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Abstract. This paper investigates the existence of solutions for a class of multi-term hybrid functional equations
subject to nonlocal and fractional conditions. We first establish sufficient conditions to ensure the existence of at least
one continuous solution by applying Dhage’s fixed-point theorem within an appropriate Banach algebra framework.
Subsequently, we extended the analysis to integrable solutions in the Lebesgue space L! (], R) under Carathéodory-type
growth conditions. The uniqueness of solutions is then addressed by imposing Lipschitz-type constraints on nonlinear
and hybrid terms. Furthermore, we examine the continuous dependence of solutions on initial data and parameters.
Several illustrative examples are presented to demonstrate the applicability and validity of the obtained results. The
theoretical framework developed here unifies and generalizes various existing results for hybrid and nonlocal fractional

differential equations.

1. INTRODUCTION

The theory of multi-term and hybrid functional equations has seen substantial development
in recent years, motivated by their effectiveness in modeling phenomena exhibiting memory
effects, delay responses, and nonlocal interactions. Such equations naturally arise in fields ranging
from biology and physics to engineering, where the system’s present dynamics are intrinsically
influenced by its past and nonlocal properties.

Infinite systems and multi-term functional equations—studied in depth by Rzepka &
Sadarangani [1], Bana$ & Chlebowicz [2], and Banas et al. [3]—have proven versatile in mod-

eling dynamics where systems evolve based on both current and historic states. These works
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underscore the necessity of general frameworks to capture delayed or distributed interactions
within evolving systems.

Simultaneously, nonlocal boundary conditions have garnered scholarly attention due to their
practical relevance: unlike classical local constraints, nonlocal conditions integrate the system’s
behavior over an interval, thereby reflecting real-world boundary dependencies. Noteworthy
contributions in this area include Ahmad et al. [4] and Alsaedi et al. [5], who examined fractional
integro-differential systems with mixed right-left fractional derivatives under nonlocal regimes.
In particular, El-Sayed et al. [6] studied pantograph-type fractional problems with nonlocal and
fractal-fractional feedback control, establishing existence and uniqueness of solutions under such
complex constraints.

Foundational works by Podlubny [7] and Kilbas et al. [8] laid the analytical groundwork by
systematically developing fractional calculus—with an emphasis on Caputo derivatives—and
their role in boundary and nonlocal problems. These constructions have enabled the theoretical
handling of systems whose evolution depends on their entire history.

Hybrid functional-differential equations further enlarge modeling capabilities by combining
integral, delay, and functional terms. These models, illustrated in broad settings such as biological
systems, control theory, and physics, capture phenomena with both instantaneous and delayed
responses. Karimov et al. [9] explored hybrid fractional pantograph equations using noncompact-
ness measures, offering a rigorous approach to hybrid systems analysis.

The solvability of such hybrid systems under nonlocal boundary conditions has been primarily
addressed using fixed-point methods. Classical fixed-point theorems—such as Banach’s contrac-
tion principle and Schauder’s theorem—have been widely applied. For example, Diethelm [10]
employed Schauder—Banach techniques to establish existence results in fractional boundary value
problems, while Balachandran et al. [11] and Abdo et al. [12] extended these methods to an-
alyze pantograph fractional equations with various fractional operators, including the Atan-
gana—-Baleanu—Caputo derivative.

More recently, Samadi et al. [13] developed new stability and existence protocols for hybrid
models using Darbo-type and measure-of-noncompactness methods. In parallel, Dhage and
Lakshmikantham [14] provided fundamental results on hybrid differential equations via fixed-
point strategies in Banach algebras. Mahmudov and Matar [15], Sitho et al. [16], and Bashir et
al. [17] expanded these frameworks to treat hybrid fractional systems with arbitrary order and
nonlocal hybrid conditions.

Notable applications of these theories include the hybrid Urysohn-Stieltjes integral inclusions
addressed by El-Sayed et al. [18-20], leveraging fractal differential modeling. Likewise, El-Sayed et
al. [21] introduced a fractional hybrid formulation with embedded feedback control under nonlocal
boundary conditions, deriving robust existence and stability results.

Building on the foundational and contemporary literature—especially the hybrid fractional and

nonlocal models referenced above—our paper investigates the solvability of a quadratic multi-term



Int. J. Anal. Appl. (2026), 24:25 3

hybrid functional equation under nonlocal hybrid boundary conditions. Central to our approach
is the use of Dhage’s fixed-point theorem in Banach algebras [14], which offers a powerful tool for
establishing the existence of solutions in settings where classical contraction-based methods may
fail.

Concretely, we consider a class of quadratic multi-term hybrid functional equations

d(vt) =T eutv(®))  ( d(v(e®t) - Ti wultvie(t)
il T, wx(t () )=l I, woxlt v ((1) ) v
d (v(p1(t) = Ty @yt v(r (1) 0 v(s) = L w1i(s,v(s))
a ha(t,s, DM ds, ...,
g2(t dt( T onltv(gi(1)) )fo P T e )
a (v(e(0) = T wnlt, v(@e)| (O vls) = B anls ()
df( T wnilt (@) )fo s D e ) ds)’
restricted to nonlocal hybrid initial constraints
k .
V(t) —kZizl a)ll(t,v(t)) (1.2)
Yiq w2t v(t)) =0
. f 9(5, Ok Li wu<s,v<s>>,Dﬁ(v<s> —sz_l w1i(s,v(s)) )) PR
0 Yiq @2i(s,v(s)) Yiq @2i(s,v(s))
For t,7 € ] = [0,1], where D? is the Caputo fractional derivative of order 6 € {a;,f} and

0<aj,p <1, With g1, w1; € C(JXR,R) and wy; € C(J xR, R\ {0}) are given continuous functions.
Furthermore, the functions ¢ € C(J X R¥),and h; € C(J>xR,R) fori = 1,2,...,k, are Carathéodory
function, measurable in t,s € | for all v € R and continuous in v € R for all ¢,s € |]. We establish
the existence of continuous solutions by framing our problem as an operator equation Ax Bx = x
in a Banach space of continuous functions, verifying Dhage’s conditions (A as a D-Lipschitz map,
B completely continuous, etc.), and applying his fixed-point theorem.

Organization of the Paper, Sec.2: Formulation of the multi-term hybrid problem, assumptions,
and operator setup. We then state and prove the main existence result via Dhage’s theorem. Sec.3:
We study the continuous dependence of solutions on initial data and parameters Sec.4: A concrete
illustrative example demonstrating the theory in a specific hybrid fractional-delay setting. Sec.5:
Summary of main findings, potential extensions, and future research directions.

Through this work, we aim to enrich the mathematical toolbox available for hybrid fractional
systems and demonstrate how Dhage’s fixed-point theorem elegantly addresses existence issues

in complex nonlocal hybrid frameworks.

2. ExisTENCE REsuLt

We prove the existence of a solution for our problem via a fixed point theorem in a Banach
algebra due to Dhage [32].

