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Abstract. In the current study, we investigate the stagnation-point flow of a MHD nanofluid toward stretching sheet

in porous media with suction or injection. Whereas, the contribution of the velocity, temperature, and nanoparticle

distributions to identify the advantages or disadvantages that nanoparticles like bacteria, microbes and viruses, cause in

the flow stretching sheet is what makes this work significan. A new procedure is suggested for the analytical treatment

of the governing system of partial differential equations, where the boundary condition at infinity is converted from the

unbounded domain to the bounded domain by using some transformations and then modified adomian decomposition

method is utilized. The effects of parameters (porous medium, magnetic number, surface heat flux, suction or injection

and Prandtl number) on velocity, temperature and concentration profiles are shown graphically and analyzed. Finally,

we compared our obtained results with the other techniques used before in literature.
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1. Introduction

The investigation of boundary layer slipt and melting heat transfer over stretching sheet has

significant importance in Manufacturing and industrial procedures. Many researchers, such as

Carragher [1], Abu-Sitta[2], Ishak [3], Bhattacharyya [4] and Zamman [5] have studied the difficulty

of stretching sheet by employing varied effectance, such as heat flux, permeability and steadiness

characteristics, etc.

Many important industrial applications can be found by studying heat transfer [6 − 20], like

casting and welding. Melting permafrost and warming frozen ground are also important appli-

cations. There are a lot of things in engineering that use water, oil, and ethylene glycol to move

heat, but they don’t move heat very well. This can be a big problem if you want to improve the

efficiency and compactness of things like heat exchangers or electronic machines. For that reason,

researchers have looked into how to make fluids more conductive of heat by adding small solid

particles to them. These types of fluids, which have small solid particles, should be able to transfer

more heat than other fluids.

lately, Bhattacharyya and et. [21] studied heat transfer of a non-isothermal MHD stagnation-

point flow of electrically conducting fluid and shrinking/stretching sheet in a permeable medium.

That mean, he has not studied the mass transfer.

The ADM was built by George Adomian and has recently become quite well-known in related

fields [22]. ADM has been used to solve differential and integral linear and non-linear equations

in the fields of mathematics, physics, biochemistry, and molecular biology in a number of research

that have been published to far to show its viability. New developments [23, 24] of the technique

and its applications to many tayps of nonlinear ODEs, were given.

Therefore, this paper investigates the flow, heat and mass transfer in a conducting fluid in a

porous medium. The Mathematical formulas were formed for this model. Then, the analytical

solutions are obtained by modified Adomian decomposition method (MAD) and discussed.

2. Explaining the problem

Consider the magnetohydrodynamics (MHD) flow of viscous incompressible nanofluid near of

the stagnation point on a sheet at a porous medium and the flow is assumed to be confined to

y > 0. A transverse magnetic field B0 is applied in the y-direction so that the wall is stretched

preserving the origin fixed. The regular temperature and nanoparticle concentration nearby the

sheet is supposed that Tw and Cw, are the temperature and nanoparticle concentration afar from

the sheet is supposed that T∞ and C∞ respectively. The governing equations of the current flow

are stated as follows under the following assumptions:



Int. J. Anal. Appl. (2026), 24:8 3

Figure 1. Physical model flow
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where T is the temperature and u and v are the composites of velocity in the x and y directions,

C is nanoparticle concentration, ue(x) is the stagnation-point velocity in the open stream, k
, µ,ρ, υ(= µ

ρ ), B0(x), σ,κ, τ, DB and DTare the permeability of the porous material, coefficient

of fluid viscosity, fluid density, is the kinematic-viscosity, magnetic field of uniform strength,

electrical conductivity, coefficient of thermal diffusivity, the ratio effectiveness of heat capacity

of the nanoparticle, Brownian motion coefficien and thermophoretic diffusion coefficient. The

boundary conditions (B.C.) are given as following

u = uw = ax, ν = −νw, T = Tw , C = Cw at y = 0,

u −→ ue = bx, T = T∞, C = C∞ at y = ∞. (5)

Here a (>0) and b (>0) are constants, vw is the wall velocity, Tw is the uniform wall temperature,

T∞ and C∞ are the free stream temperature and nanoparticles.

u =
∂ψ

∂y
, ν =

−∂ψ

∂x
, θ =

T − T∞
Tw − T∞

and φ =
C−C∞

Cw −C∞
, (6)
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where ψ is the stream function. The system of PDE are reduced to ODE by the following

similarity transformations

η =

√
a
υ

y,ψ =
√

aυx f (η). (7)

Utilizing the boundary layer (1-4) relations (6,7). we get the following equations

f ′′′(η) + f (η) f ′′(η) − f 82(η) + (K + M2)(λ− f ′(η)) + λ2 = 0,

θ′′(η) + Pr[Nbφ′(η)θ′(η) + Nt θ′2(η) + f (η)θ′(η)] = 0,

φ′′(η) +
Nt
Nb
θ′′(η) + Le Pr f (η)φ′(η) = 0, (8)

