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Abstract. In this paper, we study a class of second-order abstract differential equation problems of the elliptic type
with operator coefficients with general Robin boundary conditions in a non-commutative setting, i.e the unbounded
linear operator in the equation does not commute with the one that appears in the boundary conditions containing
two spectral complex parameters. We study the case when the second member belongs to the Holder space. We give
necessary and sufficient conditions of compatibility to obtain a strict solution and also to ensure that the strict solution

has the maximal regularity property. This paper is naturally the continuation of the ones studied in [16] and [10].

1. INTRODUCTION AND HYPOTHESES
Let us consider the second order abstract differential equation
u” (x) +Au (x) —wu (x) = f(x), x€]0,1[, (1.1)
together with the abstract boundary conditions of Robin’s type

u (0) —Hu (0) — pu (0) =do

u(l) =u. 1.2)

Here A and H are closed linear operators in a complex Banach space X;dp, 11 are given elements
in X; w, p are two complex parameters and the second member f belongs to C ([0, 1] ; X). Here, we
develop a different approach from those used so far.

We will seek for a strict solution u to (1.1)-(1.2), that is a function u such that:

ueC?([0,1];X)nC([0,1];D (A))
u(0)eD(H),
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and which satisfies (1.1)-(1.2).
In general, the condition f € C ([0, 1] ; X) is not sufficient to provide a strict solution to (1.1)-(1.2),
this is why we assume, in all the paper, that:

fecb(0,1];X),0<0<1.

The techniques used here are essentially based on the Dunford functional calculus and the methods
applied in [5], [10] and [16].

In some problems governed by PDEs, there appears a spectral parameter both in the equation
and in the boundary conditions. As such, we cite the problems related to thermal condition or to
vibrating string, see [12], [19], [22], [24].

In [4], the authors have considered in a complex Banach space X, problem (1.1)-(1.2) where
A = w is some positive spectral parameter and u = 0. For w large enough, under some geometrical
assumption on the space X and hypotheses on operators A — wl and H including the fact that they
commute in the resolvent sense, the authors have furnished necessary and sufficient conditions
on the data dy, 11 to obtain the existence and the uniqueness of a solution to (1.1)-(1.2) verifying
u€ W (0,1;X)NLP(0,1;D(A)). Then, in [5], they studied problem (1.1)-(1.2) without the two
spectral parameters A and 1, A = w and p = 0, in a commutative framework and in a Holder space.
In [6], the authors have developed an interesting new approach in a non commutative framework,
concerning some general Sturm-Liouville problems with the same Robin boundary condition in
0. Recently in [10], the authors studied the same problem (1.1)-(1.2) in a non-commutative setting,
when f € [7 (0,1;X) with 1 < p < co and when X is an UMD space. They have considered two

cases:
(1) D(H) c D(4)
(2) D ( V—A) c D (H),when V-A is defined.
This second case has been studied in [16] with one spectral positive real parameter in the

equation.

In all this work, we will use the following notation: for ¢ € (0, ), we set

Sp={z€C\(0}: |arg(z)| < p}U(0}.

We suppose that
dpo € (0,7) : Sy, Cp(A) andAC4 >0 :
Ve € Spo, (A - D), < —A (13)
o 20 = Tl

(p (A) denotes the resolvent set of A; this assumption means exactly the ellipticity of our problem
as in Krein [18]).

We will assume, moreover that

D (H) cD(A), (1.4)



Int. J. Anal. Appl. (2026), 24:33 3

and
3(p1 S (O,T() ,3CH >0:
Sp, C p(—H) and sup (1 + |y|) |(H + HI)_1|'£(X) < Ch. (1.5)

quS@1
In all this work, we set for
Ap =A-wl, €Sy,

Hy=H+ul, peSy.
Remark 1.1. It is well known that assumption (1.3) implies that the square roots Q = —V-A and

Qo = —V-A+wl arewell defined and generate analytic semigroups not strongly continuous at zero, see
Balakrishnan [2] for dense domains and Martinez [20] for non dense domains. Note that, D (A) = D (Q).