Theorem 2.1. [32]Let S be a non-empty, closed, convex and bounded subset of the Banach algebra X and
let A: X — Xand B :S — X be two operators such that
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(a) Ais D-Lipschitz with D-function 1,

(b) B is completely continuous,

() y=AyBz=yeSforallze€ S, and

(d) My(r) <r, where M = ||B(S)|| = sup{|[Byll : y € S}.

Then the operator equation Ay By = y has a solution in S.

2.1. Quadratic multi-term functional equation with multi-delays. Let

v(t) = Ly 0yt v(t))

i @ailtv(h)
then we can deduce that any solution of (1.1) is given by
k k
v(t) = Y wnlt,v(t) +x(8) ) walt, v(t)), te] 2.2)
i=1 i=1
where x is a solution to the following quadratic multi-term equation
dx(t
1 — gt x(o(1) 23
d ¢ 1 (t) d ¢ Ve(t)
gz(t, w f n(t,s, D (x(s))) ds, ., X((Z—"t(”) f (1,5, D% (x(s))) ds ,
0 0
with the nonlocal hybrid condition
x(0) —f 0(s,x(t), DPx(s)) ds = xo, t € ], p € (0,1] (2.4)
0

Consider the quadratic multi-term functional equations (2.3) and (2.4), subject to the following

assumptions:

(i) Letg, ¢, ¢;i:[0,1] = [0,1], fori=1,2,...,k, be continuous functions such that

(t), ¢i(t), ¢i(t) <t, forallte[0,1].

(ii) Let g» : ] x RF - R be a continuous function. Suppose there exists a positive constant / > 0
such that

k
|82(t,x1,%2, -, k) = ga (b, Y1, y2, - y)| ST i = i,
i=1

1
for each t € J and for all x;, y; € R. Moreover, the function t — ¢>(t,0,0,...,0) belongs to
the space C(R), and we have

k
|2 (8, x1, %2, ..., x¢)| < ZZ Ixi| + G2, where G, = sup |g2(t,0,0,...,0)|}.
i=1 te]

(iif) Let g1 : ] X R — R be a continuous function. Suppose there exists a positive constant 7 > 0
such that

lg1(t,x) = g1(t, y)l < nlx = yl,
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for each t € J and for all x, y € R. Moreover, the function ¢ — g (t,0) belongs to the space
C(J,R), and we have

1g1(¢, x)| < nlx| + G1,, where G1 = sup |g1(t,0)|}.
te]

(iv) Leth; : xR — R, fori = 1,2,...,k, be continuous functions for all t,s € ] and x € R.

Suppose there exist measurable and bounded functions a;, b; : ] X | — R such that
|hi(t,s,x) = hi(t,s,y)| < bi(t,s)Ix—yl, tse], x,yeR,
and
|hi(t,s,x)| < ai(t,s) +bi(t,s)|xl, t,se], xeR.
Moreover, define
a =supla(t,s): t,se]}, b =sup{bi(t,s): t,se]}.

(v) Let 0 : ] x R*> — R be a continuous function in t € ] and in (x, y) € R?. Suppose there exist

measurable and bounded functions n1,m : | — R such that

10(t1, 21, y1) = O(t2, 22, y2)| S m(t)(Ivs = x2l + [y = y2l),  te],

and
10(t,x,y)| < In(t)| + m(t) (I +1yl),  n(t) = 6(£,0,0), te].

Now we establish the following lemma.

Lemma 2.1. Suppose that the system defined by equations (2.3) and (2.4) admits a solution. Then this
solution also satisfies the equivalent fractional integral form

T £
x(t) = xo +f H(S,x(s),ll‘ﬁy(s))ds +f y(s)ds, (2.5)
0 0
where the function y(t) satisfies the nonlinear integral equation

y(t) = g1(t y(p(t))) x (2.6)

P1(t) i (t)
gz(t,y@l(t)) [ mles ) ds v [ mles ) s e,

Hence, the original system (2.3)—(2.4) is equivalent to the system given by (2.5) and (2.6).

Proof. Let x be a solution of the system defined by equations (2.3) and (2.4), and denote y(t) = %
Then, by integrating both sides with respect to t, we obtain the classical integral form:
t
x(t) = x(0) +f y(s) ds. (2.7)
0

which implies that the function x must satisfy the fractional-order integral equation:
t

1
x(t):xo—i—f(; 9(s,x(s),11_5y(s))ds—|—j0‘ y(s)ds.
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a
Now, applying the definition of the Riemann-Liouville fractional derivative D%x(t) = I'~¢ d_)tc to

the equation (2.3), and replacing % by y(t), we arrive at:

dx(t) @ (tlw)xgz(t, dx(1 (1)) f " hy (t,s,ll‘alm)ds,.--,
0

dt dt dt ds
dx(y(t)) (V) 1oa, 9%(s)
T fo hk t, S,I 7 ds|.
d
Substituting % = y(s), we rewrite the above as:

P (£)
y(t) = & (t,y((p(t)))ng[t,y(cin(t))fo I (t,s,1'=1y(s))ds, ...,

P ()
y(¢x(t)) L hy (t, s, Il_“ky(s)) ds).

This demonstrates that y satisfies the nonlinear integral equation (2.6), and that x satisfies
the integral formulation (2.5). Hence, the original problem defined by equations (2.3)—(2.4) is
equivalent to the system consisting of (2.5) and (2.6).

O

Theorem 2.2. Let assumption (i)-(v) be satisfied. then the multidimensional functional equation (2.6) has

at least one solution y = y(t) which belongs to the space in the space C(J).
Proof. Define the set S as follows:
S={yeXllyll<r},

where 7 is a root to the following cubic formula:

nlkb > + (Gylkb + nika)r? + (Gylka + nGa = 1)r + G1G, = 0.

The set S is nonempty, closed, bounded, convex, and a subset of the Banach algebra X
Define operators A : X — X and 8 : X — S as follows:
For y € X, define

A1) = g1(t y(e(1)))-
Since g is Lipschitz in the second argument with constant 1, and ¢(t) < t, we have:

|A(x)(t) = A(y) (D] < nlx(p(t)) — y(@ ()] < nllx = yll.

So A is Lipschitz with constant 7.
Now define the operator 8 : X — S by

1 (1) Uy (t)
B(y) () :gz[t, y(@r(6) fo Bt 5,17 (y())) ds, ..., y((£)) fo (s, 1= (y(s)) ds |
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Now, we aim to prove that the operator 8 is completely continuous. To this end, we divide the
proof into two steps: first, we show that 8 is continuous on the space S; then, we demonstrate that
it is compact.

Step 1: Continuity of 8.

Let {y.}nen be a sequence in S such that

nh_r)n lly. —yll =0, forsomey €S.

