Analytical Study for Stagnation-Point Flow and Heat Transfer of MHD Nanofluid Over a Stretching Sheet in Porous Medium via Modified Adomian Decomposition Method

Main Article Content

D. M. Mostafa, A. A. Gaber, G. Zaman, Z. Ullah, H. Ahmed, Tawfik M. Younis

Abstract

In the current study, we investigate the stagnation-point flow of a MHD nanofluid toward stretching sheet in porous media with suction or injection. Whereas, the contribution of the velocity, temperature, and nanoparticle distributions to identify the advantages or disadvantages that nanoparticles like bacteria, microbes and viruses, cause in the flow stretching sheet is what makes this work significan. A new procedure is suggested for the analytical treatment of the governing system of partial differential equations, where the boundary condition at infinity is converted from the unbounded domain to the bounded domain by using some transformations and then modified adomian decomposition method is utilized. The effects of parameters (porous medium, magnetic number, surface heat flux, suction or injection and Prandtl number) on velocity, temperature and concentration profiles are shown graphically and analyzed. Finally, we compared our obtained results with the other techniques used before in literature.

Article Details

References

  1. H. Takhar, A. Chamkha, G. Nath, Flow and Heat Transfer on a Stretching Surface in a Rotating Fluid with a Magnetic Field, Int. J. Therm. Sci. 42 (2003), 23–31. https://doi.org/10.1016/s1290-0729(02)00004-2.
  2. A. Abu-Sitta, A Note on a Certain Boundary-Layer Equation, Appl. Math. Comput. 64 (1994), 73–77. https://doi.org/10.1016/0096-3003(94)90140-6.
  3. A. Ishak, R. Nazar, I. Pop, Magnetohydrodynamic Stagnation-Point Flow towards a Stretching Vertical Sheet, Magnetohydrodynamics 42 (2006), 1730.
  4. A. Gaber, M. Mohamed, G. Moatimid, Maxwell Hybrid Nanofluid (Cu-Al$_{2}$O$_{3}$/Water) and (CuO-Ag/Water) Near a Stagnation Point Above an Extending Sheet, Eur. J. Pure Appl. Math. 18 (2025), 5773. https://doi.org/10.29020/nybg.ejpam.v18i1.5773.
  5. Z. Ullah, I. Ullah, G. Zaman, T.C. Sun, A Numerical Approach to Interpret Melting and Activation Energy Phenomenon on the Magnetized Transient Flow of Prandtl–Eyring Fluid with the Application of Cattaneo–Christov Theory, Waves Random Complex Media 35 (2022), 1351–1371. https://doi.org/10.1080/17455030.2022.2032472.
  6. G.M. Moatimid, M.A.A. Mohamed, K. Elagamy, A.A. Gaber, EFFECT OF MOTILE GYROTACTIC MICROORGANISMS ON ARTERIAL STENOSIS SISKO NANOFLUID FLOW THROUGH POROUS MEDIUM: A NUMERICAL STUDY, Spec. Top. Rev. Porous Media: Int. J. 15 (2024), 59–80. https://doi.org/10.1615/specialtopicsrevporousmedia.2024048971.
  7. T. Hayat, A. Aziz, T. Muhammad, A. Alsaedi, On Magnetohydrodynamic Three-Dimensional Flow of Nanofluid Over a Convectively Heated Nonlinear Stretching Surface, Int. J. Heat Mass Transf. 100 (2016), 566–572. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.113.
  8. M. Fakour, A. Vahabzadeh, D. Ganji, M. Hatami, Analytical Study of Micropolar Fluid Flow and Heat Transfer in a Channel with Permeable Walls, J. Mol. Liq. 204 (2015), 198–204. https://doi.org/10.1016/j.molliq.2015.01.040.
  9. K. Bhattacharyya, S. Mukhopadhyay, G. Layek, Slip Effects on Boundary Layer Stagnation-Point Flow and Heat Transfer Towards a Shrinking Sheet, Int. J. Heat Mass Transf. 54 (2011), 308–313. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.041.
  10. A.A. Gaber, M.H. Shehata, New Approach of MHD Boundary Layer Flow Towards a Porous Stretching Sheet via Symmetry Analysis and the Generalized Exp-Function Method, Int. J. Anal. Appl. 18 (2020), 738–747. https://doi.org/10.28924/2291-8639-18-2020-738.
  11. A. Ishak, R. Nazar, I. Pop, MHD Boundary-Layer Flow of a Micropolar Fluid Past a Wedge with Constant Wall Heat Flux, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 109–118. https://doi.org/10.1016/j.cnsns.2007.07.011.