Due to (1.3), we recall that Dg (6;4+) = (D (Q);X)1- g+ is the real interpolation space
described see [13].
We will also suppose that

(Q-H)™ (D(Q) c D(Q), (1.6)
and
Q*(Q-H) " (Dg (1+6;+00)) c D(Q); (1.7)
here, for the moment, (Q — H )_1 is taken in the set sense of the term. We will see later that this
(Q-H) e L(X).
We recall the notation
Do (14 6;+00) ={peD(Q): Qp € Dg (6;+)}.
For the maximum regularity we replace (1.7) by
Q*(Q-H)™ (Do (1+ 6;+)) € D (6; +00) . (1.8)

This paper is the natural continuation of [16], where the authors have studied problem (1.1)-(1.2)
under (1.3), (1.5)~(1.8) and also

D(Q)cD(H),

instead of (1.4).

Remark 1.2. From (1.3) we deduce that, there exists Oy € ]0,7t/2] and ro > 0 such that the resolvent
operator of A satisfies:

p(A) D Spyr, = [z eC\{0}: |arg (z)| < 90} UB(0,7p),

where B (0, 1) is the closed ball of radius ro and centered in 0.
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Remark 1.3. Assume (1.3) and (1.4). Let € Sy, we know that there exists L, € £ (X), such that
Q=Qu+Lyand L,Q' = Q7'L,,. (1.9)
See [15], Proposition 3.1.7, p. 65. Form (1.9) we deduce that L, is continuous from D (Q) into D (Q) by
writing for all ¢ € D (Q)
Lop = L,Q'Qgp
= Q'L.Qe,
which gives
lLogllpg = Lol + [QLoplly
= [ILwell + Q7' LuQol,
Lol + oQellx

< Lol [loll + ILallx [|Qe ]l
< Lallx [[lolly + 1Qelly]
<

lILellx ||(P||D(Q) ,
therefore L, is continuous from any interpolation space D (6; +00) into itself.
Remark 1.4. Let w € Sy, we have
Dq, (6;+¢e0) = Dg (6;+), Dg, (1 +6;+0c0) = Dg (1 +6; +c).
Moreover D (Q,) = D (Q) and D (Qi) =D (QZ) with
Q* = Qi +2LuQu + L,
on the other hand, we have
Q= Q7= (A + (-Atwl)”

= Q= (A (At al) (~A+ D) + (-A) (<4) (~A+ D)

= Q02-w(-A) ' (-A+ o)

= Q7-wQ Q%
Remark 1.5. Let @ € Sy, i € Sy, and let us show that if (Q — H)_1 exists and verifies

(Q-H)™ (D(Q)) c D(Q?), (1.10)
then
-1
(Qu-Hu) (D(Qu)) cD(Q2),

when (Qw -H H)_l exists.
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Proof. Assume (1.10) and set
(Qu-H) (Q'@) =n.
then
Q&) = (Qu—Hy) (1) = (Qu = Q) (n) + (H — Hy) (1) + (Q = H) (m);
We have seen that from (1.9)

Q=Qu+L, and Q7'L, =L,Q7";
Now, set
H=H,+T, when T, = —ul;
Since n € D (Q), then there exists C € X such that n = Q71((), therefore
Q&) = (Qu-QQ (O +(H-H,)Q™ () +(Q-H)n
= Q'L (O+T.Q " (O)+(Q-H)n,
and
n=(Q-H)"[Q" (& +Q'L, (0)-T.Q " (0)] e D(Q?).
O

Remark 1.6. Let w € Sy, and yi € Sy, Now, as above, let us prove that if (Q — H )_1exists and verifies the

following properties

{ (Q-H)™ (D(Q)) c D(Q?) (1.11)

Forsome&e X, (Q-H)" (&) e D(Q2)'

