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Abstract. Based on an adaptive backstepping control strategy, the anti-synchronization phenomenon between two

identical chaotic systems is proposed to achieve global and exponential anti-synchronization. The theoretical analysis

is supported by Lyapunov-based stability proofs. Through numerical simulations, it is demonstrate that the synchro-

nization errors vanish asymptotically, thus confirming the validity of the proposed scheme. Furthermore, the practical

applicability of the methodology is illustrated through its application instance to image encryption, where the master

system states are employed in an XOR based process to encrypt visual data. The obtained results both the theoretical

of the methodology and its applicability in secure communications and related fields.

1. Introduction

Chaotic system synchronization has gradually acquired more attention as it may find its appli-

cations in secure communication, data encryption, or control areas [1]- [5]. Among various kinds

of synchronization, anti-synchronization is a precious phenomenon whereby the slave system’s

state variables move in the opposite direction of the master system variables [6]- [12]

Backstepping design [13]- [20] has also extensively been utilized in the synchronization and

control of nonlinear chaotic systems with parametric uncertainties and time varying dynamics.

Tsinia [13] proposed a foundational framework for backstepping design of time varying nonlinear

systems characterized by unknown parameters. Mazenc and Iggidr [16] generalized the method
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further by integrating bounded feedbacks within the backstepping design, providing higher sta-

bility margins as well as theoretical guarantees. Vaidyanathan [19] then suggested an adaptive

backstepping synchronizer and controller of the Arneodo chaotic system with unknown param-

eters, yet another proof of the general applicability of the method for various chaotic models.

Vaidyanathan et al. [20] also investigated anti-synchronization of WINDMI models via adaptive

backstepping.

With the rapid growing trend in digital communication technologies, multimedia data trans-

mission has become an essential aspect of modern human life, underpinning social interaction,

education, information exchange, daily activities and global connectivity. Despite the fact that such

spread in digital communication technologies has highlighted the necessity of establishing robust

mechanisms for strong data security. This makes image data specialized encryption algorithm

design an active current research area in the domain of information security [21]- [24].

Based on a new 3-D autonomous chaotic system presented in [25], we study in this work

research, the anti-synchronization behavior between two identical systems of this sort using an

adaptive backstepping control approach. The primary objective is to develop a control input

that achieves global convergence of the synchronization error to zero. For better readability of

the study, the reminder of this paper is arranged in the following sequence. Section 2 introduces

the new novel chaotic system. The scheme of anti synchronization is investigated in Section 3.

In Section 4, establishes the anti synchronization problem and derives an adaptive backstepping

controller to guarantee global error convergence. Section 5 applies the proposed synchronization

framework to provide secure image communication. Section 6 provides intensive simulation

results. including histogram analysis, to validate the robustness and security of the proposed

scheme. Finally, Section 7 summarizes the main finding of the work.

2. New Chaotic System

The proposed three-dimensional autonomous chaotic system [25] is described by the following

set of differential equations:
ẋ = y

ẏ = z

ż = −x− y− z− 2.3z2 + xy

where x, y and z represent the state variables of the system. The system exhibits complex nonlinear

behavior and generates a chaotic attractor, as described in Figure 1.
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Figure 1. Chaotic system’s phase space projections : (a) x(t) vs. y(t), (b) x(t) vs.

z(t), (c) y(t) vs. z(t), (d) and (e) Plots of 3D chaotic attractors.

3. The Scheme of Anti Synchronization

Anti synchronization is achieved when the sum of the corresponding state variables of two

coupled systems asymptotically converges to zero as time approaches infinity. The master and

slave systems are defined as follows:

ẋ = g(x)

ẏ = h(y) + u(x, y, t)

where x = (x1, x2, ..., xn)T, y = (y1, y2, ..., yn)T
∈ Rn denote the state vectors of the master and slave

systems, respectively. The nonlinear functions g, h : Rn
→ Rn define the system dynamics, while

u(x, y, t) is the controller vector which will be designed to achieve anti-synchronization.

