Fuzzifications of Almost Ideals in Ternary Semirings
Main Article Content
Abstract
We introduce an almost ideal (shortly A-ideal) and a fuzzy A-ideal of a ternary semiring. We present that an A-ideal of a ternary semiring is formed by the union of A-ideals, but not by their intersection. We further study the defining properties of minimal fuzzy A-ideals in ternary semirings. Additionally, we relate the A-ideals of ternary semirings to their fuzzifications and find that an A-ideal is equivalent to its characteristic mapping, while a fuzzy A-ideal is equivalent to its support. Moreover, we demonstrate that its characteristic mapping is similar to that of a minimum A-ideal.
Article Details
References
- P. Jipsen, S. Vannucci, Injective and Projective Semimodules Over Involutive Semirings, J. Algebr. Appl. 21 (2021), 2250182. https://doi.org/10.1142/s0219498822501821.
- I. Chajda, H. Länger, Semimodules Over Commutative Semirings and Modules Over Unitary Commutative Rings, Linear Multilinear Algebr. 70 (2020), 1329–1344. https://doi.org/10.1080/03081087.2020.1760192.
- A.J. Naeemah, S.A. Al-Saadi, Strongly Extending Semimodules over a Semiring, J. Discret. Math. Sci. Cryptogr. 27 (2024), 1677–1687. https://doi.org/10.47974/jdmsc-2009.
- D.H. Lehmer, A Ternary Analogue of Abelian Groups, Am. J. Math. 54 (1932), 329–338. https://doi.org/10.2307/2370997.
- T.K. Dutta, S. Kar, On Regular Ternary Semirings, in: Advances in Algebra, Proceedings of the ICM Satellite Conference in Algebra and Related Topics, World Scientific, pp. 343–355, (2003). https://doi.org/10.1142/9789812705808_0027.
- W.G. Lister, Ternary Rings, Trans. Am. Math. Soc. 154 (1971), 37–55. https://doi.org/10.2307/1995425.
- S. Kar, On Quasi‐Ideals and Bi‐Ideals in Ternary Semirings, Int. J. Math. Math. Sci. 2005 (2005), 3015–3023. https://doi.org/10.1155/ijmms.2005.3015.
- V.R. Daddi, Y.S. Pawar, Generalized Semi-Ideals in Ternary Semirings, Novi Sad J. Math. 41 (2011), 81–87.
- M.K. Dubey, Anuradha, A Note on Prime Quasi-Ideals in Ternary Semirings, Kragujevac J. Math. 37 (2013), 361–367.
- J.N. Chaudhari, K.J. Ingale, Ideals in the Ternary Semiring of Non-Positive Integers, Bull. Malays. Math. Sci. Soc. 37 (2014), 1149–1156.
- P. Yiarayong, On Weakly Completely Quasi Primary and Completely Quasi Primary Ideals in Ternary Semirings, Commun. Korean Math. Soc. 31 (2016), 657–665. https://doi.org/10.4134/ckms.c150164.
- T.K. Dutta, S. Kar, A Note on Regular Ternary Semirings, Kyungpook Math. J. 47 (2006), 357–365.
- L. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x.
- J. Kavikumar, A.B. Khamis, Y.B. Jun, Fuzzy Bi-Ideals in Ternary Semirings, Int. J. Comput. Math. Sci. 3 (2009), 164–168.
- D. Krishnaswamy, T. Anitha, Fuzzy Prime Ideals in Ternary Semiring, Ann. Fuzzy Math. Inform. 7 (2014), 755–763.
- S. Bashir, R. Mazhar, H. Abbas, M. Shabir, Regular Ternary Semirings in Terms of Bipolar Fuzzy Ideals, Comput. Appl. Math. 39 (2020), 319. https://doi.org/10.1007/s40314-020-01319-z.
- R. Chinram, S. Malee, L-Fuzzy Ternary Subsemirings and L-Fuzzy Ideals in Ternary Semirings, IAENG Int. J. Applied Math. 40 (2010), 3.
- S. Malee, R. Chinram, k-Fuzzy ideals of ternary semirings, Int. J. Comput. Math. Sci. 4 (2010), 206–210.
- V.R. Daddi, Almost Bi-Ideals and Fuzzy Almost Bi-Ideals of Ternary Semigroups, Ann. Commun. Math. 7 (2024), 100–107. https://doi.org/10.62072/acm.2024.070203.
- O. Grošek, L. Satko, A New Notion in the Theory of Semigroup, Semigroup Forum 20 (1980), 233–240. https://doi.org/10.1007/bf02572683.
- O. Grošek, L. Satko, Smallest A-Ideals in Semigroups, Semigroup Forum 23 (1981), 297–309. https://doi.org/10.1007/bf02676654.
- S. Suebsung, K. Wattanatripop, R. Chinram, A-Ideals and Fuzzy A-Ideals of Ternary Semigroups, Songklanakarin J. Sci. Technol. 41 (2019), 299–304.