On the Solvability of Quadratic Multi-Term Hybrid Equation with Nonlocal Hybrid Condition in Banach Algebra Spaces
Main Article Content
Abstract
This paper investigates the existence of solutions for a class of multi-term hybrid functional equations subject to nonlocal and fractional conditions. We first establish sufficient conditions to ensure the existence of at least one continuous solution by applying Dhage’s fixed-point theorem within an appropriate Banach algebra framework. Subsequently, we extended the analysis to integrable solutions in the Lebesgue space L1(J,R) under Carathéodory-type growth conditions. The uniqueness of solutions is then addressed by imposing Lipschitz-type constraints on nonlinear and hybrid terms. Furthermore, we examine the continuous dependence of solutions on initial data and parameters. Several illustrative examples are presented to demonstrate the applicability and validity of the obtained results. The theoretical framework developed here unifies and generalizes various existing results for hybrid and nonlocal fractional differential equations.
Article Details
References
- B. Rzepka, K. Sadarangani, On Solutions of an Infinite System of Singular Integral Equations, Math. Comput. Model. 45 (2007), 1265–1271. https://doi.org/10.1016/j.mcm.2006.11.006.
- J. Banaś, A. Chlebowicz, On Solutions of an Infinite System of Nonlinear Integral Equations on the Real Half-Axis, Banach J. Math. Anal. 13 (2019), 944–968. https://doi.org/10.1215/17358787-2019-0008.
- J. Banaś, A. Chlebowicz, W. Woś, On Measures of Noncompactness in the Space of Functions Defined on the Half-Axis with Values in a Banach Space, J. Math. Anal. Appl. 489 (2020), 124187. https://doi.org/10.1016/j.jmaa.2020.124187.
- B. Ahmad, A. Broom, A. Alsaedi, S.K. Ntouyas, Nonlinear Integro-Differential Equations Involving Mixed Right and Left Fractional Derivatives and Integrals with Nonlocal Boundary Data, Mathematics 8 (2020), 336. https://doi.org/10.3390/math8030336.
- A. Alsaedi, B. Ahmad, H. Al-Hutami, B. Alharbi, Investigation of Hybrid Fractional q-Integro-Difference Equations Supplemented with Nonlocalq-Integral Boundary Conditions, Demonstr. Math. 56 (2023), 20220222. https://doi.org/10.1515/dema-2022-0222.
- A.M.A. El-Sayed, H.H.G. Hashem, S.M. Al-Issa, A Comprehensive View of the Solvability of Non-Local Fractional Orders Pantograph Equation with a Fractal-Fractional Feedback Control, AIMS Math. 9 (2024), 19276–19298. https://doi.org/10.3934/math.2024939.
- I. Podlubny, Fractional Differential Equations, Academic Press, (1998).
- A. Kilbas, H.M. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, (2006).
- E.T. Karimov, B. López, K. Sadarangani, About the Existence of Solutions for a Hybrid Nonlinear Generalized Fractional Pantograph Equation, Fract. Differ. Calc. 6 (2016), 95–110. https://doi.org/10.7153/fdc-06-06.
- K. Diethelm, The Analysis of Fractional Differential Equations, Springer, (2010).
- K. Balachandran, S. Kiruthika, J. Trujillo, Existence of Solutions of Nonlinear Fractional Pantograph Equations, Acta Math. Sci. 33 (2013), 712–720. https://doi.org/10.1016/s0252-9602(13)60032-6.
- M.S. Abdo, T. Abdeljawad, K.D. Kucche, M.A. Alqudah, S.M. Ali, et al., On Nonlinear Pantograph Fractional Differential Equations with Atangana–Baleanu–Caputo Derivative, Adv. Differ. Equ. 2021 (2021), 65. https://doi.org/10.1186/s13662-021-03229-8.
- A. Samadi, S.K. Ntouyas, J. Tariboon, Nonlocal Fractional Hybrid Boundary Value Problems Involving Mixed Fractional Derivatives and Integrals via a Generalization of Darbo’s Theorem, J. Math. 2021 (2021), 6690049. https://doi.org/10.1155/2021/6690049.
- B.C. Dhage, V. Lakshmikantham, Basic Results on Hybrid Differential Equations, Nonlinear Anal.: Hybrid Syst. 4 (2010), 414–424. https://doi.org/10.1016/j.nahs.2009.10.005.
