∣∣∣ .

Choose the constants

λ = 0.80, γ = 0.40, β = 0.50,

so that γ+ β < 1. Here

Best (ℵ) =
{
υ ∈ Ω : d(υ,ℵυ) = d(Ω, Λ)

}
=

{
υ ∈ [0, 1] : 2−

υ
2
= 1

}
,

but the equation 2− υ
2 = 1 gives υ = 2. So in fact

Best (ℵ) = ∅.

Hence Ω\Best (ℵ) = Ω. Now, for any υ, % ∈ Ω\Best (ℵ), we have

d(ℵυ,ℵ%) =
1
2

∣∣∣υ− %∣∣∣ ≤ 0.80
∣∣∣υ− %∣∣∣0.40

(d(υ,ℵυ) − 1)0.50 (d(%,ℵ%) − 1)0.10 .

Thus, ℵ satisfies the inequality (3.1) and is an α-interpolative proximal contraction.

Theorem 3.1. Let (Φ, d) be an F -complete F -MS and let Ω and Λ be the nonempty closed subsets of Φ

satisfying the weak P-property and Ω0 , ∅. Let ℵ : Ω→ Λ is an α-interpolative proximal contraction and
ℵ (Ω0) ⊆ Λ0. Assume that the following conditions holds

(i) ℵ is an α-proximal admissible;

(ii) there exist υ0, υ1 ∈ Ω0 such that d (υ1,ℵυ0) = d(Ω, Λ) and α (υ0, υ1) ≥ 1;

(iii) ℵ is continuous.

Then ℵ has a unique BPP in Ω.

Proof. Let (},a) ∈ F × [0,+∞) be such that (D3) is satisfied. Let ε > 0 be fixed. By (F2), there exists

δ > 0 such that

0 < t < δ =⇒ }(t) < }(ε) −a. (3.2)

In view of condition (ii), there exist elements υ0, υ1 ∈ Ω0 such that �
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d (υ1,ℵυ0) = d(Ω, Λ) and α (υ0, υ1) ≥ 1. (3.3)

Since ℵ (Ω0) ⊆ Λ0, it follows that ℵυ1 belongs to ℵ (Ω0) , which is contained in Λ0. Hence, there

exists some υ2 ∈ Ω0 satisfying

d (υ2,ℵυ1) = d(Ω, Λ). (3.4)

Now, by combining Equations (3.3) and (3.4) together with the definition of α-proximal admissi-

bility, we obtain

α (υ0, υ1) ≥ 1

d (υ1,ℵυ0) = d(Ω, Λ)

d (υ2,ℵυ1) = d(Ω, Λ),

which leads to α (υ1, υ2) ≥ 1. Hence,

d (υ2,ℵυ1) = d(Ω, Λ) and α (υ1, υ2) ≥ 1.

Proceeding in a similar manner, since ℵυ2 ∈ Λ0, there exists an element υ3 ∈ Ω0 such that

d (υ3,ℵυ2) = d(Ω, Λ).

Because ℵ is α-proximal admissible, it follows that α (υ2, υ3) ≥ 1. Therefore,

d (υ3,ℵυ2) = d(Ω, Λ) and α (υ2, υ3) ≥ 1.

By continuing this process inductively, we can construct a sequence {υn} in Ω0 satisfying

d (υn+1,ℵυn) = d(Ω, N) and α (υn, υn+1) ≥ 1, (3.5)

for every n ∈N∪ {0}. If, for some n0 ∈N, we have υn0 = υn0+1, then

d (υn0 ,ℵυn0) = d (υn0+1,ℵυn0) = d(Ω, Λ).

which shows that υn0 is a BPP of ℵ. Assuming instead that υn , υn+1 for all n ∈ N. Then,

d (υn,ℵυn) > 0 and d (υn+1,ℵυn+1) > 0, for every n ∈ N∪ {0}. Applying (D3) to the points υn and

ℵυn, we get

} (d (υn,ℵυn)) ≤ } (d (υn, υn+1) + d (υn+1,ℵυn)) +a.