Definition 3.1. It is said that the derive and response systems are achieved anti synchronization if the
following equation hold:

lim
t→∞
||x(t) + y(t)|| = 0

4. Anti Synchronization Between Two Identical Systems

The chaotic system according to the master system can be demonstrated through the following

equations:
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ẋ1 = y1

ẏ1 = z1

ż1 = −x1 − y1 − z1 − 2.3z2
1 + x1y1

(4.1)

where x1, y1 and z1 are the state variables of the master system. Moreover, the corresponding slave

system is given by:

ẋ2 = y2

ẏ2 = z2

ż2 = −x2 − y2 − z2 − 2.3z2
2 + x2y2 + U

(4.2)

where x2, y2 and z2 are the state variables of the slave system, and ui, (i = 1, 2, 3) are the controller

to be designed such that the anti-synchronization is satisfied.

The error dynamical system can be expressed by:

e1(t) = x1(t) + x2(t)⇒ ė1 = e2

e2(t) = y1(t) + y2(t)⇒ ė2 = e3

e3(t) = z1(t) + z2(t)⇒ ė3 = −e1 − e2 − e3 − 2.3(z2
1 + z2

2) + x1y1 + x2y2 + U

Now, the primary objective is to design an adaptive backstepping controller U to achieve global

and exponential anti synchronization.

Theorem 4.1. The identical chaotic systems (1) and (2) achieve global and exponential anti synchronization
under the adaptive backstepping control law defined as:

U = −2(e1 + 2e2 + e3) + 2.3(z2
1 + z2

2) − x1y1 − x2y2 (4.3)

where ei, (i = 1, 2, 3) denote the synchronization errors.

Proof:

v1(z) =
1
2
ω2

1, where ω1 = e1

Differentiate v1:

dv1

dt
= ω1ω̇1 = e1ė1 = e1e2

⇒
dv1

dt
= −e2

1 + e2
1 + e1e2 = −ω2

1 +ω1(e1 + e2),

⇒
dv1

dt
= −ω2

1 +ω1ω2, where ω2 = (e1 + e2)

Next: define a quadratic Lyapunov function

v2(ω1,ω2) = v(ω1) +
1
2
ω2

2 =
1
2
ω2

1 +
1
2
ω2

2
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Differentiate v2 we get:

⇒
dv2

dt
= ω1ω̇1 +ω2ω̇2

= ω1e2 +ω2(ė1 + ė2)

= −ω2
1 −ω

2
2 + (e1 + e2) [e3 + 2e1 + 2e2] ,

So;
dv2

dt
= −ω2

1 −ω
2
2 +ω2ω3 where ω3 = e3 + 2e1 + 2e2

Finally: define a quadratic function

V = v2 +
1
2
ω2

3 where ω3 = 2e1 + 2e2 + e3

Clearly: V is positive definite function on R3.

The time derivative of V is obtained as
dV
dt

= v̇2 +ω3ω̇3

= −ω2
1 −ω

2
2 +ω2ω3 +ω3ω̇3

= −ω2
1 −ω

2
2 −ω

2
3 +ω3

[
2e1 + 4e2 + 2e3 − 2.3(z2

1 + z2
2) + x1y1 + x2y2 + U

]
let U = −2(e1 + 2e2 + e3) + 2.3(z2

1 + z2
2) − x1y1 − x2y2

substituting the value of (3) into V̇

⇒ V̇ = −ω2
1 −ω

2
2 −ω

2
3

which is a negative definite function on R3. Thus, the drive and the response systems are

achieving the anti synchronization.

5. Numerical Simulations

To verify the theoretical findings and the synchronization controller 4.3 , numerical experiments

are conducted using the proposed chaotic system for both the master and the slave configurations.

The control law is implemented based on adaptive backstepping, the synchronization error signals

e1(t), e2(t), e3(t) are defined as follows:

e1 = x1 + x2, e2 = y1 + y2, e3 = z1 + z2.

