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Abstract. A new fixed point theorem is established for generalized contractive mappings in NA-FMLS. The approach
utilizes the ultrametric property of the fuzzy metric to ensure the convergence and uniqueness of the fixed point. This
result extends several existing principles in fuzzy and b-metric settings and provides a unified framework for further

applications in fuzzy nonlinear analysis.

1. INTRODUCTION

FP theory in FMS plays a crucial role in the analysis of nonlinear systems involving uncertainty
and imprecision. Since the pioneering work of Kramosil & Michalek [9] and the refinement by
George & Veeramani [10], FMS have become a rich environment for generalizing classical FP results.
Recently, the concept of non—-Archimedean FMS has been developed to model ultrametric-type
behaviors, where the triangular inequality is replaced by a stronger non—-Archimedean condition
(see Roldén et al. [1]). Such structures naturally arise in p-adic analysis, digital topology, and
nonlocal dynamics.

The present investigation is intended to establish a new FP theorem for a broad class of general-
ized contractive mappings defined on NA-FMLS. The introduced framework generalizes several
existing results in fuzzy and b—metric settings and provides a unified tool for analyzing conver-
gence in ultrametric fuzzy environments. The obtained theorem also ensures the existence and

uniqueness of FPs via a suitable contractive inequality involving six control parameters.

Definition 1.1. [1,10] Let (Y, E, ) be a FMS, where * represents a continuous t-norm. The space is called
a EMS if the mapping Z : Y X Y x (0,00) — [0, 1] fulfils the following properties for every 3,v,1 € Y and
foralls,t > 0:
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(1) E(3,0,0) =0and E(3,v,5) = 1iff3=10;
(2) E3,v,5) = &(v,3,5);
(3) E(3,v,8)*E(v, 1) <E(3,Ls+1);

(4) E(3,v,-) is continuous on (0, ).

0
0

If, in addition, the stronger non—Archimedean property
E3,Ls) >2E(3,0,8)+E(v,1,5)
holds for all 3,v,1€ Y and s > 0, then (Y, E, #) is called a NA-FMLS.
For a fixed s > 0, define the auxiliary function
A3,0):=1-E(3,9,9), 3,0EY,
so that A is an ultrametric on Y induced by the non—-Archimedean fuzzy metric.

Theorem 1.1. Let (Y, E, *) be an E-complete NA-FMLS. Fix s > 0 and set A as above. Let T : Y — Y
be a mapping for which there exist nonnegative constants Ay, ..., A¢ satisfying

A= iAi <1,
i=1

and such that for all 3,v € Y
A(T3,Tv) < AAB,0) + A2A(3,T3) + A3A(v, T o)
+ MAG, T) + AsA (v, T3) + As(AG, T0) + A(v, T3)).
Then T has a UFP I* € Y and, for any Iy € Y, the Picard iteration 1,1 = T 1, converges to I in the fuzzy

metric E.

(1.1)

Proof. Let [) € Y and define ;1 = 71,. Denote A, := A(l,41,1,). Applying (1.1) with 3 = [,
v = I,—1 and using the ultrametric property A(l,—1,l,+1) < max{A,_1,A,}, we obtain

e M+ Az + A5+ Ag <
o 1-4,

since A < 1. By induction, A, — 0, so {I,,} is Cauchy. Completeness of (Y, E, *) ensures convergence

An S KAI’Z—lI 1/

to some [ € Y.

Passing to the limit in (1.1) with 3 = [, and v = I* gives A(I', 7T*) = 0, i.e., ' is a FP. Uniqueness
follows from the contraction: if w* is another FP, A(I*, w*) < (A1 + As + A5 + Ag) A(IF, w*) < A(F, w*),
so I' = w". Picard iteration converges to I* by construction. O
Corollary 1.1. Under the assumptions of Theorem 1.1, if the mapping T satisfies the simpler condition

A(T3,7v) < Amax{A(3,v),A(3,73),A(v, To)}, 0<A<1,
then T~ has a UFP in Y and the Picard iteration converges to it.

Proof. The result follows directly from Theorem 1.1 by setting A1 = A, = A3 = A and A4 = A5 =
Ae = 0. O
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Theorem 1.2. Let (Y,E,*) be an E-complete NA-FMLS, and let A(3,v) = 1—-2(3,0,5). Suppose
T : Y — Y satisfies

A(T3,T0v) <al(3,0) +5(A(3,7'3) +A(v,7'v)) +ymax{A(3,7v),A(v, T3)},

for constants a, B,y > 0 with « + 2B +y < 1. Then T has a UFP 1", and the Picard iteration converges to
it.

Proof. Start with any [y € Y and define [, .1 = 7 1,,. Denote A, := A(l,11, ;). Using the contraction
and the ultrametric property A(l,—1, [,+1) < max{A,_1, A4}, we obtain a simple recursive bound

a+p+
AN, < kA, K:Z%ﬁy<l.
By induction, A, — 0, so {I,;} is Cauchy. Completeness ensures [, — I € Y.
Passing to the limit in the contraction shows A(I*, 71°) = 0, hence I" is a FP. Uniqueness follows
similarly: for any other FP w*, A(I*,w*) < (a + y)A(I*, w*) < A(I",w*), so A(T",w*) =0, i.e, ' = w".

Picard iteration converges by construction. m]

2. ArprricaTION TO INTEGRAL EQUATIONS

Consider the nonlinear Volterra integral equation

u(t) = g(t) + j:K(t,s,u(s))ds, te[0,T],

where ¢ and K are continuous. Define (7 u)(t) = g(t) + fot K(t,s,u(s))ds.
On C([0,T],R), define
It = vlleo 4+ min{lu(0)1, [v(0)1}

M(u,v,s) = exp( ; , s>0.

Then M(u,u,s) = e *O1/s < 1,50 (C([0, T], R), M, *) is a complete NA-FMLS.
If K satisfies
IK(t,s,u) —K(t,s,0)| < alu—v|+ Blu—Tul+ ylu—To|,
fora,B,y > 0witha + 2B+ y < 1, then 7 is a contraction in this fuzzy metric-like space. Hence

7 admits a UFP u*, which is the unique solution of the integral equation.

When u(0) = 0, M reduces to the usual non-Archimedean fuzzy metric M(u,v,s) = e l#?l=/s,

Abbreviations: FP- Fixed Point, UFP- Unique Fixed Point, FMS - fuzzy metric spaces, NA-FMLS

- non-Archimedean fuzzy metric-like spaces
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