B.C. convert to

f ′ = 1, f = S, θ = 1, φ = 1 at η = 0

f ′ = A, θ→ 0, φ→ 0 as η→∞, (9)

where A = b
a (ratio of rates of velocities), M2 =

σB2
0(x)
ρa (parameter of the magnetic) , K = υ

ka

(permeability parameter of the porous medium), Pr = υ
κ (Prandtl number), Nb = τDB

υ (Tw − T∞)
( Brownian motion), Nt = τDT

υT∞ (Tw − T∞) (thermophoresis parameter), S = vw
√

aυ
, S > 0 (refer to

suction) and S < 0 refer to injection, Le = κ
DB

(Lewis number).

3. A transformation of govern equations

In order to solve (8) with the boundary condition (9), we should be proceed on the following

steps:

we first transform the system differential equations (9) into the next system of differential

equations:

f ′(η) = u(η),

u′′(η) = f (η)u′(η) − u′(η)2 + A2 + (K + M2)(A− u(η)),

θ′′(η) = −Pr( f (η)θ′(η) + Nbφ′(η)θ′(η) + Nt θ′2(η)).

φ′′(η) = −Le f (η)φ′(η) −
Nt
Nb
θ′′(η), (10)

the B.C. are given as following

u(0) = 1, f (0) = S, θ(0) = 1, φ(0) = 1, u(∞) = A, θ(∞) = 0, φ(∞) = 0. (11)

We can be converted the B.C. from unbounded domain , η ∈ [0,∞), to bounded domain,

ζ(say) ∈ [0, 1), the relation between the independent variable η and independent variable ζ is the

transformation ζ = 1− eη.As a result, the system of (10) should be dependent on the new variable



Int. J. Anal. Appl. (2026), 24:8 5

ζ, hence, we show the relations between the derivatives for η and the derivatives for ζ [25− 27]

d
dη

() = (1− ζ)
d

dζ
(),

d2

dη2 () = (1− ζ)2 d2

dζ2 () − (1− ζ)
d

dζ
(). (12)

Substituting (12) into the system (10), we arrive to the following system of ordinary equations

f ′(ζ) =
u(ζ)
1− ζ

, (13)

u′′(ζ) =
u′(ζ)
1− ζ

−
f (ζ)u′(ζ)

1− ζ
+

u2(ζ)

(1− ζ)2 +
(K + M2)u(ζ)

(1− ζ)2 +
A(M + A)

(1− ζ)2 , (14)

θ′′(ζ) =
θ′(ζ)

1− ζ
− Pr(Nbφ′(ζ)θ′(η) + Nt θ′2(ζ) +

f (ζ)θ′(ζ)
1− ζ

). (15)

φ′′(η) =
φ′(ζ)

1− ζ
− Le Pr

f (η)φ′(ζ)
1− ζ

−
Nt
Nb

(θ′′(ζ) +
θ′(ζ)

1− ζ
), (16)

B.C. become

u(0) = 1, f (0) = S, θ(0) = 1, φ(0) = 1, u(1) = A, θ(∞) = 0, φ(∞) = 0. (17)

Integrate (13) with respect to ζ from 0 to ζ

f (ζ) = f (0) +

ζ∫
0

u(ζ)
1− ζ

dζ (18)

4. Application ofMAD method

In order to apply the modified adomian decomposition method, the solutions of f (ζ), u(ζ), θ(ζ)
and φ(ζ) are expressed in a series form given by

f (ζ) =
∞∑

n=0

fn(ζ), u(ζ) =
∞∑

n=0

un(ζ), θ(ζ) =
∞∑

n=0

θn(ζ),φ(ζ) =
∞∑

n=0

φn(ζ). (19)

Now, we define the inverse operator to solve (14-16) with boundary condition (17)

L−1() =

ζ∫
0

ζ∫
c

()dζdζ− ζ

ζ∫
0

ζ∫
c

()dζdζ, c , 1. (20)

On using the operator (20) for both side of (14-16), we have

u(ζ) = 1 + (A− 1)t + L−1(
u′(ζ)
1− ζ

−
f (ζ)u′(ζ)

1− ζ
+

u2(ζ)

(1− ζ)2 +
(K + M2)u(ζ)

(1− ζ)2 +
A(M2 + A)

(1− ζ)2 ),

θ(ζ) = −t + L−1(
θ′(ζ)

1− ζ
− Pr(

f (ζ)θ′(ζ)
1− ζ

+ Nbw′(ζ)θ′(η) + Nt θ′2(ζ))),

φ(ζ) = −t + L−1(
φ′(ζ)