-1
then, when (Qw -H #) exists, we have also

(Qw - H#)_l (&) eD (QZ)'
Proof. In fact, set
(Qu - H#)_l &) =n

& =(Qu—Hy) (M) = (Qu—Q) (n) + (H~Hy) (1) + (Q—H) (),

where 1 = Q71(x), x € X. As above, we have
£=-Q7'L,(x) + T.Q " (x) +(Q-H) (1),

from which it follows

(Q-H)(&) =-(Q-H) " Q'L,(x)+(Q-H) " T.Q" (x) +n,

in virtue of (1.11), we obtain

n=(Q-H)" (&) +(Q-H)"Q'L,(x) - (Q-H) "' T,Q™" (x) e D(Q?).
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Remark 1.7. Let w € Sy, and u € Sy, Now, as above, assume that (Q — H)_lexists and verifies the four
following properties

N

i) (Q-H)™ (D(Q)) ¢ D(Q?)

i) @ (Q-H)™ (D(Q)) € D(Q) 112)
iii) For some £ € X, (Q—H) ' (&) e D (QZ) '
i) Q*(Q-H) ™" (&) + £(0) € D(Q),
then, when (Qw -H y)_l exists, we have also
(Qu- Hy)_1 (&) € D(Q?) and
Q*(Qu—Hy) (&) +£(0) € D(Q).
Proof. In fact, by setting
(Qu—H,) " (&) =n,
and using the last calculus, we get
n=(Q-H)" (&) +(Q-H) Q'L (x) - (Q-H) " T.Q" (1),
Q(Qu-H,) (&) +f(0) = Q) +f(0)
= Q- (O +Q(Q-H) QL ()
- Q1 (Q-H)"'T,Q7 (x) + £(0) € D(Q).
O

The plan of the paper is as follows:
In the first section and after having presented our problem (1.1)-(1.2) and some works of authors on
the same theme, we introduced our hypotheses (1.3)~(1.8). We then showed all the consequences
of these hypotheses in from of remarks. In the next Section, we collect some useful basic lemmas.
In Section 3, we give the representation formula of solution u of problem (1.1)-(1.2). Section 4 is
devoted to the proof of the main result. Finally in section 5 we give some concrete examples of

partial differential equations to which our theory applies.

2. TECHNICAL LEMMAS

In this work all the constants in the estimates are independent of w, u. Due to [9], Lemma 2.6,

statement b, p. 103, we have:

Lemma 2.1. There exists a constant M > 0 independent of w € Sy, such that for any w € Sy, operators
I+ €*v are invertible in £ (X) and

-1
Y € Sy, H(I +e*%) <M. 2.1)

L(X)
Proof. For the proof, see [10], Lemma 5.1. ]
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Lemma 2.2. Assume that (1.3) holds. There exists a constants C > 0 such that, for all w € Sy, and z € S,

we have
C

||(Qm - ZI)_lllL(X) < W)

Proof. Although the proof is given in [3], Lemma 3.1, p. 67-68, we give a proof for the reader’s

convenience and completeness.

Let y be a sectorial curve surrounding the spectrum of —A,. Using S. G. Krein [18], p. 116-117

and for all z > 0, we have

(Qu-20)" = —(V=Aq+z0)
1 [ (-Ay,-AD"?

— | —————————dA
niJ,  z4 VA

1 [+ V5 (-A4wl+sI)"

ds.

T Jo s+ 22

From the hypothesis (1.3), we obtain

_ e Vs
H(Q‘”_ZI) 1||L(X) = Cfo (14wl +5) (S+Zz)ds

< C dt
fo (1+ lwl + £2) (12 4 22)

_c f+001+—|w|dt—
1+|wl-22Jy 1+ |w|+ 12

C
I+l + 2

IA

—+00 2
f g
0 t2 —+ 22

O

Lemma 2.3. Forall w € Sy, i € Sy, we have Qg,H;l € L (X); moreover there exists a constant M > 0

independent of w and p such that:

{1 JAF ]} < M

1+ ol + |y|

2171
Q2 g =M=

and
1+ || + [y

(1+|y|) VIitlol

[QuH sy <M

Proof. See [10], Lemma 5.2.

