Anti Synchronization of New Chaotic Systems via Adaptive Backstepping Control: An Application to Image Encryption

Main Article Content

M. M. El-Dessoky, Nehad Almohammadi, Mansoor Alsulami

Abstract

Based on an adaptive backstepping control strategy, the anti-synchronization phenomenon between two identical chaotic systems is proposed to achieve global and exponential anti-synchronization. The theoretical analysis is supported by Lyapunov-based stability proofs. Through numerical simulations, it is demonstrate that the synchronization errors vanish asymptotically, thus confirming the validity of the proposed scheme. Furthermore, the practical applicability of the methodology is illustrated through its application instance to image encryption, where the master system states are employed in an XOR based process to encrypt visual data. The obtained results both the theoretical of the methodology and its applicability in secure communications and related fields.

Article Details

References

  1. M.M. El-Dessoky, E.O. Alzahrany, N.A. Almohammadi, Function Projective Synchronization for Four Scroll Attractor by Nonlinear Control, Appl. Math. Sci. 11 (2017), 1247–1259. https://doi.org/10.12988/ams.2017.7259.
  2. M.M. El-Dessoky, E.O. Alzahrani, N.A. Almohammadi, Control and Adaptive Modified Function Projective Synchronization of Liu Chaotic Dynamical System, J. Appl. Anal. Comput. 9 (2019), 601–614. https://doi.org/10.11948/2156-907x.20180119.
  3. N. Almohammadi, E. Alzahrani, M. El-Dessoky, Combined Modified Function Projective Synchronization of Different Systems Through Adaptive Control, Arch. Control. Sci. 29 (2019), 133–146. https://doi.org/10.24425/acs.2019.127527.
  4. M.M. El-Dessoky, E. Alzahrani, N. Almohammadi, Adaptive Modified Function Projective Synchronization of Chaotic Dynamical System with Different Order, J. Comput. Anal. Appl. 28 (2020), 354–363.
  5. M.M. El-Dessoky, N. Almohammadi, E. Alzahrani, Control and Adaptive Modified Function Projective Synchronization of Different Hyperchaotic Dynamical Systems, AIMS Math. 8 (2023), 23621–23634. https://doi.org/10.3934/math.20231201.
  6. M. El-Dessoky, Synchronization and Anti-Synchronization of a Hyperchaotic Chen System, Chaos Solitons Fractals 39 (2009), 1790–1797. https://doi.org/10.1016/j.chaos.2007.06.053.
  7. M. Mossa Al-sawalha, M. Noorani, On Anti-Synchronization of Chaotic Systems via Nonlinear Control, Chaos Solitons Fractals 42 (2009), 170–179. https://doi.org/10.1016/j.chaos.2008.11.011.
  8. M.M. Al-sawalha, M. Noorani, Anti-Synchronization of Chaotic Systems with Uncertain Parameters via Adaptive Control, Phys. Lett. 373 (2009), 2852–2857. https://doi.org/10.1016/j.physleta.2009.06.008.
  9. R. Li, W. Xu, S. Li, Anti-Synchronization on Autonomous and Non-Autonomous Chaotic Systems via Adaptive Feedback Control, Chaos Solitons Fractals 40 (2009), 1288–1296. https://doi.org/10.1016/j.chaos.2007.09.032.
  10. M. El-Dessoky, Anti-Synchronization of Four Scroll Attractor with Fully Unknown Parameters, Nonlinear Anal.: Real World Appl. 11 (2010), 778–783. https://doi.org/10.1016/j.nonrwa.2009.01.048.
  11. S. Vaidyanathan, Anti-Synchronization of Four-Scroll Chaotic Systems via Sliding Mode Control, Int. J. Inf. Technol. Control Autom. 1 (2011), 1–12.
  12. A. Khan, R.P. Prasad, Anti-Synchronization of Pan and Lorenz-Lu-Liu-Cai Chaotic Systems by Active Nonlinear Control, Int. J. Artif. Life Res. 3 (2012), 15–25. https://doi.org/10.4018/jalr.2012040102.
  13. J. Tsinias, Backstepping Design for Time-Varying Nonlinear Systems with Unknown Parameters, Syst. Control. Lett. 39 (2000), 219–227. https://doi.org/10.1016/s0167-6911(99)00098-5.
  14. J. Lü, S. Zhang, Controlling Chen's Chaotic Attractor Using Backstepping Design Based on Parameters Identification, Phys. Lett. A 286 (2001), 148–152. https://doi.org/10.1016/s0375-9601(01)00383-8.
  15. X. Tan, J. Zhang, Y. Yang, Synchronizing Chaotic Systems Using Backstepping Design, Chaos Solitons Fractals 16 (2003), 37–45. https://doi.org/10.1016/s0960-0779(02)00153-4.
  16. F. Mazenc, A. Iggidr, Backstepping with Bounded Feedbacks, Syst. Control. Lett. 51 (2004), 235–245. https://doi.org/10.1016/j.sysconle.2003.09.001.
  17. Y. Yu, S. Zhang, Adaptive Backstepping Synchronization of Uncertain Chaotic System, Chaos Solitons Fractals 21 (2004), 643–649. https://doi.org/10.1016/j.chaos.2003.12.067.
  18. S. Bowong, F. Moukam Kakmeni, Synchronization of Uncertain Chaotic Systems via Backstepping Approach, Chaos Solitons Fractals 21 (2004), 999–1011. https://doi.org/10.1016/j.chaos.2003.12.084.
  19. S. Vaidyanathan, Adaptive Backstepping Controller and Synchronizer Design for Arneodo Chaotic System with Unknown Parameters, Int. J. Comput. Sci. Inf. Technol. 4 (2012), 143–157. https://doi.org/10.5121/ijcsit.2012.4611.
  20. S. Vaidyanathan, C. Volos, I. Kyprianidis, I. Stouboulos, K. Rajagopal, P. Alexander, Anti-Synchronization of WINDMI Systems via Adaptive Backstepping Control Method and Its FPGA Implementation, Latest Trends Syst. 1 (2014), 86–92.
  21. X. Tong, Y. Liu, M. Zhang, H. Xu, Z. Wang, An Image Encryption Scheme Based on Hyperchaotic Rabinovich and Exponential Chaos Maps, Entropy 17 (2015), 181–196. https://doi.org/10.3390/e17010181.
  22. M.A. Al-Khasawneh, S.M. Shamsuddin, S. Hasan, A.A. Bakar, An Improved Chaotic Image Encryption Algorithm, in: 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE), IEEE, 2018, pp. 1-8. https://doi.org/10.1109/icscee.2018.8538373.
  23. M. Lawnik, L. Moysis, C. Volos, Chaos-Based Cryptography: Text Encryption Using Image Algorithms, Electronics 11 (2022), 3156. https://doi.org/10.3390/electronics11193156.
  24. C. Mukherjee, S. Munshi, D. Das, D. Debnath, T. Biswas, et al., Efficient Image Synchronization and Change Detection Using Xor-Based PATCH Algorithms in Digital Twin Technology, Int. J. Eng. Inf. Manag. 01 (2025), 1–14. https://doi.org/10.52756/ijeim.2025.v01.i01.001.
  25. V. M.D., A. Karthikeyan, J. Zivcak, O. Krejcar, H. Namazi, Dynamical Behavior of a New Chaotic System with One Stable Equilibrium, Mathematics 9 (2021), 3217. https://doi.org/10.3390/math9243217.