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Abstract. In this paper, we study a class of second-order abstract differential equation problems of the elliptic type

with operator coefficients with general Robin boundary conditions in a non-commutative setting, i.e the unbounded

linear operator in the equation does not commute with the one that appears in the boundary conditions containing

two spectral complex parameters. We study the case when the second member belongs to the Hölder space. We give

necessary and sufficient conditions of compatibility to obtain a strict solution and also to ensure that the strict solution

has the maximal regularity property. This paper is naturally the continuation of the ones studied in [16] and [10].

1. Introduction and hypotheses

Let us consider the second order abstract differential equation

u′′ (x) + Au (x) −ωu (x) = f (x) , x ∈ ]0, 1[ , (1.1)

together with the abstract boundary conditions of Robin’s type u′ (0) −Hu (0) − µu (0) = d0

u (1) = u1.
(1.2)

Here A and H are closed linear operators in a complex Banach space X; d0 , u1 are given elements

in X; ω, µ are two complex parameters and the second member f belongs to C ([0, 1] ; X). Here, we

develop a different approach from those used so far.

We will seek for a strict solution u to (1.1)-(1.2), that is a function u such that: u ∈ C2 ([0, 1] ; X)∩C ([0, 1] ; D (A))

u (0) ∈ D (H) ,
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and which satisfies (1.1)-(1.2).

In general, the condition f ∈ C ([0, 1] ; X) is not sufficient to provide a strict solution to (1.1)-(1.2),

this is why we assume, in all the paper, that:

f ∈ Cθ ([0, 1] ; X) , 0 < θ < 1.

The techniques used here are essentially based on the Dunford functional calculus and the methods

applied in [5], [10] and [16].

In some problems governed by PDEs, there appears a spectral parameter both in the equation

and in the boundary conditions. As such, we cite the problems related to thermal condition or to

vibrating string, see [12], [19], [22], [24].

In [4], the authors have considered in a complex Banach space X, problem (1.1)-(1.2) where

λ = ω is some positive spectral parameter and µ = 0. Forω large enough, under some geometrical

assumption on the space X and hypotheses on operators A−ωI and H including the fact that they

commute in the resolvent sense, the authors have furnished necessary and sufficient conditions

on the data d0, u1 to obtain the existence and the uniqueness of a solution to (1.1)-(1.2) verifying

u ∈ W2,p (0, 1; X) ∩ Lp (0, 1; D (A)). Then, in [5], they studied problem (1.1)-(1.2) without the two

spectral parameters λ and µ, λ = ω and µ = 0, in a commutative framework and in a Hölder space.

In [6], the authors have developed an interesting new approach in a non commutative framework,

concerning some general Sturm-Liouville problems with the same Robin boundary condition in

0. Recently in [10], the authors studied the same problem (1.1)-(1.2) in a non-commutative setting,

when f ∈ Lp (0, 1; X) with 1 < p < ∞ and when X is an UMD space. They have considered two

cases:

(1) D (H) ⊂ D (A)

(2) D
(√
−A

)
⊂ D (H) , when

√
−A is defined.

This second case has been studied in [16] with one spectral positive real parameter in the

equation.

In all this work, we will use the following notation: for ϕ ∈ (0,π), we set

Sϕ =
{
z ∈ C \ {0} :

∣∣∣arg (z)
∣∣∣ ≤ ϕ}

∪ {0} .

We suppose that 
∃ϕ0 ∈ (0,π) : Sϕ0 ⊂ ρ (A) and ∃CA > 0 :

∀ω ∈ Sϕ0 ,
∥∥∥(A−ωI)−1

∥∥∥
L(X)

≤
CA

1 + |ω|
,

(1.3)

(ρ (A) denotes the resolvent set of A; this assumption means exactly the ellipticity of our problem

as in Krein [18]).

We will assume, moreover that

D (H) ⊂ D (A) , (1.4)
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and 
∃ϕ1 ∈ (0,π) , ∃CH > 0 :

Sϕ1 ⊂ ρ (−H) and sup
µ∈Sϕ1

(
1 +

∣∣∣µ∣∣∣) ∥∥∥(H + µI)−1
∥∥∥
L(X)

≤ CH. (1.5)

In all this work, we set for 
Aω = A−ωI, ω ∈ Sϕ0

Hµ = H + µI, µ ∈ Sϕ1 .

Remark 1.1. It is well known that assumption (1.3) implies that the square roots Q = −
√
−A and

Qω = −
√
−A +ωI are well defined and generate analytic semigroups not strongly continuous at zero, see

Balakrishnan [2] for dense domains and Martinez [20] for non dense domains. Note that, D (A) = D (Q).

Due to (1.3), we recall that DQ (θ;+∞) = (D (Q) ; X)1− θ;+∞ is the real interpolation space

described see [13].

We will also suppose that

(Q−H)−1 (D (Q)) ⊂ D
(
Q2

)
, (1.6)

and

Q2 (Q−H)−1
(
DQ (1 + θ;+∞)

)
⊂ D (Q); (1.7)

here, for the moment, (Q−H)−1 is taken in the set sense of the term. We will see later that this

(Q−H)−1
∈ L (X) .

We recall the notation

DQ (1 + θ;+∞) =
{
ϕ ∈ D (Q) : Qϕ ∈ DQ (θ;+∞)

}
.