Since d (υn+1,ℵυn) = d(Ω, Λ), so the above inequality becomes

} (d (υn,ℵυn)) ≤ } (d (υn, υn+1) + d(Ω, Λ)) +a

< } (d (υn, υn+1) + d(Ω, Λ)) ,

which implies by (F1) that

d (υn,ℵυn) < d (υn, υn+1) + d(Ω, Λ). (3.6)
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Similarly

d (υn+1,ℵυn+1) < d (υn+1, υn+2) + d(Ω, Λ). (3.7)

By (3.1), we have

d (ℵυn,ℵυn+1) ≤ λ
(
d (υn, υn+1)

γ (d (υn,ℵυn) − d(Ω, Λ))β (d (υn+1,ℵυn+1) − d(Ω, Λ))1−γ−β
)

.

Using (3.6) and (3.7) in above inequaliy, we get

d (ℵυn,ℵυn+1) ≤ λ
(
(d (υn, υn+1))

γ (d (υn, υn+1))
β (d (υn+1, υn+2))

1−γ−β
)

. (3.8)

Since the pair (Ω, Λ) satisfies the weak P-property, we have d (υn+1, υn+2) ≤ d (ℵυn,ℵυn+1). Hence,

from (3.8), it follows that

d (ℵυn,ℵυn+1) ≤ λ
(
(d (υn, υn+1))

γ+β (d (υn+1, υn+2))
1−(γ+β)

)
and therefore,

(d (υn+1, υn+2))
γ+β
≤ λ (d (υn, υn+1))

γ+β . (3.9)

And so,

d (υn+1, υn+2) ≤ λ
1

γ+β d (υn, υn+1) , (3.10)

for every n ∈N∪ {0}. Set µ = λ
1

γ+β ∈ (0, 1) . Then we get

d (υn+1, υn+2) ≤ µd (υn, υn+1) ,

for every n ∈N∪ {0}. By repeating this argument, we deduce that

d (υn+1, υn+2) ≤ µd (υn, υn+1) ≤ µ
2d (υn−1, υn) ≤ · · · ≤ µ

n+1d (υ0, υ1) , (3.11)

which yields
m−1∑

i=n+1

d (υi, υi+1) ≤
µn

1− µ
d (υ0, υ1) , for m > n.

Since

lim
n→+∞

µn

1− µ
d (υ0, υ1) = 0,

so there exists some N ∈N such that

0 <
µn

1− µ
d (υ0, υ1) < δ, for n ≥ N.

Hence, by (3.2) and (F1), we get

}

 m−1∑
i=n+1

d (υi, υi+1)

 ≤ } ( µn

1− µ
d (υ0, υ1)

)
< } (ε) −a (3.12)

for m > n ≥ N. Using (D3) and (3.12), we obtain

d (υn, υm) > 0, m > n ≥ N
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implies

} (d (υn, υm)) ≤ }

 m−1∑
i=n+1

d (υi, υi+1)

+a < } (ε)
which implies by (F1) that

d (υn, υm) < ε

for m > n ≥ N. Thus, {υn} is a Cauchy sequence in Ω. Since (Φ, d) is an F -complete F -MS and Ω

is a closed subset of Φ, so there exists υ ∈ Ω such that υn → υ as n→∞, that is,

lim
n→∞

d (υn, υ) = 0. (3.13)

Since ℵ is continuous, one writes

lim
n→∞

d (ℵυn,ℵυ) = 0. (3.14)

Combining (3.5), (3.13) and (3.14), we get

d(Ω, Λ) = lim
n→∞

d (υn+1,ℵυn) = d(υ,ℵυ).

Consequently, υ is a BPP of ℵ.