- N. Mahmudov, M.M. Matar, Existence of Mild Solution for Hybrid Differential Equations With Arbitrary Fractional Order, TWMS J. Pure Appl. Math. 8 (2017), 160–169.
- S. Sitho, S.K. Ntouyas, J. Tariboon, Existence Results for Hybrid Fractional Integro-Differential Equations, Bound. Value Probl. 2015 (2015), 113. https://doi.org/10.1186/s13661-015-0376-7.
- B. AHMAD, S.K. NTOUYAS, J. TARIBOON, A Nonlocal Hybrid Boundary Value Problem of Caputo Fractional Integro-Differential Equations, Acta Math. Sci. 36 (2016), 1631–1640. https://doi.org/10.1016/s0252-9602(16)30095-9.
- A.M.A. El-Sayed, H.H.G. Hashem, S.M. Al-Issa, Z.M. Assi, Comprehensive Approach of an Implicit Hybrid Urysohn–Stieltjes Integral Inclusions via Fractal Differential Constraint, J. Math. 2024 (2024), 5384944. https://doi.org/10.1155/2024/5384944.
- A.M. El-Sayed, S.M. Al-Issa, On the Existence of Solutions of a Set-Valued Functional Integral Equation of Volterra–Stieltjes Type and Some Applications, Adv. Differ. Equ. 2020 (2020), 59. https://doi.org/10.1186/s13662-020-2531-4.
- A. El-Sayed, S. Al-Issa, Y. Omar, On Chandrasekhar Functional Integral Inclusion and Chandrasekhar Quadratic Integral Equation via a Nonlinear Urysohn–Stieltjes Functional Integral Inclusion, Adv. Differ. Equ. 2021 (2021), 137. https://doi.org/10.1186/s13662-021-03298-9.
- A.M.A. El-Sayed, S.M. Al-Issa, H.H.G. Hashem, I.H. Kaddoura, A.A. El-Bakari, Inclusive Analysis of a Nonlocal Fractional Hybrid Differential Problem via Differential Feedback Control, J. Math. Comput. Sci. 37 (2024), 449–464. https://doi.org/10.22436/jmcs.037.04.07.
- K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985. https://doi.org/10.1007/978-3-662-00547-7.
- J. Dugundji, A. Granas, Fixed Point Theory, Monografie Matematyczne, PWN, Warsaw, 1982.
- C.W. Swartz, Measure, Integration and Function Spaces, World Scientific, (1994).
- A.N. Kolmogorov, S.V. Fomin, Introductory Real Analysis, Courier Corporation, (1975).
- G. Grigorian, S.V. George, S. Lishak, R.J. Shipley, S. Arridge, A Hybrid Neural Ordinary Differential Equation Model of the Cardiovascular System, J. R. Soc. Interface 21 (2024), 20230710. https://doi.org/10.1098/rsif.2023.0710.
- M.R. Doostdar, A.R. Vahidi, T. Damercheli, E. Babolian, A Numerical Method Based on Hybrid Functions for Solving a Fractional Model of HIV Infection of CD4$^+$ T Cells, Math. Sci. 17 (2022), 157–167. https://doi.org/10.1007/s40096-021-00450-0.
- H.A. Hammad, H. Aydi, M.G. Alshehri, Solving Hybrid Functional-Fractional Equations Originating in Biological Population Dynamics with an Effect on Infectious Diseases, AIMS Math. 9 (2024), 14574–14593. https://doi.org/10.3934/math.2024709.
- T. Thummerer, J. Tintenherr, L. Mikelsons, Hybrid Modeling of the Human Cardiovascular System Using NeuralFMUs, J. Phys.: Conf. Ser. 2090 (2021), 012155. https://doi.org/10.1088/1742-6596/2090/1/012155.
- L. He, L. Yi, P. Tang, Numerical Scheme and Dynamic Analysis for Variable-Order Fractional Van Der Pol Model of Nonlinear Economic Cycle, Adv. Differ. Equ. 2016 (2016), 195. https://doi.org/10.1186/s13662-016-0920-5.
- B. Dhage, Existence Results for Neutral Functional Differential Inclusions in Banach Algebras, Nonlinear Anal.: Theory Methods Appl. 64 (2006), 1290–1306. https://doi.org/10.1016/j.na.2005.06.036.
- B.C. Dhage, D. O'Regan, A Fixed Point Theorem in Banach Algebras With Applications to Functional Integral Equations, Funct. Differ. Equ. 7 (2000), 259–267.