For the maximum regularity we replace (1.7) by

Q2 (Q−H)−1
(
DQ (1 + θ;+∞)

)
⊂ DQ (θ;+∞) . (1.8)

This paper is the natural continuation of [16], where the authors have studied problem (1.1)-(1.2)

under (1.3), ( 1.5)∼(1.8) and also

D (Q) ⊂ D (H) ,

instead of (1.4).

Remark 1.2. From (1.3) we deduce that, there exists θ0 ∈ ]0,π/2[ and r0 > 0 such that the resolvent
operator of A satisfies:

ρ (A) ⊃ Sϕ0,r0 =
{
z ∈ C \ {0} :

∣∣∣arg (z)
∣∣∣ ≤ θ0

}
∪ B (0, r0),

where B (0, r0) is the closed ball of radius r0 and centered in 0.
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Remark 1.3. Assume (1.3) and (1.4). Let ω ∈ Sϕ0 , we know that there exists Lω ∈ L (X), such that

Q = Qω + Lω and LωQ−1 = Q−1Lω. (1.9)

See [15], Proposition 3.1.7, p. 65. Form (1.9) we deduce that Lω is continuous from D (Q) into D (Q) by
writing for all ϕ ∈ D (Q)

Lωϕ = LωQ−1Qϕ

= Q−1LωQϕ,

which gives ∥∥∥Lωϕ
∥∥∥

D(Q)
=

∥∥∥Lωϕ
∥∥∥

X +
∥∥∥QLωϕ

∥∥∥
X

=
∥∥∥Lωϕ

∥∥∥
X +

∥∥∥QQ−1LωQϕ
∥∥∥

X

=
∥∥∥Lωϕ

∥∥∥
X +

∥∥∥LωQϕ
∥∥∥

X

≤ ‖Lω‖X
∥∥∥ϕ∥∥∥

X + ‖Lω‖X
∥∥∥Qϕ

∥∥∥
X

≤ ‖Lω‖X
[∥∥∥ϕ∥∥∥

X +
∥∥∥Qϕ

∥∥∥
X

]
≤ ‖Lω‖X

∥∥∥ϕ∥∥∥
D(Q)

,

therefore Lω is continuous from any interpolation space DQ (θ;+∞) into itself.

Remark 1.4. Let ω ∈ Sϕ0 , we have

DQω (θ;+∞) = DQ (θ;+∞) , DQω (1 + θ;+∞) = DQ (1 + θ;+∞) .

Moreover D (Qω) = D (Q) and D
(
Q2
ω

)
= D

(
Q2

)
with

Q2 = Q2
ω + 2LωQω + L2

ω,

on the other hand, we have

Q−2
ω = Q−2

− (−A)−1 + (−A +ωI)−1

= Q−2
− (−A)−1 (−A +ωI) (−A +ωI)−1 + (−A)−1 (−A) (−A +ωI)−1

= Q−2
−ω (−A)−1 (−A +ωI)−1

= Q−2
−ωQ−2Q−2

ω .

Remark 1.5. Let ω ∈ Sϕ0 , µ ∈ Sϕ1 and let us show that if (Q−H)−1 exists and verifies

(Q−H)−1 (D (Q)) ⊂ D
(
Q2

)
, (1.10)

then (
Qω −Hµ

)−1
(D (Qω)) ⊂ D

(
Q2
ω

)
,

when
(
Qω −Hµ

)−1
exists.
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Proof. Assume (1.10) and set (
Qω −Hµ

)−1 (
Q−1(ξ)

)
= η,

then

Q−1(ξ) =
(
Qω −Hµ

)
(η) = (Qω −Q) (η) +

(
H −Hµ

)
(η) + (Q−H) (η);

We have seen that from (1.9)

Q = Qω + Lω and Q−1Lω = LωQ−1;

Now, set

H = Hµ + Tµ when Tµ = −µI;

Since η ∈ D (Q), then there exists ζ ∈ X such that η = Q−1(ζ), therefore

Q−1 (ξ) = (Qω −Q)Q−1 (ζ) +
(
H −Hµ

)
Q−1 (ζ) + (Q−H) η

= −Q−1Lω (ζ) + TµQ−1 (ζ) + (Q−H) η,

and

η = (Q−H)−1
[
Q−1 (ξ) + Q−1Lω (ζ) − TµQ−1 (ζ)

]
∈ D

(
Q2

)
.

�

Remark 1.6. Let ω ∈ Sϕ0 and µ ∈ Sϕ1 . Now, as above, let us prove that if (Q−H)−1exists and verifies the
following properties  (Q−H)−1 (D(Q)) ⊂ D

(
Q2

)
For some ξ ∈ X, (Q−H)−1 (ξ) ∈ D

(
Q2

)
,

(1.11)

then, when
(
Qω −Hµ

)−1
exists, we have also(

Qω −Hµ

)−1
(ξ) ∈ D

(
Q2

)
.

Proof. In fact, set (
Qω −Hµ

)−1
(ξ) = η,

so

ξ =
(
Qω −Hµ

)
(η) = (Qω −Q) (η) +

(
H −Hµ

)
(η) + (Q−H) (η),

where η = Q−1(χ), χ ∈ X. As above, we have

ξ = −Q−1Lω(χ) + TµQ−1 (χ) + (Q−H) (η),

from which it follows

(Q−H)−1 (ξ) = − (Q−H)−1 Q−1Lω(χ) + (Q−H)−1 TµQ−1 (χ) + η,

in virtue of (1.11), we obtain

η = (Q−H)−1 (ξ) + (Q−H)−1 Q−1Lω(χ) − (Q−H)−1 TµQ−1 (χ) ∈ D
(
Q2

)
.