Now, to prove uniqueness of the BPP of mapping ℵ, on contrary, suppose that % ∈ Ω0 is another

BPP (different from υ ) of the mapping ℵ such that

α (υ, %) ≥ 1

d (υ,ℵυ) = d(Ω, Λ)

d (%,ℵ%) = d(Ω, Λ),

Since the pair of subsets (Ω, Λ) satisfies the weak property, then we have d(υ, %) ≤ d(ℵυ,ℵ%), and

mapping ℵ is α-interpolative proximal contraction, then we have

d (υ, %) ≤ d (ℵυ,ℵ%) ≤ α (υ, %) d (ℵυ,ℵ%)

≤ λ(d(υ, %))γ (d(υ,ℵυ) − d(Ω, Λ))β (d(%,ℵ%) − d(Ω, Λ))1−γ−β

= 0,

which is a contradiction, hence BPP of the mapping ℵ is unique.

Next, we provide a result where the continuity of the mapping ℵ is substituted with a more

general assumption.

Theorem 3.2. Let (Φ, d) be an F -complete F -MS and let Ω and Λ be the nonempty closed subsets of Φ

satisfying the weak P-property and Ω0 , ∅. Let ℵ : Ω→ Λ is an α-interpolative proximal contraction and
ℵ (Ω0) ⊆ Λ0. Assume that the following conditions holds
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(i) ℵ is an α-proximal admissible;

(ii) there exist υ0, υ1 ∈ Ω0 such that d (υ1,ℵυ0) = d(Ω, Λ) and α (υ0, υ1) ≥ 1;

(iii) if there exists a sequence {υn} in Ω such that α (υn, υn+1) ≥ 1 for all n, and υn → υ ∈ Ω as

n→∞, then α (υn, υ) ≥ 1, for every n.

Then, ℵ possesses a unique BPP in Ω.

Proof. Pursuing the proof of Theorem 3.1, there exists a Cauchy sequence {υn} ⊂ Ω satisfying

d (υn+1,ℵυn) = d(Ω, Λ) and α (υn, υn+1) ≥ 1,

for every n ∈ N ∪ {0}. Also, there exists υ ∈ Ω such that υn → υ as n → ∞. Thus, from the

assumption (iii), we infer that α (υn, υ) ≥ 1 for all n ∈N. As ℵ (Ω0) ⊆ Λ0, there is % ∈ Ω0 so that

d(%,ℵυ) = d(Ω, Λ).

Thus, we get

α (υn, υ) ≥ 1

d (υn+1,ℵυn) = d(Ω, Λ)

d(%,ℵυ) = d(Ω, Λ).

By (3.1) and (F1), we have

} (d (ℵυn,ℵυ)) ≤ } (d (ℵυn,ℵυ)) (3.15)

≤ }
(
λ (d (υn, υ))γ (d (υn,ℵυn) − d(Ω, Λ))β (d(υ,ℵυ) − d(Ω, Λ))1−γ−β

)
.

Since

d (υn,ℵυn) < d (υn, υn+1) + d(Ω, Λ),

by the inequlaity (3.6). Thus the above inequality (3.15) becomes

} (d (ℵυn,ℵυ)) ≤ }
(
λ (d (υn, υ))γ (d (υn, υn+1))

β (d(υ,ℵυ) − d(Ω, Λ))1−γ−β
)

. (3.16)

Since (Ω, Λ) satisfies the weak P-property, we deduce that d (υn+1, %) ≤ d (ℵυn,ℵυ). From (3.16),

we have

} (d (υn+1, %)) ≤ }
(
λ (d (υn, υ))γ (d (υn, υn+1))

β (d(υ,ℵυ) − d(Ω, Λ))1−γ−β
)

.