We will show that B(y,) — B(y) in norm in X. Fix f € . By the definition of 8, we have:

1 (t) i (£)
B(yn><t>=gz[t,yn<¢1<t>> f It 5,17 (y(5))) ds, .y (5(8)) f et 5, 1% (y(s))) ds |,
Let us denote

Vi(t)
Hi(t) = f hi(t,s, 1'% (y(s)))ds, fori=1,...,k
0

Since y, — y uniformly, for any € > 0, there exists N € IN such that for all n > N:

192 (04(8)) = y(i(1))| < 537, where H = max|Hy(1)| < oo,

by the continuity and boundedness of h; and the compactness of J.

Now consider the convergence of the arguments of g». Foreachi =1,...,k

Yu(di(t))Hi(t) = y(¢i(t))Hi(t) asn — oo.

Because each component converges and g» is continuous by assumption, then by continuity of

g2, we have:

lim B(y,)(t) = B(y)(t), Vie].
Hence, 8 is continuous from C(],R) — C(],R).
Step 2: Compactness of 8.
To prove that B is compact on S, it suffices to show that the image B(S) is relatively compact in
X = C([0,1]). By the Arzela-Ascoli theorem, this is guaranteed if 8(S) is uniformly bounded and
equicontinuous.

To prove the uniform boundedness, Now, fix t € |, and define

;i (t)
Alt) = y(@i(0)) f it 5,14 (y(s)) ) ds.

Using the growth condition of ;, we estimate:

Vi(t) Vi(t)
f hi(t,s, Il_"‘i(y(s))) ds| < f |h,-(t, s, Il_“"(y(s)))|ds
0 0

Vi(t) Pi(t)
< f a;(t,s)ds + f bi(t,s)[I'% (y(s))|ds
0 0
<a-yi(t) +b-i(t) - % (y)ll < a+bM,,

where M, := sup,; II'=%(y(t))] is finite by the assumption that y € C(J).



8 Int. . Anal. Appl. (2026), 24:25

Thus,
A < lIyll- (a+bM,) < r(a+bM,).

Applying the growth bound of g, we get:

k
IB(y) (1)) = [82(t, A1(8), ..., Ac(£)] 1Y Ai(E)| + Ga < Ikr(a + BM,) + Go.
i=1

Therefore, forallx € S,and all t € J,
1B(y)(t)] < My := lkr(a + bM,) + Go.

Hence, we conclude:

IB(y)ll :=sup|B(y)(£)| <My, VYyeS.

te]

So, The operator 8 maps the set S ¢ C(]) into a uniformly bounded subset of C(]), with uniform
bound

My = Ikr(a+bM,) + G,.

Now, to prove the equicontinuity of B(S), we aim to show that the set 8(S) c C([0, 1]) is equicon-

tinuous. That is, we need to prove the following:

Ve >0, 30 >0suchthat|ty —fH| <0 =18(y)(t1) - B(y) ()l <&, Yy €S.

Let y € S be arbitrary.
We now estimate the difference |B(y)(t1) — B(y)(t2)l, for ty,t, € [0,1] with [t; — £,| small. For

Vi(t)
Ai(t) :== y(qbi(t))‘ﬁ hi(t,s, % (y(s)))ds, i=1,...,k
Then, B(y)(t) = g2(t, A1(t), ..., Ax(t)). Hence,

1B(y)(t1) = B(y) ()| = Ig2(tr, A1 (t1), - .., Ak(tr)) — 2(t2, Ax(t2), - .., Ak(t2))]

<l

7

k
It = ol + ) 1Ai(h) = Ai(to))
i=1

So we need to estimate, |A;(t1) — A(t2)], we have:

V;(t) Yi(ty)
Ai(tr) - Ai(t2)] = |y(i(tr)) fo ik, s, 1% (y(5))) ds —y(i(t2)) fo ks, 5, 1% (y(5))) ds

Pi(t)
< |y(i(tr)) = y(i(t2))] - ‘fo hi(t1, 5,1 (y(s))) ds

Vi(t1) Yi(t2)
+|y<q>i<tz>>|-‘ f hi(hr, s, 1% (y(s))) ds - f hi(ka, s, 1% (y(s))) ds

=71+ Z>».
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We begin by bounding Z;.
Since y € S € C([0,1]) and ¢; is continuous, then y(¢;(t)) is uniformly continuous in ¢ on [0, 1].
Therefore, for any ¢ > 0, there exists 6 > 0 such that:
€
It =t < &= Jy(¢i(h)) = y(it2))l < s

where H = sup |h;(t, s, y)| < co and k is the number of terms. Also,
t,s,y

Vi(t) 1
[ mies i < [ @y <ot =n
0 0

Thus,

& &
Z1<M.H_E'

We now proceed to bound Z,. We denote:

Yi(t)
H;(t) = jo‘ hi(t,s, "% (y(s))) ds.

Then:
Zy = y(¢i(t2))l - [Hi(t1) = Hi(t2)l-

we have |y(¢i(t2))] < r. It remains to estimate

Pi(tr) Vi(t)
|H;(t1) — Hi(t2)| < j; hi(ty,s,117% (y(s))) ds —fo‘ hi(ty, s, 1% (y(s))) ds

_|_

Yi(ta)
f hi(t2, s, 1'% (y(s))) ds
Yi

\ (t)
< [ ntins P 0 60)) =iz P ) s
0

max(y;(t1),i(t2)) 1—a;
+f |hi(tz, s, 1"~ (y(s)))lds.
min(¢;(t1),¥i(t2))

Since h; is continuous and bounded, and ; is continuous on [0, 1], both terms can be made less
than 4 for |t; — f2| < 6 (by uniform continuity and boundedness).
Hence,
e

&
Zy<r = &
25T T T 3k

Combining both substeps, we get:

e
|Ai(t1) — Ai(t2)l < 7
Then, summing over i = 1 to k, we get:

k
1B(y)(t) — B(y) (k)| <1 |t1—t2|+Z|Ai(t1)_Ai(t2)| <l(5+§)<€-

i=1

Therefore, B(S) is equicontinuous on [0, 1].
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Next, we show that hypothesis (c) of Theorem 2.1 is satisfied. Let y € X and z € S be arbitrary
such that y = AyBz. Then, we have

IA

IN

IA

IN

IA

IN

ly(£)
P1(t) Vi (t)
gl(ffy(ﬁo(t)))‘gZ[tr Z(CPl(O)fO h(t,s,1"""12(s)) ds, ..., Z(‘Pk(t))j; hk(trsfll_“kz(s))ds]

lg1(t, y(e ()

(1) D (t)
0 (t, z(¢1(t))j; hl(t,s,ll_”‘lz(s)) ds, ..., z(qbk(t))fo hk(t,s,ll_”‘kz(s)) ds)

k Vi(t)
g2 (4,0)1+ nly(p(8))] -[ng(t, 01,001+ 1) ()] [ |hi<t,s,11-“fz<s>>|dsl
i=1

(g1 (t, 0)l + nly(e(t)I] -

k Vi(t)
G 1) o) [ (wtes) + bl-(t,s)ul-afz(s»)dsl
i=1

Gz—i—lzk“llzll(j:ai(t,s)ds—i—fot bi(t,s) (fos %Iz(o)lda)ds)]
i=1 !

k

(g1 (2, 0)1 + nllyll] -

(G +1llyll] - [ G2 +1

llzll (a; +bi||z||)l
i=1
k

Gz—i—er(a—i—br)

i=1
[G1+ 1] - [Ga + Irk(a+ br)] = 1.