We now introduce, for » > 0, the notation

Juf

Q

2.2)

oo = 3 (@, 1) € Spy X Sg, ¢ lw| > 7 and H >r)
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Lemma 2.4. Assume that (1.3)~(1.5) hold. Then there exists pg > 0 and a constant C > 0 independent of
w € Sy, and | € Sy, such that the operator Q,+ H,, is boundedly invertible, moreover

(Qu e H) ™y < +C|M| (2.5)
Proof. From (43), there exists py > 0 such that for all (w, i) € Qg0 We have
o
see [10], Lemma 5.3. Then from (1.5), that operator Q,, + H,, is invertible and we have
H(Qw +Hy )_1 0 HH‘_‘ H(QuH +1) 1 £X)
e A P
U= [lQuH gy ™ T
C
T ||
(Note that, you can replace (2.5) by || (Qo HH)_1||L(X) < \/%le)' o

Now, for w € Sy, and u € Sy, we define operator A, by:
Aoy = Qu—Hy+ % (Qu + Hy).
Note that, since D (H “) cD (Q(ZU), we have D (Aw,y) =D (H y) = D (H) and furnish results on A, .
Lemma 2.5. (1) There exist ro > 0 and M > 0 such that for all (w, 1) € Oy, ,r, We have

0Oep ((1 - esz)'1 (14 e2Q) QuH! - 1)

1 -1 2.6
H[([ =) (14 2%) Q H;! - 1] <2. (26)
L(X)
(2) The operator Ay, is boundedly invertible and

M

Azl 27)
and
1+ |l + [y
” a ﬂ'“”L(X) 14+ |u|

Note that Q2 A, H has the same behavior as Q. H,, L

Proof. See [10], Lemma 5.3. O

Lemma 2.6. Assume (1.3)~(1.6). Fix (w1, 1) € Qg1 r- Then there exists C > 0 such that for all
(@, 1) € Qo1 ,r, we have
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(1) Q2 (Qu-H,) " Qal € L(X), with

<C.
L(X)

Q2 (Qu-H,) Q!

(2) There exists Wy, € L (X) such that

A;,ly = (Qa) - Hy)_l (I — ¢ Wa),y) ’
with
Wil ) < € and [ Q2AZLQI | <C-

Proof. Let (w, 1) € Qpy -

(1) Due to Lemma 2.3 and Lemma 2.4 and by using the same techniques as in [10], Lemma 5.3,

we obtain that

(2) For the second assertion, see [10], Lemma 6.4. Statement 3.

<C.

2 Qo 1)l

2 (Qu—Hy) Q3

L(X)

3. REPRESENTATION FORMULA OF THE SOLUTION

In order to solve problem (1.1)-(1.2), we use the well know Krein’s reduction order method,
see [18]. Under assumptions (1.3)~(1.5), suppose that the problem has a strict solution u, that
is, u € C2([0,1],X) N C([0,1],D (A)) such that u (0) € D (H) and (1.1)-(1.2) are satisfied. Then u

admits a representation formula given in [16]

u@x)=S@p+SA-x)m+I(x)+J(x), x€l01], 3.1)
where
I(x) = %Q;l fox e(x—S)me (s)ds,
] (x) = %Q;} [ ele1Qu £ (s) ds, (3.2)
S (x) = Ty (679 — e(1)QueQ0),

with T, = (I - e2Qw)_1 and

pr =up —I(1)
to = Ao —T(0) (3.3)
Bo = (I-¢2)dy +2Que 1 +2Q0] (0).
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We have T,, = I +¢??T,,. In view to use the h dlderianity assumption on f, we need to adapt the

previous representation, then there exist 7o, o, ¢1 € X (clearly computable) such that
u (x) = (I —+ eZQ“’Tw) (erﬂ) — e(l_x)QmeQw) ['10