Taking limit as n→∞ and using the fact that

lim
n→∞
}
(
λ (d (υn, υ))γ (d (υn, υn+1))

β (d(υ,ℵυ) − d(Ω, Λ))1−γ−β
)
= −∞,

we get that limn→∞ d (υn+1, %) = 0. By the uniqueness of limit, we obtain % = υ. Therefore,

d(υ,ℵυ) = d(Ω, Λ). The uniqueness of the BPP followed on the same lines as proved in Theorem

3.1. �
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Example 3.2. Let Φ = [0, 3] be equipped with the F -metric d : Φ ×Φ→ R∪ {0} defined by

d(υ, %) =
∣∣∣υ− %∣∣∣

for all υ, % ∈ Φ, then (Φ, d) is an F -MS with }(t) = ln t, for t > 0 and a = 0. Let Ω = [0, 1] and
Λ = [2, 3], then

d(Ω, Λ) = inf
{∣∣∣υ− %∣∣∣ : υ ∈ Ω, % ∈ Λ

}
= 1,

and

Ω0 =
{
υ ∈ Ω : d(υ, Λ) = d(Ω, Λ)

}
= {1}, Λ0 = {2}.

Define the mapping ℵ : Ω→ Λ by

ℵυ = 2

for all υ ∈ Ω. Let the control function α : Ω ×Ω→ [0,∞) be defined as follows

α(υ, %) = 1, for all υ, % ∈ Ω

Choose the constants

λ = 0.80, γ = 0.40, β = 0.50,

so that γ+ β < 1. Here

Best (ℵ) =
{
υ ∈ Ω : d(υ,ℵυ) = d(Ω, Λ)

}
= {1}

Hence Ω\Best (ℵ) = [0, 1). Now, since Ω and Λ are closed in Φ and Ω0 and Λ0 are singletons, so Ω and Λ

satisfy the weak P-property trivially. Nowℵ (Ω0) = {2} ⊆ Λ0. It is simple to verify thatℵ is α-interpolative
proximal contraction and α-proximal admissible. Take

υ0 = υ1 = 1 ∈ Ω0.

Then

d (υ1,ℵυ0) = 1 = d(Ω, Λ)

and

α (υ0, υ1) = α (1, 1) = 1 ≥ 1.

Moreover, since ℵ is constant, hence continuous. Hence all the conditions of Theorem 3.1 (respectively.
Theorem 3.2) are satisfied and ℵ has a unique BPP 1 in Ω.

Corollary 3.1. Let (Φ, d) be an F -complete F -MS and let Ω and Λ be the nonempty closed subsets of Φ

satisfying the weak P-property and Ω0 , ∅. Assume that ℵ : Ω→ Λ be a single-valued mapping such that
ℵ (Ω0) ⊆ Λ0 and there exist a constant λ ∈ (0, 1), a control function α : Ω×Ω→ [0,∞) and positive real
constants γ, β with γ+ β < 1 such that

α(υ, %)d(ℵυ,ℵ%) ≤ λ(d(υ, %))γ (d(υ,ℵυ) − d(Ω, Λ))β (d(%,ℵ%) − d(Ω, Λ))1−γ−β , (3.17)

for all υ, % ∈ Ω\Best (ℵ), where Best (ℵ) = {υ ∈ Ω : d(υ,ℵυ) = d(Ω, Λ)}. Assume that the following
conditions holds

(i) ℵ is an α-proximal admissible;
(ii) there exist υ0, υ1 ∈ Ω0 such that d (υ1,ℵυ0) = d(Ω, Λ) and α (υ0, υ1) ≥ 1;
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(iii) ℵ is continuous.
Then ℵ has a unique BPP in Ω.

Proof. Let υ, % ∈ Ω\Best (ℵ) such that α(υ, %) ≥ 1. By (3.17), we have

d(ℵυ,ℵ%) ≤ α(υ, %)d(ℵυ,ℵ%) ≤ λ(d(υ, %))γ (d(υ,ℵυ) − d(Ω, Λ))β (d(%,ℵ%) − d(Ω, Λ))1−γ−β .