(G1+1r] -

Let r be the positive root of the cubic equation:

Gilkb * 4 (nlkb + Gilka)r* + (nlka + G1Gy — 1)r +1Ga = 0

This shows that hypothesis (c¢) of Theorem 2.1 is satisfied. Finally, we have estimating the

product norm
Define M = sup, . 1B(y)ll < lkr(a + bMy) + Ga. Then,

Y(r) M= [G1+nr][Ga+ Irk(a+br)] <7,

where ¥(r) = Gy + nr by assumption.

Therefore, all conditions of the fixed point Theorem 2.1 are satisfied and hence the operator

equation y = A(y)B(y) has a solution in S. As a result, the the nonlinear integral equation (2.6)

has a solution defined on J. m|

Theorem 2.3. Assume that the conditions of Theorem 2.2 are fulfilled and if

IL(nr 4+ G1) +nlr +1n1Gy < 1.

Then the solution of the equation (2.6) is unique.
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Proof. Assume that y1, y» € C(J) are two solutions of the nonlinear integral equation (2.6):

P1(t)
yi(t) = ga(t, yi((p(t)))-gz(t, J/i(‘iDl(f))fO ha(t,s, 1" "1yi(s)) ds,

pr(t)
. yi((Pk(t))fO hk(t,s,ll_“kyi(s))ds], i=1,2.

For each t € |, consider

(8) = 1201 = |31t (@ ()2t -) - st yz«o(t)))gz(t,...)]

= 181(t, v1(@(1))(82( y1) = 820 ¥2)) + (81(6, y1 (@(1))) = 81(t, y2(@ (1)) )82 (t, 2)],

where for brevity, ¢»(-, yi) denotes

Y (8) e(t)
82 (t/ yi(P1(t)) f hi(t,s, I yi(s))ds, ..., yi(¢r(1)) f hi(t, s, 11_“k3/i(5))d5] :
0 0
Using the triangle inequality, we get
1 () = y2 (D < Ig1 (8, y1 (@)1 1820 y1) = &2, y2)l + 11 (E ya(@(8))) = g1.(E, y2(P(£)))] - Ig2(, y2)L-
Thus,
lya (8) = y2 ()]
k

< (my1 (D)) + Gi ) Z

=1

1/"1( ) l/’i(t)
y1(i(t) f hi(t, s, I1"% yy (s))ds — y2(¢i(f))f0 hi(t,s, 1'%y (s))ds

k Vi(t)
+1ly(e(t)) —]/2(<P(t))|'[lz yz(cl)i(t))fo hi(t,s, 1'%y (s) ) ds +G2]-
i=1
Foreachi =1,...,k, we estimate the integrals difference
¥i(t) . Pi(t) .
i (6i(1) fo It Iy (6)ds = a1 (0) [ s, ()l

< I (i(8)) - yalbi() |f hi(t, s, 110y (5))ds

;i (t)
+ y2(di(t) |f i(t,s, - %y1(s)) — hi(t,s,Il_"‘fyz(s))lds.

Using assumption (iv) on h;, we have

Pi(t) Vi (t)
(1)) f it 5, 1%y (5))ds — v (n(1)) f it 5,1y (5))ds

lPi(t)
< 11 (@1(1)) - ya(bi(8))] f ai(t,5) + bilt, )1~y (5)])ds

+ lya(é |f Bt ) (1 — y2) (5)\ds.
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using the boundedness of the kernels and fractional integrals, we obtain constants

a = maxsupa;(t,s), b= maxsupb;(t,s).
L otse] L otse]

Also, since the fractional integral operator I'~% is bounded on C(]), say with norm C,,, we have

=% (y1 — y2) (s)| < Cally1 — vall-
Therefore,
Yi(t) . Vi(t) .
(i(0) fo it 5, Ty (s))ds — ya(bi(1)) f it 5, Iy (s))ds

0

Vi(t)
< lly1 — vall [ fo (ai(t,s) + bi(t,s)cainyln)d% + lly2llbyi (1) Callys = 2l
< llyr = vall [a; 4 b;Co,llyall + b () Coyllyll] -

Summing over i = 1,...,k, and using boundedness of ||y, we get Zle ’| < Llly1 = vall,
We define a constant L > 0, depending on a;, b;, Cy,, llyill, and 1;, by introducing the auxiliary

sup-constants foreachi =1,...,k:

wi(t) pi(t)
A= supf ai(t,s)ds, B; = supf bi(t,s)ds,
0 0

te] te]
b;‘ = sup bi(t,s), ED; := sup Y;(t).
(t,5)€Jx[0,sup ;] te]

Accordingly, L can be expressed as L = Zle (AZ- + Co,Billyall + Co; b7 7 ||y2||).

Returning to the original difference estimate, we have
ly1 () = y2(6)1 < (nllyall + G )ILllys = yall + nlllyallilys = yall + nGallys = all.
Taking supremum over ¢,
lyr = y2ll[1 = (1 < IL(nllyall + G1) + nlllyall + nG2)] <0

By assumption IL(nlly1ll + G1) + nllly2ll + nG2 < 1 and the boundedness of ||yill, the coefficient
on the right side is strictly grater than 1. Hence,

ly1 —y2ll =0,

which implies y; = y on J.
O

Theorem 2.4. Let the assumption (v) hold, then there is at least one continuous solution, x € C(J,R) of
(2.5).
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Proof. Define the operator ¥ : C(J) — C(]) by

T t
(Fx)(t) := xo +f Q(S,x(s),ll_ﬁy(s))ds —|—f y(s)ds,
0 0
Consider a closed bounded convex ball B, = {x € C(]) : ||lx|| < p} where, for [Im||;: < 1), we have

ol + llnlls +ry(1 + Il C)

1 —[jml|ps

Pz

For x € B, and fixed y € C(]) with ||y|| < r,, we have

[(Fx)(t)] < |x0|+LTIQ(s,x(s),Il‘ﬁy(s))lds+fot ly(s)lds

< |xol + j:(ln(s)l +m(s)(Ix(s)| + |11—ﬁy(s)|))ds +ry.

Using the boundedness of ¥ and continuity of the fractional integral,

IPy(s) < Callyll < Cgry,
where Cg = F(+—ﬁ) maxsef fos(s —0)7Pdo is finite.
Thus,
I(Fx) ()] < Ixol + Il + lmllp: (p + Cpry) + 1y,

which is finite and independent of . Choosing
p = [xol + Ilnlls 4 llmlipa (p + Cgry) + 1,

so that 7(B,) C B,.
We now prove that the image ¥ (B,) is equicontinuous.