�
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Remark 1.7. Let ω ∈ Sϕ0 and µ ∈ Sϕ1 . Now, as above, assume that (Q−H)−1exists and verifies the four
following properties 

i) (Q−H)−1 (D(Q)) ⊂ D
(
Q2

)
ii) Q2 (Q−H)−1 (D(Q)) ⊂ D(Q)

iii) For some ξ ∈ X, (Q−H)−1 (ξ) ∈ D
(
Q2

)
iv) Q2 (Q−H)−1 (ξ) + f (0) ∈ D(Q),

(1.12)

then, when
(
Qω −Hµ

)−1
exists, we have also

(
Qω −Hµ

)−1
(ξ) ∈ D

(
Q2

)
and

Q2
(
Qω −Hµ

)−1
(ξ) + f (0) ∈ D(Q).

Proof. In fact, by setting (
Qω −Hµ

)−1
(ξ) = η,

and using the last calculus, we get

η = (Q−H)−1 (ξ) + (Q−H)−1 Q−1Lω(χ) − (Q−H)−1 TµQ−1 (χ) ,

so

Q2
(
Qω −Hµ

)−1
(ξ) + f (0) = Q2(η) + f (0)

= Q2 (Q−H)−1 (ξ) + Q2 (Q−H)−1 Q−1Lω(χ)

− Q2 (Q−H)−1 TµQ−1 (χ) + f (0) ∈ D(Q).

�

The plan of the paper is as follows:

In the first section and after having presented our problem (1.1)-( 1.2) and some works of authors on

the same theme, we introduced our hypotheses (1.3)∼(1.8). We then showed all the consequences

of these hypotheses in from of remarks. In the next Section, we collect some useful basic lemmas.

In Section 3, we give the representation formula of solution u of problem (1.1)-(1.2). Section 4 is

devoted to the proof of the main result. Finally in section 5 we give some concrete examples of

partial differential equations to which our theory applies.

2. Technical lemmas

In this work all the constants in the estimates are independent of ω, µ. Due to [9], Lemma 2.6,

statement b, p. 103, we have:

Lemma 2.1. There exists a constant M ≥ 0 independent of ω ∈ Sϕ0 , such that for any ω ∈ Sϕ0 , operators
I ± e2Qω are invertible in L (X) and

∀ω ∈ Sϕ0 ,
∥∥∥∥∥(I ± e2Qω

)−1
∥∥∥∥∥
L(X)

≤M. (2.1)

Proof. For the proof, see [10], Lemma 5.1. �
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Lemma 2.2. Assume that (1.3) holds. There exists a constants C > 0 such that, for allω ∈ Sϕ0 and z ∈ Sϕ0 ,
we have ∥∥∥∥(Qω − zI)−1

∥∥∥∥
L(X)

≤
C

√
1 + |ω|+ |z|

.

Proof. Although the proof is given in [3], Lemma 3.1, p. 67-68, we give a proof for the reader’s

convenience and completeness.

Let γ be a sectorial curve surrounding the spectrum of −Aω. Using S. G. Krein [18], p. 116-117

and for all z ≥ 0, we have

(Qω − zI)−1 = −

(√
−Aω + zI

)−1

=
−1
2πi

∫
γ

(−Aω − λI)−1

z +
√
λ

dλ

=
−1
π

∫ +∞

0

√
s (−A +ωI + sI)−1

s + z2 ds.

From the hypothesis (1.3), we obtain∥∥∥∥(Qω − zI)−1
∥∥∥∥
L(X)

≤ C
∫ +∞

0

√
s

(1 + |ω|+ s) (s + z2)
ds

≤ C
∫ +∞

0

t2

(1 + |ω|+ t2) (t2 + z2)
dt

≤
C

1 + |ω| − z2

[∫ +∞

0

1 + |ω|
1 + |ω|+ t2 dt−

∫ +∞

0

z2

t2 + z2 dt
]

≤
C

√
1 + |ω|+ |z|

.

�

Lemma 2.3. For all ω ∈ Sϕ0 , µ ∈ Sϕ1 , we have Q2
ωH−1

µ ∈ L (X); moreover there exists a constant M > 0

independent of ω and µ such that:

max
{∥∥∥HH−1

µ

∥∥∥
L(X)

,
∥∥∥AH−1

µ

∥∥∥
L(X)

}
≤M, (2.2)

∥∥∥Q2
ωH−1

µ

∥∥∥
L(X)

≤M
1 + |ω|+

∣∣∣µ∣∣∣
1 +

∣∣∣µ∣∣∣ , (2.3)

and ∥∥∥QωH−1
µ

∥∥∥
L(X)

≤M
1 + |ω|+

∣∣∣µ∣∣∣(
1 +

∣∣∣µ∣∣∣) √1 + |ω|
. (2.4)

Proof. See [10], Lemma 5.2. �

We now introduce, for r > 0, the notation

Ωϕ0,ϕ1,r =

(ω,µ) ∈ Sϕ0 × Sϕ1 : |ω| ≥ r and

∣∣∣µ∣∣∣2
|ω|
≥ r)