Thus

d(ℵυ,ℵ%) ≤ λ(d(υ, %))γ (d(υ,ℵυ) − d(Ω, Λ))β (d(%,ℵ%) − d(Ω, Λ))1−γ−β ,

for all υ, % ∈ Ω\Best (ℵ). Hence, the inequality (3.1) is satisfied, and consequently, the remaining

part of the proof proceeds directly from Theorem 3.1 (respectively, Theorem 3.2). �

Corollary 3.2. Let (Φ, d) be an F -complete F -MS and let Ω and Λ be the nonempty closed subsets of Φ

satisfying the weak P-property and Ω0 , ∅. Let ℵ : Ω → Λ be a single-valued continuous mapping such
that ℵ (Ω0) ⊆ Λ0. Assume that there exists a constant λ ∈ (0, 1) and positive real constants γ, β with
γ+ β < 1 such that

d(ℵυ,ℵ%) ≤ λ(d(υ, %))γ (d(υ,ℵυ) − d(Ω, Λ))β (d(%,ℵ%) − d(Ω, Λ))1−γ−β ,

for all υ, % ∈ Ω\Best (ℵ), where Best (ℵ) = {υ ∈ Ω : d(υ,ℵυ) = d(Ω, Λ)}. Then ℵ has a unique BPP in Ω.

Proof. Take α (υ, %) = 1 in Theorem 3.1. �

4. Follow-up Results

In this segment, we are concerned with BPP deductions for ordered interpolative proximal

contractions on a F -MS endowed with a partial ordering/graph, with the aid of results presented

in the preceding section. Define

∆ = {υ, % ∈ Ω such that υ ≤ % or % ≤ υ}

and

α : Ω ×Ω→ [0,∞), where α(υ, %) =

 1, if (υ, %) ∈ ∆,

0, otherwise .

Definition 4.1. Let Φ be a nonempty set. The triple ( Φ, d,≤ ) is said to be a partially ordered F -MS if the
following conditions hold:

(i) d is a F -metric on Φ,

(ii) ≤ is a partial order on Φ.

Definition 4.2. Consider ( Φ, d,≤ ) as a partially ordered F -MS, and let Ω and Λ be two non-empty
subsets of Φ. A mapping ℵ : Ω → Λ is said to be proximally order-preserving if the following implication
holds:
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%1 ≤ %2

d (υ1,ℵ%1) = d(Ω, Λ)

d (υ2,ℵ%2) = d(Ω, Λ)

 =⇒ υ1 ≤ υ2,

for all υ1, υ2, %1, %2 ∈ Ω.

Definition 4.3. Let Ω and Λ be two non-empty subsets of partially ordered F -MS (Φ, d,≤ ). A mapping
ℵ : Ω→ Λ is said to be ordered interpolative proximal contraction, if there exists a constant λ ∈ (0, 1) and
the positive real numbers γ, β satisfying γ+ β < 1 such that

d(ℵυ,ℵ%) ≤ λ
(
(d(υ, %))γ (d(υ,ℵυ) − d(Ω, Λ))β (d(%,ℵ%) − d(Ω, Λ))1−γ−β

)
,

for all υ, % ∈ Ω\Best (ℵ) with (υ, %) ∈ ∆.

The next result follows directly from Theorem 3.1 (respectively, Theorem 3.2).

Theorem 4.1. Let (Φ, d,≤ ) be a F -complete partially ordered F -MS and let Ω and Λ be a non-emtpy
closed subsets of Φ satisfying weak P-property and Ω0 , ∅. Let ℵ : Ω → Λ be an ordered interpolative
proximal contraction and ℵ (Ω0) ⊆ Λ0. Assume that the following conditions hold:

(i) ℵ is proximally order-preserving,

(ii) there exist υ0, υ1 ∈ Ω0 such that d (υ1,ℵυ0) = d(Ω, Λ) and (υ0, υ1) ∈ ∆,

(iii) either ℵ is continuous or if there exists a sequence {υn} in Ω satisfying υn ≤ υn+1, for all n,

and υn → υ ∈ Ω as n→∞, then it follows that υn ≤ υ, for every n.