Let x € B, and consider for t1,t; € |, with t; < f,

| s ds - | " y(s)ds| = | f ) ds

From the assumptions on g1, 2, and h;, and using the boundedness of y for all s € J. Hence,

5]

< [ ly(s)lds.

t

[(Fx)(t2) = (Fx)(h)l =

[(Fx)(t2) = (Fx) ()] < 1ylt2 = t1].

This estimate is independent of the particular function x € B,. Therefore, the family ¥ (B,) is
equicontinuous.

Since 0 is continuous and bounded, ¥ is continuous. By Arzela—Ascoli theorem, the image
F (B,) is equicontinuous and uniformly bounded, thus relatively compact in C(J).

The operator ¥ is continuous, maps a convex closed bounded set into a relatively compact
subset of itself. By Schauder’s fixed point theorem,there is a continuous solution of the integral

equation (2.5). ]
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Corollary 2.1. Under the assumptions of Theorem 2.4, for each solution y € C(J,R) of the functional
integral equation (2.6), there exists a unique solution x € C(J,R) for equation (2.5), provided that

MT < 1,
where M := sup,;m(t), and m(t) is as in assumption (v).

Proof. Let y € C(J,R) be a given solution of equation (2.6). Define the operator ¥ : C(J,R) —
C(J,R) by

(Fx)(t) :=x0+ fOT G(S,x(s),ll_ﬁy(s))ds—kf(; y(s) ds.

We show that ¥ is a contraction. Let x1,x2 € C(J,R). Then for any t € ], we have:

[(Fx1)(t) = (Fxa)(£)] = ’ fo ' [0(s,x1(5), " Py(s)) = O (5,x2(5), I Py s) )| ds
S‘[OTm(s)lxl(s)—xz(s)lds

< (sup m(s)) jO‘T Ix1(s) —x2(s)lds < MT|lx1 — x2]|.

sef

Taking the supremum over t € |, we obtain:
1721 = F xall < MTllx1 = x2]l.

Hence, ¥ is a contraction provided that MT < 1. By the Banach fixed point theorem, the
operator ¥ admits a unique fixed point x € C(J,R), which is the unique solution of equation (2.5)

corresponding to the given y € C(J,R). o

3. ConTiNUOUS DEPENDENCE

Definition 3.1. The unique solution x € C(J,R) of equation (2.5) is said to depend continuously on the

parameter x if for every € > O, there exists 0 > 0 such that
o—xpl <6 = |x-xI<e,

where x* is the solution corresponding to the perturbed initial condition xj, satisfying

xX(t) = x5+ fOT 0(s,x"(s), I Py(s)) ds + foty(s)ds.

Theorem 3.1. Assume that the conditions of Theorem 2.4 and corollary 2.1 hold. Then the unique solution
x € C(J,R) of equation (2.5) depends continuously on the initial condition xj.

Proof. Let x and x" be the solutions of equation (2.5) corresponding to the initial values x and x,

respectively. Then, for all t € ], we have

lx(t) = x* ()] < |xo — xp] + I)T |9(s,x(s),11—ﬁy(s)) —-0(s, x*(s),ll—ﬁy(s))| ds.
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Using assumption (v), which implies that 0 is Lipschitz continuous with respect to the second

and third arguments, we have
105, x(5), 1" Py(s)) = 0(s,x"(s), I Py(s))| < m(s)lx(s) =2 (5)],
Thus, )
[x(t) = x*(t)] < lxo — x5 +f m(s)lx(s) —x*(s)|ds.
0

Taking the supremum over t € |, we get
t
[lx — x| < |xo — xp| + Mf []x — x*|| ds.
0

Taking the supremum over f € [0, 7], we obtain:

e = 'l = sup x(t) - ¥'(£)] < Ixo — x3) + Mol — .
te[0,7]

If Mt < 1, then:

=l < I — ).

1
1- Mz
Therefore, for every ¢ > 0, choosing 6 = ¢(1— M), ensures that

xo—xpl <6 = |x-xI<e.

Hence, the unique solution x depends continuously on the initial condition xo. m]

Definition 3.2. The unique solution x € C(J,R) of the equation (2.5) depends continuously on y, ife > 0,
36 > 0 such that
ly-y1<o = I|x—x"<e

where x* is the unique solution of the integral equation

T £
x*(t) = x0 + f 0(s,x*(s), I Py*(s))ds + f y*(s)ds.
0 0
Theorem 3.2. The unique solution of the integral equation (2.5) depends continuously on y.

Proof. Let x(t) and x*(t) be the unique solutions of the equation (2.5) corresponding to y(t) and
y*(t), respectively. Then, we have:

T t
x(t) =x'(t) = fo |0(s,x(5), ' Py(s)) = 6(s,x"(5), ' Py (s)) | ds + j(; (y(s) = y'(s)) ds.
Taking absolute values and applying the triangle inequality, we obtain:

e |<f|9sx 11Fy(s)) = 05, (5), 1Py (s |ds+f|y ' (s)lds.

By assumption (v), the function 6 is Lipschitz continuous in both arguments. In particular, for

all s € |, we have:

|6(s,x(5), 1" Py(s)) = 8(s,x"(5), ' Py (5))] < m(s)le(s) = ()] + m(s) [Py (s) = I'Py ()]
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Substituting this into the inequality, we get:

Ix(t) —x*(¢)] < fOTm(s)lx(s) —x*(s)|ds —|—f(;

Now define

T

m(s) |Il‘5y(s) —Il‘ﬁy*(s)|ds + f: ly(s) — y*(s)| ds.

O(t) := sup |x(r) —x*(r)|.
re[0,4]

Then,

(1) SMfOTcS(s)ds+Mf0T |11—ﬁy(s)—11—ﬁy*(s)|ds+f0 ly(s) — y*(s)| ds.

Using the boundedness of the fractional integral operator I'#: L!(J) — C(J), we know there

exists a constant C,g > (0 such that:

”Il—ﬁy _ Il—ﬁy*

< Glly = ¥l -
Hence,
5(t) < Mrs(t) + MaCylly = y'llp g + Iy = ¥l -
So we obtain:
5(t) (1= Mr) < (MrCs+1)lly = ¥l p)-

If Mt <1, then:
MTC/; +1 .
o(t) < Wlly—y ||L1(])~

Thus, we conclude:

MTCﬁ +1

ke =2l < Clly = yllag), - where Ci= ——rr—.

Therefore, for every ¢ > 0, choosing 6 = & ensures that
ly=y'llpg <6 = Ix-x<e.
This proves the continuous dependence of the unique solution x € C(J, R) on the functiony. O

3.1. Continuous Dependence on Nonlinear Perturbation 0.

Definition 3.3. The unique solution x € C(]J, R) of the integral equation (2.5) is said to depend continuously
on the function O if for every € > 0, there exists 6 > 0 such that whenever

sup  |0(t,z,u)—0"(t,z,u)| <9,
(t,zu)e]XRXR

it follows that

lx—x"l <€

where x* is the unique solutions of the integral equations

x(t) = x0 + fOT 6*(s,x*(s),11_5y(s))ds+£ y(s)ds,
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Theorem 3.3. Assume that all the assumptions of Theorem 2.4 hold, particularly that the function O
and its perturbation 0" satisfy a uniform Lipschitz condition in the second and third arguments with a
Lipschitz constant m(t) such that Mt < 1. Then the unique solution x € C(J,R) of equation (2.5) depends

continuously on the function 0.