  12. G.M. Moatimid, M.A.A. Mohamed, K. Elagamy, A.A. Gaber, Analysis of Eyring–Powell Couple Stress Nanofluid Flow with Motile Microorganisms Over a Rough Sphere: Modified Adomian Decomposition, J. Appl. Math. Mech./Z. Angew. Math. Mech. 105 (2025), e202400981. https://doi.org/10.1002/zamm.202400981.
  13. A. Sinha, J.C. Misra, Effect of Induced Magnetic Field on Magnetohydrodynamic Stagnation Point Flow and Heat Transfer on a Stretching Sheet, J. Heat Transf. 136 (2014), 112701. https://doi.org/10.1115/1.4024666.
  14. Z. Mehmood, Z. Iqbal, Interaction of Induced Magnetic Field and Stagnation Point Flow on Bioconvection Nanofluid Submerged in Gyrotactic Microorganisms, J. Mol. Liq. 224 (2016), 1083–1091. https://doi.org/10.1016/j.molliq.2016.10.014.
  15. R. Mehmood, S. Rana, S. Nadeem, Transverse Thermopherotic MHD Oldroyd-B Fluid with Newtonian Heating, Results Phys. 8 (2018), 686–693. https://doi.org/10.1016/j.rinp.2017.12.072.
  16. G.M. Moatimid, M.A.A. Mohamed, K. Elagamy, A.A. Gaber, Entropy Generation Within an Arterial Stenosis of Sisko Nanofluid with Motile Gyrotactic Microorganisms, J. Appl. Math. Mech./Z. Angew. Math. Mech. 105 (2025), e70090. https://doi.org/10.1002/zamm.70090.
  17. A.P. Baitharu, S. Sahoo, G.C. Dash, Numerical Approach to Non-Darcy Mixed Convective Flow of Non-Newtonian Fluid on a Vertical Surface with Varying Surface Temperature and Heat Source, Karbala Int. J. Mod. Sci. 6 (2020), 12. https://doi.org/10.33640/2405-609x.1753.
  18. A. Alshaery, A. Ebaid, Accurate Analytical Periodic Solution of the Elliptical Kepler Equation Using the Adomian Decomposition Method, Acta Astronaut. 140 (2017), 27–33. https://doi.org/10.1016/j.actaastro.2017.07.034.
  19. I.A. Cristescu, Numerical Resolution of Coupled Two-Dimensional Burgers' Equation, Rom. J. Phys. 62 (2017), 103.
  20. G. Seth, A. Singha, M. Mandal, A. Banerjee, K. Bhattacharyya, MHD Stagnation-Point Flow and Heat Transfer Past a Non-Isothermal Shrinking/stretching Sheet in Porous Medium with Heat Sink or Source Effect, Int. J. Mech. Sci. 134 (2017), 98–111. https://doi.org/10.1016/j.ijmecsci.2017.09.049.
  21. H.O. Bakodah, A. Ebaid, The Adomian Decomposition Method For The Slip Flow And Heat Transfer Of Nanofluids Over A Stretching/Shrinking Sheet, Rom. Rep. Phys. 70 (2018), 115.
  22. G. Adomian, A Review of the Decomposition Method in Applied Mathematics, J. Math. Anal. Appl. 135 (1988), 501–544. https://doi.org/10.1016/0022-247x(88)90170-9.
  23. G.M. Moatimid, M.A.A. Mohamed, A.A. Gaber, D.M. Mostafa, Numerical Analysis for Tangent-Hyperbolic Micropolar Nanofluid Flow Over an Extending Layer Through a Permeable Medium, Sci. Rep. 13 (2023), 13522. https://doi.org/10.1038/s41598-023-33554-9.
  24. A. A. Gaber, I. M. Tayel, D.M. Mostafa, Analytical Investigation for Hybrid Nanofluid Flow Near the Stagnation Point Over a Stretching Sheet via Modified Adomian Decomposition Method, Mod. Phys. Lett. B 39 (2025), 2550089. https://doi.org/10.1142/s0217984925500897.
  25. A.A. Gaber, A. Ebaid, Analytical Study On The Slip Flow And Heat Transfer Of Nanofluids Over A Stretching Sheet Using Adomian's Method, Rom. Rep. Phys. 70 (2018), 110.
  26. A. Ebaid, F. Al Mutairi, S.M. Khaled, Effect of Velocity Slip Boundary Condition on the Flow and Heat Transfer of Cu-Water and TiO2-Water Nanofluids in the Presence of a Magnetic Field, Adv. Math. Phys. 2014 (2014), 538950. https://doi.org/10.1155/2014/538950.
  27. W. Ibrahim, B. Shankar, M.M. Nandeppanavar, MHD Stagnation Point Flow and Heat Transfer Due to Nanofluid Towards a Stretching Sheet, Int. J. Heat Mass Transf. 56 (2013), 1–9. https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.034.
  28. T. Hayat, T. Javed, Z. Abbas, MHD Flow of a Micropolar Fluid Near a Stagnation-Point Towards a Non-Linear Stretching Surface, Nonlinear Anal.: Real World Appl. 10 (2009), 1514–1526. https://doi.org/10.1016/j.nonrwa.2008.01.019.
  29. G. Ramesh, B. Gireesha, T. Hayat, A. Alsaedi, Stagnation Point Flow of Maxwell Fluid Towards a Permeable Surface in the Presence of Nanoparticles, Alex. Eng. J. 55 (2016), 857–865. https://doi.org/10.1016/j.aej.2016.02.007.