+ (I + esz Tw) (e(l_x)Qm _ ermeQm) (Ml -1 (1))
+I(x) +7T (x)

— erm‘uO + e(l_x)Qw (ul -1 (1)) + I (x) + ] (x) + erweQw(pO + e(l_x)Qmequol

= &% (AZL [do+2Qu] (0)] - ] (0)) +1 (x)
+el179Q0 (4 —1(1)) + ] (x)
_i_ermA;,l‘ueQm TO _|_ eXQmeQm(PO _|_ e(l—X)QmeQm(Pl_

-1 -1
Moreover A7l = (Qw -H “) - (Qw -H H) ¢2Qu W, s0 there exist 71, 1o, Y1 in X (clearly com-

w,H

putable) such that

w) = e%|(Qu-m) " (d+20u (0) T O] +1()
el (1 - 1(1) + (3
+eo (Qa, - Hy)_1 Qo
6% Quypy + e1)QugQuyp,

Now, we write

1 1
10) = 303 [ (@) -FlONds+ 303 [ er s

1
= 300 [ ) - F 0D+ 50 (0) - 3022 0),

and

1) = g0t [ e (- papas+ it [ et s

1

= 3Ot [ () = £ (1) ds= 502 (1) + 3QuRF (1),

so from (3.4), we can define 75, 12, 3 € X such that

_1[

w() = o @[(Qu-H) " o Q0 (0)] + 502F (0)] +1 ()

00 (g 4 2022 (1) 4T ()
+Ry (x) + R2 (x) + Rz (x),

(3.4)

(3.5)
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with
Ry (x) = 0% (Qu ~ H,) " (e% + [ e (£(5) - £(0)) )
Re(a) = 403! 10 (7)1 (0) 6
_l Qw 1f (1- st —f(l))ds
R3 (x) = er”eQ“’l,bz +ell Q"EQ“%-
i): Note that, in (3.5) the first term gives the behavior of u near 0, the second term concerns

the behavior of u near one 1 and R; (x), Ry (x), R3 (x) are regular terms (see Propositions
4.4 and 4.5 below).

ii): Note that we did not need a commutativity hypothesis between H;, and Q,, in the above
calculus.

iii): In virtue of the commutativity assumption supposed in ( [5]), which given

Al e = QoA (3.7)

w,
the term Ry (x) is regular.

In this work, we cannot use (3.7) but the regularity of R (x) using (1.6) and (1.7).

4. REGULARITY OF THE SOLUTION

We start the section by proving some technical lemmas useful for the analysis of the terms of
the solution.

Proposition 4.1. (1) Let ¢ € X and 0 €0,1]. Then the two following assertions are equivalent.
(@) eQp € C([0,1]; X).
(b) ¢ € D(Q).
() Let 0 €]0,1[, g€ C?([0,1];X) and ¢ € X. Set

v(x) = erqu—f e(%)Q¢ (s) ds.
0

Then the two following assertions are equivalent.
(@) ve C'([0,1];X)nC([0,1];D(Q)).
(b) ¢ € D(Q) and g (0) + Qg € D(Q)-

Considering the well known real interpolation space

(D (Q)rX)l—G,oo =(X,D (Q))e,oo = Dgq (0; +0),

(see H. Triebel see [23] p. 25 and 76), we have also:

Proposition 4.2. (1) Let ¢ € X and 0 €0,1]. Then the two following assertions are equivalent.
(a) eQp € CY([0,1]; X).
(b) ¢ € D (6; +0).
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(2) Let 0 €]0,1[and g € CY ([0,1]; X). Set

Thenv € C9 ([0,1];X) N C?([0,1]; D (Q)) .
(3) Let g€ C([0,1];X) and ¢ € X. Set

w (x) = e —|—f e=5)Q¢ (5) ds.
0

Then the two following assertions are equivalent.