The initial conditions are assumed to be:

[x1(0), y1(0), z1(0)]T = [0.1, 0.2,−0.2]T [x2(0), y2(0), z2(0)]T = [−0.5, 0.3, 0.4]T

Figure 2 show the time evolution of these error signals under the designed control scheme.

All error components converge asymptotically to zero, confirming that global and exponential
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anti-synchronization is successfully achieved between the two systems. The effectiveness of the

control strategy is also reflected in the combined error plot in Figure 2, which demonstrates stable

error suppression over time. Figure 3 depict the time responses of the time responses of the state

variables x(t), y(t), z(t) for both the master and slave systems governed by the proposed control

law. It is clearly observed that the trajectories of the slave system evolve in opposite phase with

respect to those of the master system which confirms the achievement of anti-synchronization.
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Figure 2. Time evolution of the synchronization error signals e1(t), e2(t), e3(t) under

the adaptive backstepping control scheme.
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Figure 3. Time evolution of the master and slave systems showing the trajectories

of state variables x(t), y(t), z(t).

6. Image Encryption

The proposed image encryption scheme is founded exclusively on the chaotic drive system, which

serves as the primary source of complexity in the design. By exploiting the inherent nonlinear

characteristics of the drive system, highly complex and unpredictable sequences are generated and

then employed as encryption key-streams. Due to the extreme sensitivity of the drive system to
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its initial conditions and system parameters, the generated sequences exhibit strong randomness

and robustness.

(1) Image Preprocessing

• The original image I is first converted into an RGB matrix of 8-bit depth.

• If the input is grayscale, it is expanded into three channels to maintain consistency.

(2) Keystream Generation

• After discarding the transient behavior (burn-in), the trajectories of the master system

are sampled at fixed intervals.

• A nonlinear mapping is applied to the master system to produce raw keystream values.

• The resulting K is matched to the number of pixel in I.
(3) Encryption Process

• The encrypted process employs a bitwise XOR operation between the original image

I and the generated keystream K, producing the cipher image C

C = I ⊕K,

Producing the encrypted image C
(4) Decryption Process

• The decryption process is symmetric, given by

R = C⊕K,

which restores the original image R = I.
• Both encrypted and decrypted outputs are stored in PNG format to avoid lossy com-

pression.

(5) Performance Verification

To evaluate the security strength and robustness of the proposed encryption framework,

histogram analysis is utilized as statistical tool.

• Histogram Analysis: A uniformly distributed histogram of the encrypted image in-

dicates that pixel values are well-randomized, thus preventing adversaries from ex-

tracting meaningful statistical information. In our results, the histogram of the cipher

image exhibited an almost uniform distribution, thereby confirming the effectiveness

of the proposed method in resisting statistical attacks.

• Decryption Accuracy: The decrypted image is expected to be perfectly identical to the

original, i.e.,

R = I,

confirming the correctness and reversibility of the scheme.
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Figure 4. Schematic representation of the proposed chaotic image encryption

framework
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Figure 5. (a) Original image, (b) encrypted version, and (c) the perfectly recovered

decrypted image using the proposed chaotic scheme.
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(b) Encrypted image autumn and its histogram
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(d) Encrypted image cameraman and its histogram

Figure 6. Comparison of original and encrypted images with their histograms. (a)

Original autumn. (b) Encrypted autumn. (c) Original cameraman. (d) Encrypted

cameraman.

7. Conclusion

In this paper, we addressed the anti-synchronization of a new chaotic system. With an adap-

tive backstepping control strategy, we designed a control input that derives the synchronization

errors globally and exponentially to zero. Analytical derivations were confirmed by numerical

simulations, which validated the system’s controllability and the robustness of the synchroniza-

tion method. Moreover, the scheme was also applied to image encryption by utilizing the master

system states in an XOR based process. This technique can be extended to other chaotic systems

and can find applications in secure data transmission and complex network control.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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