On Elliptic Equations with General Robin Boundary Conditions in Hölder Spaces: Non Commutative Cases

Main Article Content

Mohammed Rabah, Rabah Haoua, Maamar Andasmas

Abstract

In this paper, we study a class of second-order abstract differential equation problems of the elliptic type with operator coefficients with general Robin boundary conditions in a non-commutative setting, i.e the unbounded linear operator in the equation does not commute with the one that appears in the boundary conditions containing two spectral complex parameters. We study the case when the second member belongs to the Hölder space. We give necessary and sufficient conditions of compatibility to obtain a strict solution and also to ensure that the strict solution has the maximal regularity property. This paper is naturally the continuation of the ones studied in [16] and [10].

Article Details

References

  1. P. Auscher, A. McIntosh, A. Nahmod, The Square Root Problem of Kato in One Dimension, and First Order Elliptic Systems, Ind. Univ. Math. J. 46 (1997), 659–695. https://doi.org/10.1512/iumj.1997.46.1423.
  2. A. Balakrishnan, Fractional Powers of Closed Operators and the Semigroups Generated by Them, Pac. J. Math. 10 (1960), 419–437. https://doi.org/10.2140/pjm.1960.10.419.
  3. M. Cheggag, Problèmes de Sturm-liouville Abstraits pour une Équation Differentielle Abstraite Complète Elliptique du Second Ordre dans Divers Espaces, Thesis, Université Ahmed Ben Bella-Oran 1, 2008.
  4. M. Cheggag, A. Favini, R. Labbas, S. Maingot, A. Medeghri, Sturm-Liouville Problems for an Abstract Differential Equation of Elliptic Type in UMD Spaces, Differ. Integral Equ. 21 (2008), 981–1000. https://doi.org/10.57262/die/1356038596.
  5. M. Cheggag, A. Favini, R. Labbas, S. Maingot, A. Medeghri, Abstract Differential Equations of Elliptic Type with General Robin Boundary Conditions in Hölder Spaces, Appl. Anal. 91 (2012), 1453–1475. https://doi.org/10.1080/00036811.2011.635653.
  6. M. Cheggag, A. Favini, R. Labbas, S. Maingot, K. Ould Melha, New Results on Complete Elliptic Equations with Robin Boundary Coefficient-Operator Conditions in Non Commutative Case, Bull. South Ural. State Univ. Ser. Math. Model. Program. Comput. Softw. 10 (2017), 70–96. https://doi.org/10.14529/mmp170105.
  7. G. Da Prato, Abstract Differential Equations, Maximal Regularity, and Linearization, in: Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence, Rhode Island, 1986, pp. 359–370. https://doi.org/10.1090/pspum/045.1/843572.
  8. G. Da Prato, P. Grisvard, Sommes d'Op'{e}rateurs Lin'{e}aires et Equations Diff'{e}rentielles Op'{e}rationnelles, J. Math. Pures Appl. 54 (1975), 305–387. https://cir.nii.ac.jp/crid/1371132820324105090.
  9. G. Dore, S. Yakubov, Semigroup Estimates and Noncoercive Boundary Value Problems, Semigroup Forum 60 (2000), 93–121. https://doi.org/10.1007/pl00020982.
  10. A. Favini, R. Labbas, S. Maingot, A. Thorel, Elliptic Differential-Operators with an Abstract Robin Boundary Condition and Two Spectral Parameters, Results Math. 80 (2025), 188. https://doi.org/10.1007/s00025-025-02507-1.
  11. A. Favini, R. Labbas, S. Maingot, H. Tanabe, A. Yagi, Necessary and Sufficient Conditions for Maximal Regularity in the Study of Elliptic Differential Equations in Hölder Spaces, Discret. Contin. Dyn. Syst. 22 (2008), 973–987. https://doi.org/10.3934/dcds.2008.22.973.
  12. C.T. Fulton, Two-Point Boundary Value Problems with Eigenvalue Parameter Contained in the Boundary Conditions, Proc. R. Soc. Edinb.: Sect. A Math. 77 (1977), 293–308. https://doi.org/10.1017/s030821050002521x.
  13. P. Grisvard, Spazi di Tracce e Applicazioni, Rend. Mat. (4), 5 (1972), 657–729.
  14. D. Guidetti, An Introduction to Maximal Regularity for Parabolic Problems and Interpolation Theory With Application to an Inverse Problem, International Minicourse-Workshop, Interplay Between (C0)-Semigroups and PDEs: Theory and Applications, pp. 113-146, 2003.
  15. M. Haase, The Functional Calculus for Sectorial Operators, Birkhäuser Basel, 2006. https://doi.org/10.1007/3-7643-7698-8.
  16. R. Haoua, R. Labbas, S. Maingot, A. Medeghri, New Results on Abstract Elliptic Problems with General Robin Boundary Conditions in Hölder Spaces: Non Commutative Cases, Boll. Un Mat. Ital. 15 (2022), 413–436. https://doi.org/10.1007/s40574-021-00311-7.
  17. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1980. https://doi.org/10.1007/978-3-642-53393-8.
  18. S.G. Kreui, Linear Differential Equations in Banach Space, American Mathematical Society, (2011).
  19. A.V. Lykov, Y.A. Mikhailov, Theory of Heat and Mass Transfer, Jerusalem, (1965).
  20. C. Martinez, M. Sanz, The Theory of Fractional Powers of Operators, North-Holland, 2001. https://doi.org/10.1016/S0304-0208(00)X8025-5.
  21. E. Sinestrari, On the Abstract Cauchy Problem of Parabolic Type in Spaces of Continuous Functions, J. Math. Anal. Appl. 107 (1985), 16–66. https://doi.org/10.1016/0022-247x(85)90353-1.
  22. A.N. Tikhonov, A.A. Samarskii, Equations Of Mathematical Physics, Dover Publications, New York, (1963).
  23. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North Holland, 1978.
  24. N.N. Voitovich, B.Z. Katsenelbaum, A.N. Sivov, Generalized Method of Eigene-Vibration in the Theory of Diffraction, Nakua, Moscow, 1997.