Proof. Let x and x* be the unique solutions of the integral equations corresponding to 6 and 6",

respectively. Then, we have

x(t) = x'(t) = fo ' 06, x(5), ' Py(s)) - 6" (s,x"(s), ' Py(s)) | ds.

Adding and subtracting 0(s, x*(s), ' Py(s)) inside the integrand, we obtain

fe(t) - x*(8)] < fo '

f
0

Using the Lipschitz continuity of & with respect to its second argument, we get:

0(s,x(s), 1Py (s)) = O(s,x"(5), Py (s))|ds

0(s,x*(s), I Py(s)) — 0" (s, x" (s),ll—ﬁy(s))|ds.

T
Ix(t) —x* ()] < f m(s)|x(s) —x*(s)|ds + 0.
0
Taking the supremum over t € |, we have

e — x| 3f m(s)llx = x'llds + 76 < Mrllx = x7] + 70
0

Since Mt < 1, we conclude |lx — x*|| < 1_T/‘\54T.
Hence, for any € > 0, we can choose 6 = WG to ensure that ||x — x*|| < €, completing the
proof. m]

3.2. Applications. we obtain some particular cases which are useful for the theory of qualitative
analysis of some functional integral equations and important for some modeles and real problems.
(1) Let g1(t,y) = 1, then the multi-term functional equation (2.6) takes the form
V1 (t) Vi (t)
v =gt 0r10) [ s y9) ds v [ sy as) G

then under the assumptions of Theorem 2.2, the multi-term functional equation (3.1) has at
least one continuous solution y € C(J, R).
@) Let g1(t,y) = 1, g(t,.) = g(t,y) = 14+ X5y, and ¢;(t) = ¢ then cubic multi-term

functional equation (2.6) takes the form

(1)
v =1+ Y20 [ e vis)s 62

and under the assumptions of Theorem 2.2, then the cubic integral equation (3.2) has at

least one continuous solution y € C(J,R).
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4. INTEGRABLE SOLUTIONS OF EQuaTioN (2.2)

We examine the existence of integrable solutions of equation (2.2) under the following modified
assumption:
(i) Each function

a)li,a)zi:]XIR—HR, i=1,2,...,k

satisfies the Carathéodory conditions, and there exist constants k1, k>, N1, N> > 0 such that:
Ia)li(t,x)l §N1 —|—k1|x|, Ia)zi(t,x)l §N2+k2|xl, Vi= 1,...,k.

Theorem 4.1. Assume that x € C(]J,R) and that the assumptions of Theorem 2.2 hold, with assumption
(*). Then equation (2.2) has at least one solution v € L1 (], R).

Proof. Define the operator A* : L;(J,R) — Li(J,R) by

k k
= Za)li(t,v(t)) + X(t)za)Zl(tlv(t))
i=1

i=1
Put N = sup,; |x(t)| and
. kN7 + NkN,
1 -kik — Nkyk’

Let v € B'.. Using the growth bounds from assumption (iii*), we estimate:

B. ={veLi(JLR) : |V, <.

=

AV < Y lon(t V(D) + (1) IZIwzltv

i=1

M»

(N1 + kv (£)]) + () Z (N2 + kalv (1))

i=1 i=1
= kN7 + k1k|v(t)| -+ |x(t)|(kN2 + kzkh/(t)l)

Integrating both sides:

IA*V|Ir, < kN1 + NkN; + (klk + Nkzk)||v||1
< kN7 + NkN; + (k1k -+ Nkzk)r* =

Thus, A* maps B;. into itself.

Compactness. We now show A" is compact. Let i) C B, be arbitrary and fix v € ¢. For h > 0
define the Steklov average of A*v:

Then
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so, integrating over J,

1 t+h
I(A™v), — AV, < fﬁf |A*v(s) — A™v(t)|ds dt.
i

Split the inner difference using the definition of A*. After elementary manipulations we get (writing

the domain of integration as | and summing overi =1,...,k):

k 1 [t
||(A*1/)h—A*v||L1 < Z‘fﬁf 'wli(s,v(s a)11 tV Idsdt
i=1 t
t+h
+Zf f (E)] lwai(s, v(s))| ds dt
1 f+h
+Zf|x(t)|ﬁf |a)2i(s,v(s)) woi(t,v(t |dsdt
i—1 ) t

=:L(h,v) 4+ L(h,v)+ I3(h,v).
We show that each term I;(h, v) tends to 0 as i — 0, uniformly for v € ¢.
(i) The term I>(h, v). Since x € C(]) we have supj,_;, |x(s) —x(t)] = 0ash — 0. Moreover, for every
v € ¢ the growth condition in (iii*) gives
lwai(s,v(s))l < No + kalv(s)l,

and hence wy;(+,v(-)) € L1(J) with a uniform L;-bound on . Therefore by Fubini/Tonelli and the
uniform smallness of |x(s) — x(t)| on |s — ¢ < ,

suplh(h,v) — 0 (h—0).

vey

(ii) The terms Iy (h,v) and I3(h,v). Fix v € ¢. For a.e. t the map s = wji(s,v(s)) belongs to Li(])
(this follows from the Carathéodory and growth assumptions). It is a standard property of Steklov
averages that for any f € L1(J),

t+h
%jg If(s)—f(t)IdSWO in L1(]),

t+h
f f (t)|dsdt —> 0.

Apply this fact with f(-) = w1;(-,v(-)) to see I1(h,v) — 0. For I3(h,v) observe [x(t)] < N and
apply the same Steklov-average argument to f(-) = wai(-,v(+)) to get Is(h,v) — 0. The uniform

and hence

growth bounds from (iii*) supply an integrable dominating function which allows one to upgrade
pointwise (in v) convergence to uniform convergence over the bounded family 1.
Combining the three estimates we obtain

sup [|(A™v), —AV||lL, — 0.
vey h—0
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By Kolmogorov’s compactness criterion [23], this implies the set A*(¢) is relatively compact in
Li(J). Since ¢ C B;. was arbitrary, A* maps bounded sets into relatively compact sets; therefore A*

is compact.

Finally, A" is continuous (by the Carathéodory conditions and the linear growth) and maps the
closed, bounded, convex set B. into itself. Schauder’s fixed point theorem [22] yields at least one

fixed point v € B;., which is an L;-solution of (2.2). O

Theorem 4.2. For the function y € C(]J,R). Let the assumptions of Theorem 2.2 and Theorem 4.1 be
satisfied. Then the multi-term functional problem (1.1)-(1.2) has at least one solution v € L1 (], R) which is
the solution of the problem (2.2), where y is the solution of (2.5).