(@) we CL¥([0,1);X)NC?([0,1];D(Q))-

(b) §€C?([0,1];X), ¢ € D(Q) and g (0) + Qg € Dg (6; +0) .
(4) Let g € C?(]0,1];X) . Then

1
0 fo &9 ( (s) — £ (0))ds € (D(Q), X); g

Proof. Statement 2 is obtained by applying the Da Prato-Grisvard sum theory [8]. Statement 3
which improves Statement 2 is due to E. Sinestrari [21], see also G. Da Prato [7]. We can find in D.

Guidetti [14] a simple proof of these results (see Corollary 2.1 and Theorem 2.4, p. 136). m]

notation: Let ¢ and & be two given X-valued functions defined on [0,1] and 0 € |0, 1[. We write

g=oh,
if
g—heC’([0,1];X).

As a consequence of Proposition 4.2 we get (see [11] Proposition 8, p. 976):

Proposition 4.3. Let ¢ € C? ([0,1]; X) with 6 €]0,1[ and ¢ € D (Q) . Set

w (x) = eCp + fx e =5)Q¢ (5) ds.
0
Then
Qu (-) =9 e© (Qp +g(0)).

Proposition 4.4. Assume (1.3) ~(1.7) . Let f € C%([0,1];X), with 0 < 0 < 1 and d,, u, € X. Then for
W € Sp, and € Sy,

(1) Q4Rs € C*([0,1]; X),

(2) Ry € C*([0,1]; X) and Q7 Ry € C([0,1]; X),

(3) Ry € C2([0, 1]; X) and Q3R; € C([0,1);X),

(4) Q*Ri, Q°Ry, Q*Rs5 € C([0,1]; X).
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Proof. (1) For any ¢ € X and n € IN*, we have
edyp e L(X,DQ"),

SO
e.Qmele/) (= COO([O, 1], X)/

applying A,, we obtain
ApeweQop = —eQoQ2 ey e C([0,1]; X).
Using (3.6), we have for x € |0, 1]
AoRs (x) = ¢ Qwelug 4 ¢17¥)QueQug,

it is clear that
AuR3 (x) € C*([0,1]; X),

which gives the result.
(2) Now, we have for all x € [0, 1]

1
Ri(x) = ¢@(Qu-H,)" (e%+ [ esQ(f(S)—f(O))dS)

— (Qw _ Hy)_leQ“’Tz
1

10 (Q, —H,) f Q(f(5) - (0))ds,

0
then
QRi(x) = ¢¢Qi(Qu-Hy) Q' (Qe%n)
+e* Q2 (Quw - Hy) ™~ Q7! (Qw fo leSQ(f(s)— £(0))ds|.
The term

(Qw fol s ) € (D(Q),X)1_g0 € D(Q),

see Proposition 4.1. Then the first therm and the second are continuous on [0, 1], in virtue
of (1.6) and (1.7 ).

(3) From Proposition 4.1, we have

{ Qu [y #((5) = f(0))ds € (D(Q) X)1-g0 < D(Q),
Qu [ €19 (£(s) = £(1))ds € (D (Q), X);_g < D(Q),

then, from Proposition 4.1, statement 1), Q2 R, € C([0, 1]; X), since

1
QiRals) = —50%Qu [ % (7(s) - F0))s

1
‘%eﬂ—x)Qwafo 1700 (f(s) - £(1))4ds.
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(4) For j €{1,2,3}, write Q*R; = Q*Q,?Q%R; with Q*Q,? € L(X).
O

Proposition 4.5. Assume (1.3) ~(1.8). Let f € C9([0,1];X), with 0 < 0 < 1, and do, u € X. Then for
W € S, and u € Sy,

(1) Q3Rs € C=([0,1];X),

(2) Ry € C*([0,1];X) and Q3. Ry € C°([0,1]; X),

(3) Rz € C*([0,1]; X) and Q, R, € C([0,1]; X),

(4) Q*R1, Q*R2, Q°Rs5 € C?([0,1]; X).