 .
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Lemma 2.4. Assume that (1.3)∼(1.5) hold. Then there exists ρ0 > 0 and a constant C > 0 independent of
ω ∈ Sϕ0 and µ ∈ Sϕ1 such that the operator Qω± Hµ is boundedly invertible, moreover∥∥∥(Qω ±Hµ)

−1
∥∥∥
L(X)

≤
C

1 +
∣∣∣µ∣∣∣ . (2.5)

Proof. From (43), there exists ρ0 > 0 such that for all (ω, µ) ∈ Ωϕ0,ϕ1,ρ0 we have∥∥∥QωH−1
µ

∥∥∥
L(X)

≤
1
2

,

see [10], Lemma 5.3. Then from (1.5), that operator Qω ±Hµ is invertible and we have∥∥∥∥∥(Qω ±Hµ

)−1
∥∥∥∥∥
L(X)

=

∥∥∥∥∥H−1
µ

(
QωH−1

µ ± I
)−1

∥∥∥∥∥
L(X)

≤
1

1−
∥∥∥QωH−1

µ

∥∥∥
L(X)

∥∥∥H−1
µ

∥∥∥
L(X)

≤
C

1 +
∣∣∣µ∣∣∣ .

(Note that, you can replace (2.5) by
∥∥∥(Qω ±Hµ)−1

∥∥∥
L(X)

≤
C

√
1+|ω|

). �

Now, for ω ∈ Sϕ0 and µ ∈ Sϕ1 , we define operator Λω,µ by:

Λω,µ = Qω −Hµ + e2Qω
(
Qω + Hµ

)
.

Note that, since D
(
Hµ

)
⊂ D

(
Q2
ω

)
, we have D

(
Λω,µ

)
= D

(
Hµ

)
= D (H) and furnish results on Λω,µ.

Lemma 2.5. (1) There exist r0 > 0 and M > 0 such that for all (ω,µ) ∈ Ωϕ0,ϕ1,r, we have
0 ∈ ρ

((
I − e2Qω

)−1 (
I + e2Qω

)
QωH−1

µ − I
)

∥∥∥∥∥∥[(I − e2Qω
)−1 (

I + e2Qω
)

QωH−1
µ − I

]−1
∥∥∥∥∥∥
L(X)

≤ 2.
(2.6)

(2) The operator Λω,µ is boundedly invertible and∥∥∥Λ−1
ω,µ

∥∥∥
L(X)

≤
M

1 +
∣∣∣µ∣∣∣ , (2.7)

and ∥∥∥Q2
ωΛ−1

ω,µ

∥∥∥
L(X)

≤M
1 + |ω|+

∣∣∣µ∣∣∣
1 +

∣∣∣µ∣∣∣ , (2.8)

Note that Q2
ωΛ−1

ω,µ has the same behavior as QωH−1
µ .

Proof. See [10], Lemma 5.3. �

Lemma 2.6. Assume (1.3)∼(1.6). Fix (ω1,µ1) ∈ Ωϕ0,ϕ1,r. Then there exists C > 0 such that for all
(ω,µ) ∈ Ωϕ0,ϕ1,r, we have
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(1) Q2
ω

(
Qω −Hµ

)−1
Q−1
ω ∈ L (X), with∥∥∥∥∥Q2

ω

(
Qω −Hµ

)−1
Q−1
ω

∥∥∥∥∥
L(X)

≤ C.

(2) There exists Wω,µ ∈ L (X) such that

Λ−1
ω,µ =

(
Qω −Hµ

)−1 (
I − e2QωWω,µ

)
,

with ∥∥∥Wω,µ
∥∥∥
L(X)

≤ C and
∥∥∥Q2

ωΛ−1
ω,µQ−1

ω

∥∥∥
L(X)

≤ C.

Proof. Let (ω,µ) ∈ Ωϕ0,ϕ1,r.

(1) Due to Lemma 2.3 and Lemma 2.4 and by using the same techniques as in [10], Lemma 5.3,

we obtain that∥∥∥∥∥Q2
ω

(
Qω −Hµ

)−1
Q−1
ω

∥∥∥∥∥
L(X)

=

∥∥∥∥∥Q2
ωH−1

µ

(
QωH−1

µ − I
)−1

Q−1
ω

∥∥∥∥∥
L(X)

≤ C.

(2) For the second assertion, see [10], Lemma 6.4. Statement 3.

�

3. Representation formula of the solution

In order to solve problem (1.1)-(1.2), we use the well know Krein’s reduction order method,

see [18]. Under assumptions (1.3)∼(1.5), suppose that the problem has a strict solution u, that

is, u ∈ C2 ([0, 1] , X) ∩ C ([0, 1] , D (A)) such that u (0) ∈ D (H) and (1.1)-(1.2) are satisfied. Then u
admits a representation formula given in [16]

u (x) = S (x)µ0 + S (1− x)µ1 + I (x) + J (x) , x ∈ [0, 1] , (3.1)

where 

I (x) =
1
2

Q−1
ω

∫ x
0 e(x−s)Qω f (s) ds,

J (x) =
1
2

Q−1
ω

∫ 1
x e(s−x)Qω f (s) ds,

S (x) = Tω
(
exQω − e(1−x)QωeQω

)
,

(3.2)

with Tω =
(
I − e2Qω

)−1
and

µ1 = u1 − I (1)
µ0 = Λ−1

ω,µβ0 − J (0)
β0 =

(
I − e2Qω

)
d0 + 2QωeQωµ1 + 2QωJ (0) .