4.1. Uniqueness of the solution of equation (2.2). In this subsection, we demonstrate that the

solution of the functional equation (2.2) is unique under the following assumptions:

(i7*) The functions wq; : JXR > Rand wy; : JXR - R\ {0} i=1,2,...,k, are continuous and

satisfy the following Lipschitz conditions:

IA

ki (t)lx1 = xal,
ka(t)lx1 — xal, (4.1)

|a)1i(t, X1) — Cl)lz‘(t, XQ)|

IA

lawai(t, x1) = wai(t, x2)]
forall f € ], x1,x2 € R, where ki, k € L1(J,IR ) are nonnegative functions.

Theorem 4.3. The solution to equation (2.2) is unique for any x € C(J,R), provided that the conditions of
Corollary 2.1 and assumption (ii*) hold, with the additional constraint that ky + N kp < 1.

Proof. From assumption (ii*) and Corollary 2.1, we know that the solution v(t) of (2.2) is continuous.
Let v1 and v be two solutions of (2.2). For each t € |, we compute:

vi(t) —va(t)l =

k k k k
Yt vi(8) +x(8) Y wailt,vi(H) = Y wnlt,va(t)) = x() ) wailt va(t))
i=1 i=1 i=1 i=1

P k
<Y lnit,va () = wriltva ()| + (0 |Y ] [wailt,vi(5) = wailt, va(#)]
i=1 i=1
k k
< Z kii(£)lvi(t) —va(t)] + lx(t)] Z kai(£)lva (t) — va(t)]
i=1 i=1
k k
- [Z fai () + () Z@(t)] a(6) = va)
i=1 i=1

Letky(t) := Y5 kii(t), ka(t) := X, kai(t), and set N := sup,, [x(t)|. Then:

i(t) —va(B)l < (ka(t) + () k2 (t)) va(t) —va(t)l.
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Integrating over | = [0, 1], we obtain:

s =valy < | (B (0) - va(blde + | Ok (O () — (o)
< killvy = valli + Nka|lvi = v2lly
= (k1 + Nka)llvi = vall1.
Hence,
[1— (k1 + Nko)] |lv1 = vall1 < 0.

Since k; + Nk, < 1, we conclude that |[v; —v|li = 0, which implies vi(t) = v,(t) almost
everywhere in J.

Therefore, the solution to the problem (2.2) is unique in L1 (], R). ]

With this, we can deduce a unique result for the solutions of the multi-term functional problem
(1.1)-(1.2):

Theorem 4.4. Let the assumptions of Corollary 2.1 and Theorem 4.3 be satisfied. Then the solution of

multi-term functional problem (1.1)-(1.2) is unique.

4.2. Continuous Dependence of the Solution of Equation (2.2). Consider the operator defined

by:
k k
— Z wi1i(t,v(1) + x(t) Z w2i(t,v(t))
i=1 i=1

Definition 4.1. The solution v of equation (2.2) continuously depends on the function x if for every € > 0,
there exists a 0 > 0 such that

x—x*|<06 = |v-7v<e

Theorem 4.5. Suppose that the conditions of Theorem 4.3 and assumption (vi) are satisfied. Then the
solution of equation (2.2) depends continuously on the function x.

Proof. Let v and v* be the solutions corresponding to x and x*, respectively. Then for all t € ], we

have:

k k k k
[v(t) = v (1) = | @it v(8)) +x(8) Y wailt, v(£) = Y wnilb, v (5) = x°(8) Y wonilt, v'(£)
i=1 i=1 i=1 i=1
k
< Z |a)1i(t,v(t —w1i(t, V" |+ Z |cu2Z tv( | Ix(t) —x"(t)]
i=1

k

+ Z " (¢)] - |a’2i(tﬂ’(t)) - wi(t, V*(t))| :

i=1
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Using the Lipschitz conditions, we obtain:

k

k
() = v ()] < kR (O (E) = v (D1 +6- Y lwni(t, v+ ka(Blv(2) = v ()] - Y 1" (8)]
i=1 i=1
k

k
= |k (8) +ha(t) Y W (DI |-Iv(t) = v (£)] + 6 Z lwai (£, v(£))].

i=1

From the continuity of w; and boundedness of v, there exists a constant G > 0 such that
lwoi(t,v(t))| < Gforallt e Jandi=1,...,k Then:

lv — vl < sup {[kki(t) + k2 (t)kN] |lv — v'|| + kOG} .
te]

Since k1, kp € L1(]), we can integrate both sides over | = [0,1] and obtain:

1
v —v*|| < (f [k (£) + ko (£)N] dt | [lv = v*| + kGS.
0

Set:
1
A f ey (£) + Ko (1)N] dt < 1,
0

which is possible due to the integrability of k; and k», and the smallness of N or appropriate

normalization.
Then,
kGo
1-A)lv =V <kG6 = -V < .
( v =27ll lv=vill< 7%
Given any € > 0, choose
1-A)e
5o =Nk
kG
which ensures that |[v —v*|| < €.
Hence, the solution v depends continuously on x. m]

Theorem 4.6. Suppose that the conditions of Theorem 4.3 are satisfied, and in particular, that assumption
(ii*) holds. Then the solution of equation (2.2) depends continuously on the function x.

Proof. Let v and v* be two solutions of equation (2.2) corresponding to functions x and x*, respec-

tively. Then for each t € |, we write:

k k
v(t) = Y @it v(t) +x(8) ) wailt v(t),
i=1 i=1

k k
vi(E) = ) wnlt, v (1) + 2 (8) ) wn(t, v (1)),
i=1 i=1
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Subtracting these, we have:

v(£) v (t)l <

k
}]hmama»—wwnwanﬂ
i=1

_|_

k
Y (Bt v(t) = (Dan(t, v ()]
i=1

k
< ; l1i (£, v(#)) = @it v’ (1))l

k
+ Y Oant,v(t) - x* (Bon(t, v (1)
i=1

Now apply the triangle inequality and the Lipschitz condition (ii*):

k
() v (D1 < )k (Dlv(E) =" (8)]
i=1

k
+ ) lleoni (b v(1) () = x* (O] + I (B)llwai t, v (£) = w2i(t, v (£))]

i=1
< Kk ()v () = v ()] + kka () v (£) = v ()llx" (£)] + Ko (8) v (£) 1 (£) = x"(£)1.

Take the supremum norm over J:
v =v'Il < llk1 4+ k2NIly - llv = v Il + ikl - VI llx = x|l

Assuming [|x — x*|| < 6, and provided that ||k; 4+ k2N||; < 1, it follows that:
=1 < likalls -1Vl .
1 —lk1 + k2Nlly
This shows that for any € > 0, choosing 6 > 0 small enough ensures |[v —v*|| < €. Hence, the
solution depends continuously on the function x.