1− ζ
− Le Pr

f (η)φ′(ζ)
1− ζ

−
Nt
Nb

(θ′′(ζ) +
θ′(ζ)

1− ζ
)). (21)
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Substituting (19) into (21), we obtain

∞∑
n=0

un(ζ) = 1 + (A− 1)t + L−1

 ∞∑
n=0

n∑
i=0

ζn−iu′i −
∞∑

n=0

n∑
j=0

j∑
i=0

ζn−i fiu′j−i

+
∞∑

n=0

n∑
j=0

j∑
i=0

(n− j− 1)ζn−iuiu j−i + (K + M2)
∞∑

n=0

n∑
i=0

(n− j− 1)ζn−iu j

−A(M + A)(n + 1)ζn) ,

∞∑
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 ∞∑
n=0
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Accordingly, we obtain the recurrence relation

u0(ζ) = 1, f1(ζ) = S, v1(ζ) = 1,

u1(ζ) = (A− 1)t + L−1(u′0 − f0u′0 + u2
0 + (K + M2)u0 − (M2λ+ λ2)),

θ1(ζ) = −t + L−1(θ′ − Pr( f0θ′0 + Nbθ′0φ
′

0 + Nt θ′20 )),

φ1(ζ) = t + L−1(φ′0 − Le Pr f ′0φ
′

0 −
Nt
Nb

(θ′′0 + θ′0)), (23)

fn+1(ζ) =

ζ∫
0

n∑
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ζn−iuidζ,

un+1(ζ) = L−1

 n∑
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j=0

j∑
i=0

ζn−i fiu′j−i+
n∑
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j∑
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(n− j− 1)ζn−iuiu j−i

+ (K + M)
n∑

i=0

(n− j− 1)ζn−iu j −A(M + A)(n + 1)ζn

 ,

θn+1(ζ) = L−1

 n∑
i=0

ζn−iv′i − Pr(
n∑

j=0

j∑
i=0

ζn−i fiθ′j−i + Nb
n∑

i=0

φ′n−iθ
′

i + Nt
n∑

i=0

θ′n−iθ
′

i

 ,

φn+1(ζ) = −L−1

 n∑
i=0

ζn−iφ′i − Le
n∑

j=0

j∑
i=0

ζn−i fiφ′j−i −
Nt
Nb

(θ′′n (ζ) +
n∑

i=0

ζn−iθ′i )

 . (24)
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Calculating a few terms of the recurrence expression (24), we obtain

u1 =
1
2
(A− 1)(A + M2 + K + 3)ζ+

1
2
(A− 1)(M2 + K −A− 1)ζ2,

f1 = ζ, θ1 = −ζ, φ1 = −ζ, (25)

u2 =
1

24
(16− 20A + A2(K + M2

− 2(S + 2) + A(M2
−K(M2 + 4) + 2M2S + 12S)

+ (K + M2)(K + M2
− 2S) − 13S + K)ζ− 6(M2

−K − 3 + A(M2 + A + 2)(S− 1)ζ2

+ 2(K + M2
− 2S + A2(M2 + K + 2S− 4) − (K + M2)(K + M2 + 2S) + A(4+

(M2 + 2) + M2(M2 + 2S− 2)))ζ3 + (M2 + K + 2)(1 + K + M2
−A(A + M2))ζ4),

f2 =
1

12
(A + 3A2 + 3AM2

− 3(1 + K + M2))ζ2 + −2(A2 + M2A− (1 + K + M2))ζ3),

θ2 =
1
2
(Pr S− 1)(ζ2

− ζ),

φ2 =
1

Nb
((ζ2
− ζ)(Nb(LeS− 1) −Nt). (26)

Calculating u3, u4, .., f3, f4, ..,θ3, θ4, ..and φ3, φ4, ... Substituting trems of fi, θi and φi into (19)

with ζ = 1− eη, then, the analytical solutions of (10) can be written in the form

f = 1− eη +
1
12

(A + 3A2 + 3AM2
− 3(1 + K + M2))(1− eη)2

− 2(A2 + M2A− (1 + K + M2))(1− eη)3) + ...,

θ = −(1− eη) +
1
2
(Pr S− 1)((1− eη)2

− (1− eη)) + ...,

φ = −(1− eη) +
1

Nb
(((1− eη)2

− (1− eη))(Nb(LeS− 1) −Nt) + .... (27)

5. Discussion

The current work illustrates incompressible nanofluid near of the stagnation point on a sheet at

a porous medium. A number of graphs is shown and analyzed to acquire a physical interpretation

of the relations between these limitations and the target distributions of the study. A number of

graphs is produced and analyzed to acquire a physical interpretation of the interactions between

these limitations and the goal distributions of the study. In what follows, selected values of the

pertinent parameters are considered for drawing the profiles, which differ according to the studied

parameter in each figure. 2-D drawings from 2 to 13 were used to depict the earlier effects.
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Figure 2. Impact of A on Velocity profile

Figure 3. Impact of A on Temperature profile

Figure 4. Impact of S in Velocity profile
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Figure 5. Impact of S on Temperature profile

Fig. 2. Shows that at A > 1 the stream velocity is more than the stretching velocity, this means

straining motion is progress near the stagnation region, It causes thickness of the boundary layer

to decrease. The fluid flow changes to reverse When the stretching velocity stretching velocity is

more than the free stream velocity at A < 1

Fig. 3. For deferent values of A, the temperature profiles decreasing with increasing A.