(3.3)
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We have Tω = I + e2QωTω. In view to use the h ölderianity assumption on f , we need to adapt the

previous representation, then there exist τ0, ϕ0, ϕ1 ∈ X (clearly computable) such that

u (x) =
(
I + e2QωTω

) (
exQω − e(1−x)QωeQω

)
µ0

+
(
I + e2QωTω

) (
e(1−x)Qω − exQωeQω

)
(u1 − I (1))

+I (x) + J (x)

= exQωµ0 + e(1−x)Qω (u1 − I (1)) + I (x) + J (x) + exQωeQωϕ0 + e(1−x)QωeQωϕ1

= exQω
(
Λ−1
ω,µ [d0 + 2QωJ (0)] − J (0)

)
+ I (x)

+e(1−x)Qω (u1 − I (1)) + J (x)

+exQωΛ−1
ω,µeQωτ0 + exQωeQωϕ0 + e(1−x)QωeQωϕ1.

Moreover Λ−1
ω,µ =

(
Qω −Hµ

)−1
−

(
Qω −Hµ

)−1
e2QωWω,µ, so there exist τ1, ψ0, ψ1 in X (clearly com-

putable) such that

u (x) = exQω

[(
Qω −Hµ

)−1
(d0 + 2QωJ (0)) − J (0)

]
+ I (x)

+e(1−x)Qω (u1 − I (1)) + J (x) (3.4)

+exQω
(
Qω −Hµ

)−1
eQωτ1

+exQωeQωψ0 + e(1−x)QωeQωψ1.

Now, we write

J (0) =
1
2

Q−1
ω

∫ 1

0
esQω ( f (s) − f (0)) ds +

1
2

Q−1
ω

∫ 1

0
esQω f (0) ds

=
1
2

Q−1
ω

∫ 1

0
esQω ( f (s) − f (0)) ds +

1
2

Q−2
ω eQω f (0) −

1
2

Q−2
ω f (0) ,

and

I (1) =
1
2

Q−1
ω

∫ 1

0
e(1−s)Qω ( f (s) − f (1)) ds +

1
2

Q−1
ω

∫ 1

0
e(1−s)Qω f (1) ds

=
1
2

Q−1
ω

∫ 1

0
e(1−s)Qω ( f (s) − f (1)) ds−

1
2

Q−2
ω f (1) +

1
2

Q−2
ω eQω f (1) ,

so from (3.4), we can define τ2, ψ2, ψ3 ∈ X such that

u (x) = exQω

[(
Qω −Hµ

)−1
[d0 −Q−1

ω f (0)] +
1
2

Q−2
ω f (0)

]
+ I (x)

+e(1−x)Qω

(
u1 +

1
2

Q−2
ω f (1)

)
+ J (x) (3.5)

+R1 (x) + R2 (x) + R3 (x) ,
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with 
R1 (x) = exQω

(
Qω −Hµ

)−1
(
eQωτ2 +

∫ 1
0 esQω ( f (s) − f (0)) ds

)
R2 (x) = − 1

2 exQωQ−1
ω

∫ 1
0 esQω ( f (s) − f (0)) ds

−
1
2 e(1−x)QωQ−1

ω

∫ 1
0 e(1−s)Qω ( f (s) − f (1)) ds

R3 (x) = exQωeQωψ2 + e(1−x)QωeQωψ3.

(3.6)

i): Note that, in (3.5) the first term gives the behavior of u near 0, the second term concerns

the behavior of u near one 1 and R1 (x), R2 (x), R3 (x) are regular terms (see Propositions

4.4 and 4.5 below).

ii): Note that we did not need a commutativity hypothesis between Hµ and Qω in the above

calculus.

iii): In virtue of the commutativity assumption supposed in ( [5]), which given

Λ−1
ω,µeQω = eQωΛ−1

ω,µ, (3.7)

the term R1 (x) is regular.

In this work, we cannot use (3.7) but the regularity of R1 (x) using (1.6) and (1.7).

4. Regularity of the solution

We start the section by proving some technical lemmas useful for the analysis of the terms of

the solution.

Proposition 4.1. (1) Let ϕ ∈ X and θ ∈ ]0, 1[ . Then the two following assertions are equivalent.
(a) e·Qϕ ∈ C([0, 1]; X).
(b) ϕ ∈ D(Q).

(2) Let θ ∈ ]0, 1[ , g ∈ Cθ ([0, 1] ; X) and ϕ ∈ X. Set

v (x) = exQϕ+

∫ x

0
e(x−s)Qg (s) ds.

Then the two following assertions are equivalent.
(a) v ∈ C1 ([0, 1] ; X)∩C ([0, 1] ; D (Q)) .

(b) ϕ ∈ D (Q) and g (0) + Qϕ ∈ D(Q).

Considering the well known real interpolation space

(D (Q) , X)1−θ,∞ = (X, D (Q))θ,∞ = DQ (θ;+∞) ,

(see H. Triebel see [23] p. 25 and 76), we have also:

Proposition 4.2. (1) Let ϕ ∈ X and θ ∈ ]0, 1[ . Then the two following assertions are equivalent.
(a) e·Qϕ ∈ Cθ([0, 1]; X).
(b) ϕ ∈ DQ (θ;+∞) .
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(2) Let θ ∈ ]0, 1[and g ∈ Cθ ([0, 1] ; X). Set

v (x) =
∫ x

0
e(x−s)Q (g (s) − g (0)) ds.