Proof. The proof is similar to that of Proposition 4.4, we simply replace hypothesis (1.7) by (1.8),
D (Q) by Dg (6; +o0) and C([0,1]; X) by C?([0,1]; X). O

5. MAIN RESULT

According to the above study on the regularity of the solution, we are ready to state our main

result on the existence and the uniqueness of the strict solution of problem (1.1)-(1.2).

Theorem 5.1. Assume (1.3)~(1.8). Let f € CY ([0,1];X), with 0 < O < 1 and dy u; € X. Then, for any
W € Sp, and € Sy,

(1) Problem (1.1)-(1.2). has a unique strict solution u if and only if

D (Qu—H,) " [do—Q'f (0)] € D(Q?)
i) Q2 (Qu—H,) " [do - Qz'f (0)] + £ (0) € D(Q) 6)
iii) 1y € D(Q?)
i) Q21 + (1) € D(Q).
(2) Problem (1.1)-(1.2) has a unique strict solution u satisfying the maximal reqularity property u”,
Agu € C?([0,1]; X) if and only if
) (Qu—Hy)  [do—Q5'f (0)] € D(Q?)
i) Q2 (Qu—H,) " [do= Q3£ (0)] + £ (0) € Do (6, +e0) 52
iii) uy € D(Q2)
iv) Q2u1 + f (1) € Do (6, +00) .

Proof. For (1), we first suppose that (5.1) is satisfied and we have to prove that u given by (3.5) is
the strict solution u of problem (1.1)-(1.2). But to prove that

ueC?([0,1];X)nC([0,1]; D (A)),

it is enough to show that Q2u € C ([0,1]; X).

Using the Proposition 4.4, we have

Q>R; € C([0,1];X), i=1,2and Q3R3 € C* ([0,1];X),
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so we deduce
Q2u=Qxu- Q3R - QAR - Q2R3 € C([0,1];X),

where

= e |(Qu-H) o= Qi (0)] + 202 O+1()
+el17Qu (u1 + %Q;}f (1)) +J (x).

Then it is now known from Proposition 4.1, by statement 1, that this term is continuous on [0,1] if

and only if

-1

Q% (Qu—Hy) [do—Q5'f (0)] + £ (0) € D(Q)
Qi+ f (1) € D(Q).

Conversely, we suppose that (5.1) is satisfied and show that the problem (1.1)-(1.2) has a strict

solution u. From Proposition 4.1, we have
-1
e[ Q2 (Qu-Hy) ' [do= Q' f (0)] + £ ()] € C((0,11;%)
190 [Q2uy + £ (1)] € C([0,1];X).
Which implies that Q2 u'in C ([0,1]; X). So
Ayu e C([0,1];X),
then we deduce
ueC([0,1];D(A)).
Since f € CY ([0,1];X), so
u” = f-A,ueC(0,1];X),
this means
ueC?([0,1];X)nC([0,1];D (A)).
Moreover, we have according to (3.3) u (1) = p1 +1(1) = 13, and taking into account the fact that
u(0) = po+7J(0) = Aglpo € D(H)
Hyu (0) = TwQuw (I + eZQ“)) Aa_J,lyﬁO = TwPo,

where
to = A;,lyﬁo -7(0)
Bo = (1 - eZQw) do +2Q,e% 1 +2Q,] (0) € X.

And also, we have
W (0) = QuTo(I+6%) o —2QuTue%um - Qu (0)
= QuTw (I T eZQM) A;,luﬁo —QuTo (I T eZQm)] (0) = 2QuTwe? 1 ~ Qu] (0),
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SO
w (0) = Hu (0) = pu (0) = Tofo— QuTo (I+6%) ] (0) - 2QuTwe% u1 — Qo] (0)
= do +2TuQue% 11 + 2T Q0] (0) = QuTa (I +€22) ] (0)
—2QuTwe% u1 — QuJ (0)
= do.

