Fuzzifications of Almost Ideals in Ternary Semirings

Main Article Content

Napaporn Sarasit, Ronnason Chinram, Amornrat Rattana

Abstract

We introduce an almost ideal (shortly A-ideal) and a fuzzy A-ideal of a ternary semiring. We present that an A-ideal of a ternary semiring is formed by the union of A-ideals, but not by their intersection. We further study the defining properties of minimal fuzzy A-ideals in ternary semirings. Additionally, we relate the A-ideals of ternary semirings to their fuzzifications and find that an A-ideal is equivalent to its characteristic mapping, while a fuzzy A-ideal is equivalent to its support. Moreover, we demonstrate that its characteristic mapping is similar to that of a minimum A-ideal.

Article Details

References

  1. P. Jipsen, S. Vannucci, Injective and Projective Semimodules Over Involutive Semirings, J. Algebr. Appl. 21 (2021), 2250182. https://doi.org/10.1142/s0219498822501821.
  2. I. Chajda, H. Länger, Semimodules Over Commutative Semirings and Modules Over Unitary Commutative Rings, Linear Multilinear Algebr. 70 (2020), 1329–1344. https://doi.org/10.1080/03081087.2020.1760192.
  3. A.J. Naeemah, S.A. Al-Saadi, Strongly Extending Semimodules over a Semiring, J. Discret. Math. Sci. Cryptogr. 27 (2024), 1677–1687. https://doi.org/10.47974/jdmsc-2009.
  4. D.H. Lehmer, A Ternary Analogue of Abelian Groups, Am. J. Math. 54 (1932), 329–338. https://doi.org/10.2307/2370997.
  5. T.K. Dutta, S. Kar, On Regular Ternary Semirings, in: Advances in Algebra, Proceedings of the ICM Satellite Conference in Algebra and Related Topics, World Scientific, pp. 343–355, (2003). https://doi.org/10.1142/9789812705808_0027.
  6. W.G. Lister, Ternary Rings, Trans. Am. Math. Soc. 154 (1971), 37–55. https://doi.org/10.2307/1995425.
  7. S. Kar, On Quasi‐Ideals and Bi‐Ideals in Ternary Semirings, Int. J. Math. Math. Sci. 2005 (2005), 3015–3023. https://doi.org/10.1155/ijmms.2005.3015.
  8. V.R. Daddi, Y.S. Pawar, Generalized Semi-Ideals in Ternary Semirings, Novi Sad J. Math. 41 (2011), 81–87.
  9. M.K. Dubey, Anuradha, A Note on Prime Quasi-Ideals in Ternary Semirings, Kragujevac J. Math. 37 (2013), 361–367.
  10. J.N. Chaudhari, K.J. Ingale, Ideals in the Ternary Semiring of Non-Positive Integers, Bull. Malays. Math. Sci. Soc. 37 (2014), 1149–1156.
  11. P. Yiarayong, On Weakly Completely Quasi Primary and Completely Quasi Primary Ideals in Ternary Semirings, Commun. Korean Math. Soc. 31 (2016), 657–665. https://doi.org/10.4134/ckms.c150164.
  12. T.K. Dutta, S. Kar, A Note on Regular Ternary Semirings, Kyungpook Math. J. 47 (2006), 357–365.
  13. L. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x.
  14. J. Kavikumar, A.B. Khamis, Y.B. Jun, Fuzzy Bi-Ideals in Ternary Semirings, Int. J. Comput. Math. Sci. 3 (2009), 164–168.
  15. D. Krishnaswamy, T. Anitha, Fuzzy Prime Ideals in Ternary Semiring, Ann. Fuzzy Math. Inform. 7 (2014), 755–763.
  16. S. Bashir, R. Mazhar, H. Abbas, M. Shabir, Regular Ternary Semirings in Terms of Bipolar Fuzzy Ideals, Comput. Appl. Math. 39 (2020), 319. https://doi.org/10.1007/s40314-020-01319-z.
  17. R. Chinram, S. Malee, L-Fuzzy Ternary Subsemirings and L-Fuzzy Ideals in Ternary Semirings, IAENG Int. J. Applied Math. 40 (2010), 3.
  18. S. Malee, R. Chinram, k-Fuzzy ideals of ternary semirings, Int. J. Comput. Math. Sci. 4 (2010), 206–210.
  19. V.R. Daddi, Almost Bi-Ideals and Fuzzy Almost Bi-Ideals of Ternary Semigroups, Ann. Commun. Math. 7 (2024), 100–107. https://doi.org/10.62072/acm.2024.070203.
  20. O. Grošek, L. Satko, A New Notion in the Theory of Semigroup, Semigroup Forum 20 (1980), 233–240. https://doi.org/10.1007/bf02572683.
  21. O. Grošek, L. Satko, Smallest A-Ideals in Semigroups, Semigroup Forum 23 (1981), 297–309. https://doi.org/10.1007/bf02676654.
  22. S. Suebsung, K. Wattanatripop, R. Chinram, A-Ideals and Fuzzy A-Ideals of Ternary Semigroups, Songklanakarin J. Sci. Technol. 41 (2019), 299–304.