Then v ∈ C1,θ ([0, 1] ; X)∩Cθ ([0, 1] ; D (Q)) .

(3) Let g ∈ C ([0, 1] ; X) and ϕ ∈ X. Set

w (x) = exQϕ+

∫ x

0
e(x−s)Qg (s) ds.

Then the two following assertions are equivalent.
(a) w ∈ C1,θ ([0, 1] ; X)∩Cθ ([0, 1] ; D (Q)) .

(b) g ∈ Cθ ([0, 1] ; X) , ϕ ∈ D (Q) and g (0) + Qϕ ∈ DQ (θ;+∞) .

(4) Let g ∈ Cθ ([0, 1] ; X) . Then

Q
∫ 1

0
esQ ( f (s) − f (0)) ds ∈ (D (Q) , X)1−θ,∞ .

Proof. Statement 2 is obtained by applying the Da Prato-Grisvard sum theory [8]. Statement 3

which improves Statement 2 is due to E. Sinestrari [21], see also G. Da Prato [7]. We can find in D.

Guidetti [14] a simple proof of these results (see Corollary 2.1 and Theorem 2.4, p. 136). �

notation: Let g and h be two given X-valued functions defined on [0, 1] and θ ∈ ]0, 1[. We write

g 'θ h,

if

g− h ∈ Cθ ([0, 1] ; X) .

As a consequence of Proposition 4.2 we get (see [11] Proposition 8, p. 976):

Proposition 4.3. Let g ∈ Cθ ([0, 1] ; X) with θ ∈ ]0, 1[ and ϕ ∈ D (Q) . Set

w (x) = exQϕ+

∫ x

0
e(x−s)Qg (s) ds.

Then

Qw (·) 'θ e·Q (Qϕ+ g (0)) .

Proposition 4.4. Assume (1.3) ∼(1.7) . Let f ∈ Cθ([0, 1]; X), with 0 < θ < 1 and d0 , u1 ∈ X. Then for
ω ∈ Sϕ0 and µ ∈ Sϕ1 :

(1) Q2
ωR3 ∈ C∞([0, 1]; X),

(2) R1 ∈ C2([0, 1]; X) and Q2
ωR1 ∈ C([0, 1]; X),

(3) R2 ∈ C2([0, 1]; X) and Q2
ωR2 ∈ C([0, 1]; X),

(4) Q2R1, Q2R2, Q2R3 ∈ C([0, 1]; X).
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Proof. (1) For any ψ ∈ X and n ∈N∗, we have

eQωψ ∈ L (X, D(Qn)) ,

so

e.QωeQωψ ∈ C∞([0, 1]; X),

applying Aω, we obtain

Aωe.QωeQωψ = −e.QωQ2
ωeQωψ ∈ C∞([0, 1]; X).

Using (3.6), we have for x ∈ ]0, 1[

AωR3 (x) = exQωeQωϕ+ e(1−x)QωeQωξ,

it is clear that

AωR3 (x) ∈ C∞([0, 1]; X),

which gives the result.

(2) Now, we have for all x ∈ [0, 1]

R1 (x) = exQω(Qω −Hµ)
−1

(
eQωτ2 +

∫ 1

0
esQ( f (s) − f (0))ds

)
= exQω(Qω −Hµ)

−1
eQωτ2

+exQω(Qω −Hµ)
−1

∫ 1

0
esQ( f (s) − f (0))ds,

then

Q2
ω
R1 (x) = exQωQ2

ω
(Qω −Hµ)

−1
Q−1

ω

(
QωeQωτ2

)
+exQωQ2

ω(Qω −Hµ)
−1

Q−1
ω

(
Qω

∫ 1

0
esQ( f (s) − f (0))ds

)
.

The term (
Qω

∫ 1

0
...ds

)
∈ (D (Q) , X)1−θ,∞ ⊂ D (Q),

see Proposition 4.1. Then the first therm and the second are continuous on [0, 1] , in virtue

of (1.6) and (1.7 ).

(3) From Proposition 4.1, we have Qω

∫ 1
0 esQω( f (s) − f (0))ds ∈ (D (Q) , X)1−θ,∞ ⊂ D (Q),

Qω

∫ 1
0 e(1−s)Qω( f (s) − f (1))ds ∈ (D (Q) , X)1−θ,∞ ⊂ D (Q),

then, from Proposition 4.1, statement 1), Q2
ωR2 ∈ C([0, 1]; X), since

Q2
ωR2(x) = −

1
2

exQωQω

∫ 1

0
esQω( f (s) − f (0))ds

−
1
2

e(1−x)QωQω

∫ 1

0
e(1−s)Qω( f (s) − f (1))ds.
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(4) For j ∈ {1, 2, 3}, write Q2R j = Q2Q−2
ω Q2

ωR j with Q2Q−2
ω ∈ L(X).

�

Proposition 4.5. Assume (1.3) ∼(1.8). Let f ∈ Cθ([0, 1]; X), with 0 < θ < 1, and d0, u1 ∈ X. Then for
ω ∈ Sϕ0 and µ ∈ Sϕ1 :

(1) Q2
ωR3 ∈ C∞([0, 1]; X),

(2) R1 ∈ C2([0, 1]; X) and Q2
ωR1 ∈ Cθ([0, 1]; X),

(3) R2 ∈ C2([0, 1]; X) and Q2
ωR2 ∈ Cθ([0, 1]; X),

(4) Q2R1, Q2R2, Q2R3 ∈ Cθ([0, 1]; X).