Then, ℵ possesses a unique BPP in Ω.

Definition 4.4. Let ( Φ, d ) be an F -MS endowed with a graph G, and let Ω and Λ be the non-empty
subsets of Φ. A mapping ℵ : Ω→ Λ is called proximally G-preserving, if for all υ1, υ2, %1, %2 ∈ Ω,

(%1, %2) ∈ E(G)

d (υ1,ℵ%1) = d(Ω, Λ)

d (υ2,ℵ%2) = d(Ω, Λ)

⇒ (υ1, υ2) ∈ E(G).

Definition 4.5. Let ( Φ, d ) be an F -MS endowed with a graph G, and let Ω and Λ be the non-empty
subsets of Φ. A mapping ℵ : Ω → Λ is said to be G-interpolative proximal contraction, if there exists
λ ∈ (0, 1) and positive real numbers γ, β satisfying γ+ β < 1 such that

d(ℵυ,ℵ%) ≤ λ(d(υ, %))γ (d(υ,ℵυ) − d(Ω, Λ))β (d(%,ℵ%) − d(Ω, Λ))1−γ−β ,

for all υ, % ∈ Ω\Best (ℵ) with (υ, %) ∈ E(G).

Therefore, the next result is a direct consequence of Theorem 3.1 (respectively. Theorem 3.2).
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Theorem 4.2. Let ( Φ, d ) be anF -completeF -MS endowed with a graph G, and let Ω and Λ be non-empty
closed subsets of Φ satisfying the weak P-property and Ω0 , ∅. Let ℵ : Ω→ Λ be G-interpolative proximal
contraction and ℵ (Ω0) ⊆ Λ0. Assume that the following conditions hold:

(i) ℵ is proximally G-preserving;

(ii) there exist υ0, υ1 ∈ Ω0 such that d (υ1,ℵυ0) = d(Ω, Λ) and (υ0, υ1) ∈ E(G);

(iii) either ℵ is continuous or if {υn} be a sequence in Ω such that (υn, υn+1) ∈ E(G), for all n ∈N

and υn → υ ∈ Ω as n→∞, then (υn, υ) ∈ E(G) for each n.

Then, ℵ possesses a unique BPP in Ω.

Proof. It follows directly, if we define α : Ω ×Ω→ [0,∞) in this way

α(υ, %) =

 1, if (υ, %) ∈ E(G),

0, otherwise

in Theorem 3.1 (respectively. Theorem 3.2). �

5. Fixed Point Consequences of Best Proximity Results

This section presents results that are closely connected to FP theory, particularly for α-

interpolative contractions. When Ω = Λ = Φ, the corresponding contractive condition simplifies

accordingly. In this case, since d(υ,ℵυ) = d(Ω, Λ) = 0 for a self mapping ℵ, it follows that υ = ℵυ.

Hence, the notion of a BPP naturally reduces to that of a FP. Consequently, an α-interpolative

proximal contraction becomes an α-interpolative FP problem.

Definition 5.1. Let (Φ, d) be anF -MS. A mappingℵ : Φ→ Φ is said to be an α-interpolative contraction,
if there exist λ ∈ (0, 1), a control function α : Φ ×Φ → [0,∞) and positive real numbers γ, β satisfying
γ+ β < 1 such that

d(ℵυ,ℵ%) ≤ λ
(
(d(υ, %))γ(d(υ,ℵυ))β(d(%,ℵ%))1−γ−β

)
,

for all υ, % ∈ Φ\Fiυ(ℵ) with α(υ, %) ≥ 1.

The upcoming result is a consequence of Theorem 3.1 (resp. Theorem 3.2).