Finally (5.1) is satisfied.
For (2), it is enough to replace the condition (5.1) by (5.2),then we use the Proposition 4.2. O

Corollary 5.1. Assume (1.3) ~(1.8), let f € C?([0,1];X), with 0 < 0 < 1and dy uy € X. Ifu; € D (A),
dy € D(Q) and Qdy, f(0),Q%u1 + f (1) € Dg (6, +), then problem (1.1)-(1.2) has a unique strict
solution u satisfying maximal reqularity property u”, Ayu € CY ([0,1];X) .

6. APPLICATION

Let us illustrate our abstract results by the following problem. Set
Q=(01)x(0,1),

and consider:

*u d*u

ﬁ(x,y)—g—%(x,y)—wu(x,y)=f(x,y), (x,y) €O
o | GO0 OOy =ht),  ye©D
u(ly) =u(y), . . y<€(0,1)
u(x,0) = u(x,1) = 57 (x,0) = 57 (x,1) =0, x€(0,1),

where w >0, u > 0,a > 0 and do, u; are some given functions and
fecC?([0,1];L7(0,1)),0<0<1,1<p < +oo.
Now, in the Banach space X = L¥ (0,1), we define:

{Dow:wewwmﬂwwmwmwnzwwm=¢mn:®
Ay (y) = -9 (y),
and
{D&D=W€W“®J%¢m%ﬂMD=¢W®=¢WD=®
Hy (y) = —ap®@ (y),

Then, it is not difficult to see that our problem (P) writes, in X, in the abstract following form
”(x)+Au() wu(x) = f(x), x€]0,1]

u
' (0) - ()—#“m)zdm
u(1) =
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Let us verify our assumptions (1.3)~(1.8). First we have
D(H) =D(4),
on the other hand A verifies (1.3) and —H verifies (1.5) in
Spo = Sp1 = Sn—eys

for any ¢g € 10, t[. From this we know that operator — V=A = Q generates an analytic semigroup

strongly continuous at zero, see Balakrishnan [2] and from [1] we have

D(Q) = {y e W*(0,1): ¢ (0) = ¢ (1) =0}.
Itis notdifficult to prove that Q, Q — H and H are boundedly invertible. Therefore for any ¢ € D (H)

+ 00 _ -1
le — l‘f(; M(_A)¢dA

n VA
1 @a-AnT"!
= = " Hyd),
-, PV
see [2]. By virtue of (1.3), we have
TR dA
< k||H L
ool = sl [ i
k te o da
< —|H _
< n” #}”jo‘ VA(1+A)
< k|Hy|.

So we can choose two positive constants k; and k, with k; very large as possible and k, < 1 such
that

Ioyl| <k [l + ke |[Frw
by virtue of (1.4) and (1.5) from where the linear operator Q — H is closed and invertible, see [17],
Theorem 1.1, p. 190.
The hypotheses (Q—H) ™ (D (Q)) c D(Q?) and
Q*(Q-H)™" (DQ (1+06; +00)) c D (Q) are checked automatically since D (Q2) =D(H) cD(Q)
and D (Q) = D (A) = X = LP(0,1)., therefore, all our assumptions are satisfied
Now we must assume verify the following conditions of 17 and dp.
(1) The condition 11 € D (Qz) .

This, with respect to the variable y, translates into

7

u; € W2 (0,1) : uy (0) = uy (1) = 0.

(2) The condition Q?uy + f (1) € D(Q) =L (0,1).

It means that

yeu(y)+f(Ly) eP(0,1).
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This is automatically verified, because u;" € L? (0,1) and
fec?(o,1];17(0,1)),
which implies y — f(1,y) = f(1)(y) € L (0,1).
(3) Itis clear that the condition Q (Q — H) ™" (do -Qlf (0)) eD(Q).
(4) The condition Q? (Q-H) ™' (dy— Q™'f (0)) + £ (0) e D(Q) =L (0,1).
It becomes dy € D (Q) .

Therefore, Theorem 5.1 for the existence and the uniqueness of the strict solution applies.

We do the same for the maximal regularity.
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