Proof. The proof is similar to that of Proposition 4.4, we simply replace hypothesis (1.7) by (1.8),

D (Q) by DQ (θ;+∞) and C([0, 1]; X) by Cθ([0, 1]; X). �

5. Main result

According to the above study on the regularity of the solution, we are ready to state our main

result on the existence and the uniqueness of the strict solution of problem (1.1)-(1.2).

Theorem 5.1. Assume (1.3)∼(1.8). Let f ∈ Cθ ([0, 1] ; X) , with 0 < θ < 1 and d0, u1 ∈ X. Then, for any
ω ∈ Sϕ0 and µ ∈ Sϕ1 :

(1) Problem (1.1)-(1.2). has a unique strict solution u if and only if
i)

(
Qω −Hµ

)−1
[d0 −Q−1

ω f (0)] ∈ D
(
Q2

)
ii) Q2

ω

(
Qω −Hµ

)−1
[d0 −Q−1

ω f (0)] + f (0) ∈ D (Q)

iii) u1 ∈ D
(
Q2

)
iv) Q2

ωu1 + f (1) ∈ D (Q).

(5.1)

(2) Problem (1.1)-(1.2) has a unique strict solution u satisfying the maximal regularity property u′′,
Aωu ∈ Cθ ([0, 1] ; X) if and only if

i)
(
Qω −Hµ

)−1
[d0 −Q−1

ω f (0)] ∈ D
(
Q2

)
ii) Q2

ω

(
Qω −Hµ

)−1
[d0 −Q−1

ω f (0)] + f (0) ∈ DQ (θ,+∞)

iii) u1 ∈ D
(
Q2

)
iv) Q2

ωu1 + f (1) ∈ DQ (θ,+∞) .

(5.2)

Proof. For (1), we first suppose that (5.1) is satisfied and we have to prove that u given by (3.5) is

the strict solution u of problem (1.1)-(1.2). But to prove that

u ∈ C2 ([0, 1] ; X)∩C ([0, 1] ; D (A)) ,

it is enough to show that Q2
ωu ∈ C ([0, 1] ; X) .

Using the Proposition 4.4, we have

Q2
ωRi ∈ C ([0, 1] ; X) , i = 1, 2 and Q2

ωR3 ∈ C∞ ([0, 1] ; X) ,
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so we deduce

Q2
ωũ = Q2

ωu−Q2
ωR1 −Q2

ωR2 −Q2
ωR3 ∈ C ([0, 1] ; X) ,

where

ũ = exQω

[(
Qω −Hµ

)−1
[d0 −Q−1

ω f (0)] +
1
2

Q−2
ω f (0)

]
+ I (x)

+e(1−x)Qω

(
u1 +

1
2

Q−2
ω f (1)

)
+ J (x) .

Then it is now known from Proposition 4.1, by statement 1, that this term is continuous on [0, 1] if

and only if  Q2
ω

(
Qω −Hµ

)−1
[d0 −Q−1

ω f (0)] + f (0) ∈ D (Q)

Q2
ωu1 + f (1) ∈ D (Q).

Conversely, we suppose that (5.1) is satisfied and show that the problem (1.1)-(1.2) has a strict

solution u. From Proposition 4.1, we have exQω

[
Q2
ω

(
Qω −Hµ

)−1
[d0 −Q−1

ω f (0)] + f (0)
]
∈ C ([0, 1] ; X)

e(1−x)Qω
[
Q2
ωu1 + f (1)

]
∈ C ([0, 1] ; X) .

Which implies that Q2
ωũ in C ([0, 1] ; X). So

Aωu ∈ C ([0, 1] ; X) ,

then we deduce

u ∈ C ([0, 1] ; D (A)) .

Since f ∈ Cθ ([0, 1] ; X), so

u′′ = f −Aωu ∈ C ([0, 1] ; X) ,

this means

u ∈ C2 ([0, 1] ; X)∩C ([0, 1] ; D (A)) .

Moreover, we have according to (3.3) u (1) = µ1 + I (1) = u1, and taking into account the fact that u (0) = µ0 + J (0) = Λ−1
ω,µβ0 ∈ D (H)

Hµu (0) = TωQω

(
I + e2Qω

)
Λ−1
ω,µβ0 − Tωβ0,

where  µ0 = Λ−1
ω,µβ0 − J (0)

β0 =
(
I − e2Qω

)
d0 + 2QωeQωµ1 + 2QωJ (0) ∈ X.

And also, we have

u′ (0) = QωTω
(
I + e2Qω

)
µ0 − 2QωTωeQωµ1 −QωJ (0)

= QωTω
(
I + e2Qω

)
Λ−1
ω,µβ0 −QωTω

(
I + e2Qω

)
J (0) − 2QωTωeQωµ1 −QωJ (0) ,



16 Int. J. Anal. Appl. (2026), 24:33

so

u′ (0) −Hu (0) − µu (0) = Tωβ0 −QωTω
(
I + e2Qω

)
J (0) − 2QωTωeQωµ1 −QωJ (0)

= d0 + 2TωQωeQωµ1 + 2TωQωJ (0) −QωTω
(
I + e2Qω

)
J (0)

−2QωTωeQωµ1 −QωJ (0)

= d0.

Finally (5.1) is satisfied.

