Fixed Point Theorems for Contractive Mappings in Non–Archimedean Fuzzy Metric–Like Spaces
Main Article Content
Abstract
A new fixed point theorem is established for generalized contractive mappings in NA-FMLS. The approach utilizes the ultrametric property of the fuzzy metric to ensure the convergence and uniqueness of the fixed point. This result extends several existing principles in fuzzy and b–metric settings and provides a unified framework for further applications in fuzzy nonlinear analysis.
Article Details
References
- A.F. Roldán López de Hierro, A. Fulga, E. Karapınar, N. Shahzad, Proinov-Type Fixed-Point Results in Non-Archimedean Fuzzy Metric Spaces, Mathematics 9 (2021), 1594. https://doi.org/10.3390/math9141594.
- K. Dinesh, D. Gerbeti, K. Zoto, H. Ibnouf, Fixed Point Theorems in Fuzzy Metric Spaces via Generalized Rational-Type Contractions., Int. J. Math. Comput. Sci. (2025), 1003–1011. https://doi.org/10.69793/ijmcs/04.2025/zoto.
- S. Siddamsetti, M.M. Qasim, N. Sravanthi, K. Dinesh, V. Velmurugan, et al., Wireless Sensor Networks with Modular Metric Spaces, J. Interdiscip. Math. 28 (2025), 659–667. https://doi.org/10.47974/jim-2109.
- T. Gopalakrishnan, H.Z. Almngoshi, V.K. Koppula, K. Dinesh, V.K. Sonthi, et al., Fractal Image Compression Using Digital Cone Metric Space, J. Interdiscip. Math. 28 (2025), 647–658. https://doi.org/10.47974/jim-2108.
- K. Dinesh, E. Abdalrhim, M.S. Jazmati, M.A. Mohamed, D. Rizk, Fixed Point Theorems of Multivalued Mappings of Integral Type Contraction in Cone Metric Space and Its Applications, Results Nonlinear Anal. 8 (2025), 124–130. https://doi.org/10.31838/rna/2025.08.01.011.
- K. Zoto, I. Vardhami, D. Bajović, Z. D. Mitrović, S. Radenović, On Some Novel Fixed Point Results for Generalized $alpha$-Contractions in $b$-metric-Like Spaces with Application, Comput. Model. Eng. Sci. 135 (2023), 673–686. https://doi.org/10.32604/cmes.2022.022878.
- H. Huang, K. Zoto, Z.D. Mitrović, S. Radenović, Fixed Point Results for Generalized F-Contractions in B-Metric-Like Spaces, Fractal Fract. 6 (2022), 272. https://doi.org/10.3390/fractalfract6050272.
- S. Siddamsetti, H.Z. Almngoshi, K. Dinesh, G.C. Prashant, M.A. Bennet, et al., Modular Metric Spaces: Some Fixed-Point Theorems and Application of Secure Dynamic Routing for WSN, J. Interdiscip. Math. 27 (2024), 393–401. https://doi.org/10.47974/jim-1890.
- I. Kramosil, J. Michalek, Fuzzy Metrics and Statistical Metric Spaces, Kybernetika 11 (1975), 336–344. https://eudml.org/doc/28711.
- A. George, P. Veeramani, On Some Results in Fuzzy Metric Spaces, Fuzzy Sets Syst. 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7.
- Dinesh Kannan, Hawa Ibnouf Osman Ibnouf, Parametric Metric Spaces and Integral-Type Contractions: New Fixed Point Theorems with Applications, Gulf J. Math. 21 (2025), 512–521. https://doi.org/10.56947/gjom.v21i1.3500.
- K. Dinesh, E. Sila, K. Zoto, B. Shoba, D. Rizk, A Novel Approach of Digital Parametric Metric Space, J. Interdiscip. Math. 28 (2025), 2677–2686. https://doi.org/10.47974/jim-2313.