Theorem 5.1. Let (Φ, d) be an F -complete F -MS and ℵ : Φ → Φ be an α-interpolative contraction.
Assume that the following conditions hold:

(i) ℵ is α-admissible;

(ii) There exists υ0 ∈ Φ such that α (υ0,ℵυ0) ≥ 1,

(iii) either ℵ is continuous or if there exists a sequence {υn} in Φ such as α (υn, υn+1) ≥ 1 for each

n and υn → υ ∈ Φ as n→∞, then α (υn, υ) ≥ 1 for every n.

Then ℵ has unique FP in Φ.
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Definition 5.2. Let ( Φ, d,≤ ) as a partially ordered F -MS. A mapping ℵ : Φ → Φ is called an ordered
interpolative contraction if there exists a constant λ ∈ (0, 1) and positive real numbers γ, β satisfying
γ+ β < 1 in a way that

d(ℵυ,ℵ%) ≤ λ
(
(d(υ, %))γ(d(υ,ℵυ))β(d(%,ℵ%))1−γ−β

)
,

for all υ, % ∈ Φ\Fix(ℵ) with (υ, %) ∈ ∆.

The following result is a direct consequence of Theorem 4.1.

Theorem 5.2. Let (Φ, d,≤) be an F -complete partially ordered F -MS and ℵ : Φ → Φ be an ordered
interpolative contraction. Assume that the following conditions hold.

(i) ℵ is nondecreasing,

(ii) there exists υ0 ∈ Φ such that υ0 ≤ ℵυ0;

(iii) either ℵ is continuous or If there exists a sequence {υn} in Φ such that υn ≤ υn+1 for each n
and υn → υ ∈ Φ as n→∞, then υn ≤ υ for all n.

Then ℵ admits unique FP in Φ.

Definition 5.3. Let (Φ, d) be an F -MS endowed with a graph G. A mapping ℵ : Φ → Φ is said to be
G-interpolative contraction, if there exists a constant λ ∈ (0, 1) and positive real numbers γ, β satisfying
γ+ β < 1 such that

d(ℵυ,ℵ%) ≤ λ
(
(d(υ, %))γ(d(υ,ℵυ))β(d(%,ℵ%))1−γ−β

)
for all υ, % ∈ Φ\Fix(ℵ) with (υ, %) ∈ E(G).

Definition 5.4. Let (Φ, d) be an F -MS endowed with a graph G. A mapping ℵ : Φ → Φ is called
G-preserving, if for all υ1, υ2 ∈ Φ,

(υ1, υ2) ∈ E(G) =⇒ (ℵυ1,ℵυ2) ∈ E(G).

From Theorem 4.2, we directly obtain the following result.

Theorem 5.3. Let (Φ, d) be F -complete F -MS endowed with a graph G, and let ℵ : Φ → Φ be the
G-interpolative contraction. Assume that the following conditions hold:

(i) ℵ is G-preserving;
(ii) there exists υ0 ∈ Φ such that (υ0,ℵυ0) ∈ E(G),

(iii) either ℵ is continuous or if {υn} is a sequence in Φ such that (υn, υn+1) ∈ E(G) for each n and
υn → υ ∈ Φ as n→∞, then (υn, υ) ∈ E(G) for every n.

Then ℵ has a unique FP.

6. Conclusion

In the framework of F -MSs, the present study has introduced the novel concept of α-

interpolative proximal contractions and established the existence of BPPs for this new class of map-

pings. By extending and refining previously known contractive conditions, the results achieved
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in this work unify and generalize several well-established findings in the existing literature. To

demonstrate the applicability and validity of the theoretical results, explicit illustrative examples

have been provided.

The conclusions of this research open promising directions for future investigation in the theory

of BPPs for fuzzy and generalized mappings in F -MSs. In particular, the potential applications of

these results to fractional and classical differential equations offer a fertile area for continued study.

Additionally, exploring the connections between the present findings and the emerging theory of

orthogonal F -MSs may yield further significant developments in this growing field.
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