For (2), it is enough to replace the condition (5.1) by (5.2),then we use the Proposition 4.2. �

Corollary 5.1. Assume (1.3) ∼(1.8), let f ∈ Cθ ([0, 1] ; X) , with 0 < θ < 1 and d0, u1 ∈ X. If u1 ∈ D (A),
d0 ∈ D (Q) and Qd0, f (0) , Q2u1 + f (1) ∈ DQ (θ,+∞), then problem (1.1)-(1.2) has a unique strict
solution u satisfying maximal regularity property u′′, Aωu ∈ Cθ ([0, 1] ; X) .

6. Application

Let us illustrate our abstract results by the following problem. Set

Ω = (0, 1) × (0, 1) ,

and consider:

(P)



∂2u
∂x2 (x, y) −

∂4u
∂y4

(x, y) −ωu (x, y) = f (x, y) , (x, y) ∈ Ω

∂u
∂x

(0, y) + a
∂4u
∂y4

(0, y) − µu (0, y) = d0 (y) , y ∈ (0, 1)

u (1, y) = u1 (y) , y ∈ (0, 1)

u (x, 0) = u (x, 1) =
∂2u
∂y2 (x, 0) =

∂2u
∂y2 (x, 1) = 0, x ∈ (0, 1) ,

where ω ≥ 0, µ ≥ 0, a > 0 and d0, u1 are some given functions and

f ∈ Cθ ([0, 1] ; Lp (0, 1)), 0 < θ < 1, 1 < p < +∞.

Now, in the Banach space X = Lp (0, 1), we define: D (A) =
{
ψ ∈W4,p (0, 1) : ψ (0) = ψ (1) = ψ′′ (0) = ψ′′ (1) = 0

}
Aψ (y) = −ψ(4) (y) ,

and  D (H) =
{
ψ ∈W4,p (0, 1) : ψ (0) = ψ (1) = ψ′′ (0) = ψ′′ (1) = 0

}
Hψ (y) = −aψ(4) (y) ,

Then, it is not difficult to see that our problem (P) writes, in X, in the abstract following form
u′′ (x) + Au (x) −ωu (x) = f (x) , x ∈ ]0, 1[

u′ (0) −Hu (0) − µu (0) = d0,

u (1) = u1.
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Let us verify our assumptions (1.3)∼(1.8). First we have

D (H) = D (A) ,

on the other hand A verifies (1.3) and −H verifies (1.5) in

Sϕ0 = Sϕ1 = Sπ−ε0 ,

for any ε0 ∈ ]0,π[ . From this we know that operator −
√
−A = Q generates an analytic semigroup

strongly continuous at zero, see Balakrishnan [2] and from [1] we have

D (Q) =
{
ψ ∈W2,p (0, 1) : ψ (0) = ψ (1) = 0

}
.

It is not difficult to prove that Q, Q−H and H are boundedly invertible. Therefore for anyψ ∈ D (H)

Qψ =
1
π

∫ +∞

0

(A− λI)−1

√
λ

(−A)ψdλ

=
1
π

∫ +∞

0

(A− λI)−1

a
√
λ

Hψdλ,

see [2]. By virtue of (1.3), we have∥∥∥Qψ
∥∥∥ ≤ k

∥∥∥Hψ
∥∥∥∫ +∞

0

dλ
√
λ (1 + λ)

≤
k
π

∥∥∥Hψ
∥∥∥∫ +∞

0

dλ
√
λ (1 + λ)

≤ k
∥∥∥Hψ

∥∥∥ .

So we can choose two positive constants k1 and k2 with k1 very large as possible and k2 < 1 such

that ∥∥∥Qψ
∥∥∥ ≤ k1

∥∥∥ψ∥∥∥+ k2
∥∥∥Hψ

∥∥∥ ,

by virtue of (1.4) and (1.5) from where the linear operator Q−H is closed and invertible, see [17],

Theorem 1.1, p. 190.

The hypotheses (Q−H)−1 (D (Q)) ⊂ D
(
Q2

)
and

Q2 (Q−H)−1
(
DQ (1 + θ;+∞)

)
⊂ D (Q) are checked automatically since D

(
Q2

)
= D (H) ⊂ D (Q)

and D (Q) = D (A) = X = Lp(0, 1)., therefore, all our assumptions are satisfied

Now we must assume verify the following conditions of u1 and d0.

(1) The condition u1 ∈ D
(
Q2

)
.

This, with respect to the variable y, translates into

u1 ∈W2,p (0, 1) : u1 (0) = u1 (1) = 0.

(2) The condition Q2u1 + f (1) ∈ D (Q) = Lp (0, 1) .

It means that

y 7→ u′′1 (y) + f (1, y) ∈ Lp (0, 1) .
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This is automatically verified, because u′′1 ∈ Lp (0, 1) and

f ∈ Cθ([0, 1]; Lp (0, 1)),

which implies y 7→ f (1, y) = f (1)(y) ∈ Lp (0, 1) .

(3) It is clear that the condition Q (Q−H)−1
(
d0 −Q−1 f (0)

)
∈ D (Q) .

(4) The condition Q2 (Q−H)−1
(
d0 −Q−1 f (0)

)
+ f (0) ∈ D (Q) = Lp (0, 1) .

It becomes d0 ∈ D (Q) .

Therefore, Theorem 5.1 for the existence and the uniqueness of the strict solution applies.

We do the same for the maximal regularity.
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