5. ExAMPLE

Consider the multi-term hybrid functional problem in the hybrid form. Set ] = [0,1]. Let

v : ] = R and define
_y2 .
= MO Thiantn®)
Yy w2i(t,v(t))

and suppose x satisfies the quadratic multi-term hybrid equation

dx(t)

() pa(t)
=2 = it x(6() gz(t, @ fo I (t,s, D% x(s)) ds, @ fo hg(t,s,D“Zx(s))ds),

with the nonlocal hybrid condition

x(0) — j; (s, x(s), DPx(s)) ds = xo, B e (0,1].
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denote y(t) = 7 and which implies that the function x must satisfy the fractional-order integral

equation:

x(t) = xo + Ll Q(S,x(s),ll‘ﬁy(s))ds+ foty(s)ds.

We take the concrete functions and delays

t

Pt) =5 ¢i(t) =35 @t

Choose the nonlinearities and kernels

o ) =13 ()

g](t,X) - % + %/ gZ(t121/ZZ) - 11_0 + |Zl_|—g|22|,
h1<tlslx):1+|z_|; hZ(t,S,x>:2+ |51|,

and two-term coefficients

wn(tx) =1+%, ownltx)=2+% wn(tx)=1+% wn(tx)=3+7.
Finally take a1 = ap = %

We now verify, that this example satisfies the existence of a continuous solution x and the
existence of an integrable v solving the original hybrid problem.

The maps ¢, @i, ¢; : | — ] are continuous and satisfy ¢(t), pi(t),i(t) < tforallt € |
because

, ea(t) =1 <t yi(t) <t

NN

Estimates for g1, g» and choice of constants.

Compute Lipschitz / growth constants explicitly.
For any x,y € R

1
g1(t,x) = g1t y)l = Zle —yl.
So we may take 1 = £ and G; = sup,¢;Ig1(t,0)| = .
For any (z1,22), (w1, w2) € R?,
1
1g2(t,21,22) — §2(f, w1, w2)| < g(lzl —wi|+|z2 - w2|).
So we may take | = % and G2 = supy; 1g2(¢,0,0)| = 11_0,
Estimates for kernels h;.

Fori = 1,2 we have

|h1(t,S,X) _h1<t151y)| < %I-x— ]/|; |h2(tlslx) _hZ(t/S/y)l < %lx_ yl

Thus set b = }1, b, = %, and choose b = max{b;, by} = }I' Also growth bounds

|h1(t,s,x)lsl+m, |h2(t,s,x)|gz+ml
sotakea; =1, ap = 2, a = max{a, a2} = 2.

With the above constants,

n:%/ Gl
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Now choose r > 0 large enough so that
(Gi+nr)(Ga+I1rk(a+br)) <r
Substituting the above constants gives
(% + %)(11—0 +2r+ %1,2) <r.
Expanding and moving r to the left-hand side,
p(r) = 61—0r3+ %rz—%wr ﬁ <0.
The cubic p(r) has three real zeros, numerically
r1 = —12.788701096, r = 0.010967587, r3 =~ 4.277733509.
Since the leading coefficient is positive, we have
p(r) <0 & re(r,r3)=(0.010967587..., 4.277733509...).
Therefore there are positive values of r satisfying the inequality; for example,

r =1 satisfies (G + nr)(Gz + Crk(a + bi’)) <r.

Hence, the hypotheses of Dhage’s fixed-point Theorem as used in Theorem 2.2 are satisfied and
there exists at least one continuous solution y € C(J). This completes the detailed verification of
Theorem 2.2 in our concrete numeric instance.

Now for the existence of continuous solution x that satisfies the fractional integral equation

1 t
x(t):xo—i—j(; Q(S,x(s),ll_ﬁy(s))ds—i—j(; y(s)ds,

with 0(s, x,y) = i(lxl +yl) and B = % Here 0 is continuous and satisfies

0(t,x1, 1) = O(t, 22, y2)| < (11 = %2l + ly1 = w2l).

Thus assumption (v) holds with M = 1 < 1. Define the operator

1 t
(Fx)(t)zxo—i—‘f(; Q(S,x(s),ll_ﬁy(s))ds—i—f(; y(s)ds.

As in Theorem 2.4, F maps a bounded closed convex subset B, C C(]) into itself and is completely
continuous. By Schauder’s fixed point theorem, F has a fixed point x € C(]), i.e. there exists a
continuous solution x.

Construction of v and verification of Theorem 4.1 conditions

Recall equation (2.2)
2 2
v(t) = Y @t v(t) +x(8) ) wailt v(t),
i=1 i=1

where x € C(]) is the continuous solution and we denote N = sup,; [x(t)| < co.
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From our choice
wn(tx) =1+%, onltx)=2+% owu(t,x)=1+% wn(tx)=3+73
we have the linear growth bounds required in assumption (i) fori = 1,2,
lwsi(t, x)] < N1+ kqlx], |awai(t, x)| < No + kolx],

with the explicit constants

Now, we verify that this condition hold

kki1 + Nkk, < 1.

With our numeric constants k = 2, k; = }1, ky = %, this inequality reduces to
2:7+4N-2-34<1 & 1+IN<1 < N<15.

which completes the proof of Theorem 5.9 for this hybrid example.

If, in addition, the Lipschitz sum condition

2 2
Zkli(t) +NZ ky(t) <1 forae. te]
i=1 i=1

holds, here ki;(t), k2i(t) denote pointwise Lipschitz constants in assumption (vi), in our constant-
coefficient example they equal k1, k, then repeating the difference estimate as in Theorem 5.11 we

obtain for any two solutions vy, v

2 2
() =201 = (Y laalt) + N Y ) Jva (6) = va )1
i=1 i=1

If the coefficient on the right is < 1 a.e., then v; = v,. For our numeric constants this condition

reduces to
2k + N2k, =2-3+N-2-1 =1 +1IN<1,

which again is N < 1.5. Thus uniqueness holds under the same numerical constraint.

6. CONCLUSION

In this paper, we have investigated a class of multi-term hybrid functional integral equations
with nonlocal conditions involving fractional derivatives and integrals. By employing Dhage’s
fixed point theorem and Schauder’s fixed point theorem, we established the existence of contin-
uous solutions for the associated differential and integral formulations, and further proved the
existence of integrable solutions for the original hybrid problem. Explicit numerical examples
were provided to verify the applicability of the theoretical results and to demonstrate that the

imposed assumptions are not only sufficient but also practical.
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The analysis highlights the flexibility of fixed-point techniques in treating hybrid systems with
delays, nonlinear kernels, and fractional-order operators. In particular, the combined use of
functional analytic methods with hybrid differential structures broadens the scope of solvability
results in nonlinear analysis and integral equations.

Future research may focus on extending these results to systems with variable-order fractional
operators, stochastic perturbations, or impulsive effects. Another promising direction is the nu-
merical approximation of the obtained solutions and the development of efficient algorithms that
complement the theoretical existence results. Such extensions would further enhance the applica-
bility of hybrid fractional models in physics, engineering, and applied sciences.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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