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Abstract. A new fixed point theorem is established for generalized contractive mappings in NA-FMLS. The approach

utilizes the ultrametric property of the fuzzy metric to ensure the convergence and uniqueness of the fixed point. This

result extends several existing principles in fuzzy and b–metric settings and provides a unified framework for further

applications in fuzzy nonlinear analysis.

1. Introduction

FP theory in FMS plays a crucial role in the analysis of nonlinear systems involving uncertainty

and imprecision. Since the pioneering work of Kramosil & Michálek [9] and the refinement by

George & Veeramani [10], FMS have become a rich environment for generalizing classical FP results.

Recently, the concept of non–Archimedean FMS has been developed to model ultrametric-type

behaviors, where the triangular inequality is replaced by a stronger non–Archimedean condition

(see Roldán et al. [1]). Such structures naturally arise in p-adic analysis, digital topology, and

nonlocal dynamics.

The present investigation is intended to establish a new FP theorem for a broad class of general-

ized contractive mappings defined on NA-FMLS. The introduced framework generalizes several

existing results in fuzzy and b–metric settings and provides a unified tool for analyzing conver-

gence in ultrametric fuzzy environments. The obtained theorem also ensures the existence and

uniqueness of FPs via a suitable contractive inequality involving six control parameters.

Definition 1.1. [1,10] Let (Y, Ξ, ∗) be a FMS, where ∗ represents a continuous t-norm. The space is called
a FMS if the mapping Ξ : Y×Y× (0,∞)→ [0, 1] fulfils the following properties for every z, v, l ∈ Y and
for all s, t > 0:
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(1) Ξ(z, v, 0) = 0 and Ξ(z, v, s) = 1 iff z = v;
(2) Ξ(z, v, s) = Ξ(v, z, s);
(3) Ξ(z, v, s) ∗ Ξ(v, l, t) ≤ Ξ(z, l, s + t);
(4) Ξ(z, v, ·) is continuous on (0,∞).

If, in addition, the stronger non–Archimedean property

Ξ(z, l, s) ≥ Ξ(z, v, s) ∗ Ξ(v, l, s)

holds for all z, v, l ∈ Y and s > 0, then (Y, Ξ, ∗) is called a NA-FMLS.

For a fixed s > 0, define the auxiliary function

∆(z, v) := 1− Ξ(z, v, s), z, v ∈ Y,

so that ∆ is an ultrametric onY induced by the non–Archimedean fuzzy metric.

Theorem 1.1. Let (Y, Ξ, ∗) be an Ξ-complete NA-FMLS. Fix s > 0 and set ∆ as above. Let T : Y → Y

be a mapping for which there exist nonnegative constants λ1, . . . ,λ6 satisfying

Λ :=
6∑

i=1

λi < 1,

and such that for all z, v ∈ Y

∆(T z,T v) ≤ λ1∆(z, v) + λ2∆(z,T z) + λ3∆(v,T v)

+ λ4∆(z,T v) + λ5∆(v,T z) + λ6

(
∆(z,T v) + ∆(v,T z)

)
.

(1.1)

Then T has a UFP l∗ ∈ Y and, for any l0 ∈ Y, the Picard iteration ln+1 = T ln converges to l∗ in the fuzzy
metric Ξ.

Proof. Let l0 ∈ Y and define ln+1 = T ln. Denote ∆n := ∆(ln+1, ln). Applying (1.1) with z = ln,

v = ln−1 and using the ultrametric property ∆(ln−1, ln+1) ≤ max{∆n−1, ∆n}, we obtain

∆n ≤ κ∆n−1, κ :=
λ1 + λ3 + λ5 + λ6

1− λ2
< 1,

since Λ < 1. By induction, ∆n → 0, so {ln} is Cauchy. Completeness of (Y, Ξ, ∗) ensures convergence

to some l∗ ∈ Y.

Passing to the limit in (1.1) with z = ln and v = l∗ gives ∆(l∗,T l∗) = 0, i.e., l∗ is a FP. Uniqueness

follows from the contraction: if w∗ is another FP, ∆(l∗, w∗) ≤ (λ1 +λ4 +λ5 +λ6)∆(l∗, w∗) < ∆(l∗, w∗),
so l∗ = w∗. Picard iteration converges to l∗ by construction. �

Corollary 1.1. Under the assumptions of Theorem 1.1, if the mapping T satisfies the simpler condition

∆(T z,T v) ≤ λmax{∆(z, v), ∆(z,T z), ∆(v,T v)}, 0 ≤ λ < 1,

then T has a UFP inY and the Picard iteration converges to it.

Proof. The result follows directly from Theorem 1.1 by setting λ1 = λ2 = λ3 = λ and λ4 = λ5 =

λ6 = 0. �
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Theorem 1.2. Let (Y, Ξ, ∗) be an Ξ-complete NA-FMLS, and let ∆(z, v) = 1 − Ξ(z, v, s). Suppose
T : Y → Y satisfies

∆(T z,T v) ≤ α∆(z, v) + β
(
∆(z,T z) + ∆(v,T v)

)
+ γmax{∆(z,T v), ∆(v,T z)},

for constants α, β,γ ≥ 0 with α+ 2β+ γ < 1. Then T has a UFP l∗, and the Picard iteration converges to
it.

Proof. Start with any l0 ∈ Y and define ln+1 = T ln. Denote ∆n := ∆(ln+1, ln). Using the contraction

and the ultrametric property ∆(ln−1, ln+1) ≤ max{∆n−1, ∆n}, we obtain a simple recursive bound

∆n ≤ κ∆n−1, κ :=
α+ β+ γ

1− β
< 1.

By induction, ∆n → 0, so {ln} is Cauchy. Completeness ensures ln → l∗ ∈ Y.

Passing to the limit in the contraction shows ∆(l∗,T l∗) = 0, hence l∗ is a FP. Uniqueness follows

similarly: for any other FP w∗, ∆(l∗, w∗) ≤ (α+ γ)∆(l∗, w∗) < ∆(l∗, w∗), so ∆(l∗, w∗) = 0, i.e., l∗ = w∗.
Picard iteration converges by construction. �

2. Application to Integral Equations

Consider the nonlinear Volterra integral equation

u(t) = g(t) +
∫ t

0
K(t, s, u(s)) ds, t ∈ [0, T],

where g and K are continuous. Define (Tu)(t) = g(t) +
∫ t

0 K(t, s, u(s)) ds.

On C([0, T], R), define

M(u, v, s) = exp
(
−
‖u− v‖∞ + min{|u(0)|, |v(0)|}

s

)
, s > 0.

Then M(u, u, s) = e−|u(0)|/s
≤ 1, so (C([0, T], R), M, ∗) is a complete NA-FMLS.

If K satisfies

|K(t, s, u) −K(t, s, v)| ≤ α|u− v|+ β|u−Tu|+ γ|u−T v|,

for α, β,γ ≥ 0 with α+ 2β+ γ < 1, then T is a contraction in this fuzzy metric–like space. Hence

T admits a UFP u∗, which is the unique solution of the integral equation.

When u(0) = 0, M reduces to the usual non–Archimedean fuzzy metric M(u, v, s) = e−‖u−v‖∞/s.

Abbreviations: FP- Fixed Point, UFP- Unique Fixed Point, FMS - fuzzy metric spaces, NA-FMLS

- non–Archimedean fuzzy metric–like spaces
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