Fig. 4. Show that for A < 1 as S increasesm the velocity decreases. This means that the

free stream velocity is less than the stretching velocity, which lead to stabilize the growth of the

boundary layer.

Figure 6. Impact of S on nanoparticles concentration
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Figure 7. Impact of Nt on temperature and nanoparticles concentration

Figure 8. Impact of M on velocity profile

Figure 9. Impact of M on temperature profile
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Fig. 5. and Fig. 6 It shows that the influence of suction (S > 0) and injection (S < 0) on

the temperature and concentration, the injection lead to progress the temperature which causes a

decrease in the rate of heat transfer and reverses with suction (S > 0), the concentration changes

to reverse when (S > 0) and (S < 0).

Fig. 7. It has been demonstrated that rising Nt values cause rising temperatures and concen-

trations of nanoparticles. The impact of increasing the value of Nt on the concentration volume

profiles is to increase significantly in the boundary layer but it shows significant decreases in the

surface boundary.

The magnetic field parameter effect is displayed in Fig. 8. Because M functions as a resistive

force, fluid movement slows down in comparison, increasing the thickness of the boundary layer.

As a result, the fluid’s temperature rises as the magnetic field increases, as Fig. 9 illustrates.

Fig. 10. Demonstrates how the permeability parameter K affects horizontal velocity, with

an increase in K causing a decrease in horizontal velocity. This indicates that an increase in

permeability parameter K causes an increase in fluid resistance along the surface, which increases

the thickness of the boundary layer.

Figure 10. Effect of K on velocity proflie

Figure 11. Effect of Nb on temperature and nanoparticles concentration
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Figure 12. Effect of Pr on temperature and nanoparticles concentration

Figure 13. Effect of Le on nanoparticles concentration

From Fig. 11. indicates the effect of various values of Nb on the temperature θ and nanoparticles

concentration φ. It is shown that the increase in the value of Nb is increasing θ in the boundary

layer, whereas increasing of Nb led to reducing concentration boundary layer which mean enhances

the concentration at the sheet.

Fig. 12 Temperature profile and concentration increase with increase Prandtl number Pr were

increasing of Prandtl number Pr causes increasing of thermal diffusivity, which led to upturn the

temperature profile.

Fig. 13. It found that the variations in nanoparticles concentration φ for various values of Lewis

number Le, which mean increasing values of Lewis number causes decreasing of the concentration

as a result the concentration boundary layer thickness decreases.
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Table 2: Compares the outcomes for [ f ′′(0) ] at different values of velocity ratio A, when S = 0

and Pr = 0.05.

A Present Ibrahim Hayat et al Ramesh and

study et al [27] [28] Hayat [29]

0.1 -0.965 -0.9694 - 0.9695 -0.9696

0.5 -0.667 -0.6673 -0.6673 -0.6672

2.0 2.0175 2.0175 2.0176 2.0175

3.0 4.7293 4.7292 4.7296 4.7292

Table 3: Comparison of the results for [ −θ′(0) ] at various values of velocity ratio A, when S = 0.

Pr A Present Ibrahim Hayat et al Ramesh and

study et al [27] [28] Hayat [29]

1 0.1 0.603 0.6022 0.6021 0.6048

0.5 0.692 0.6924 0.6924 0.6925

1.5 0.1 0.777 0.7768 0.7768 0.7769

0.5 0.864 0.8648 0.8647 0.8647

6. Conclusions

The results of this study of heat and mass transfer of MHD stagnation-point flow nanofluid past

stretching sheet in the porous medium as follows:

1) The boundary layer solutions are obtained by modified adomian decomposition method and

comparison of solutions with previous numerical solutions are shown in table 1 and 2

2) As the suction (S > 0), permeability parameter (K), magnetic parameter (M), and Lewis

number (Le) increase, the boundary layer’s thickness decreases

3) The temperature of the boundary layer decreases when the stream velocity is more than the

stretching velocity (increasing A) and same effect with the increase of Prandtl number, suction,



14 Int. J. Anal. Appl. (2026), 24:8

injection parameter and Lewis number. But the temperature increasing with increasing Brownian

motion and thermophoresis parameter.

4) Nanoparticles concentration rises with the increase of suction, injection parameter and ther-

mophoresis parameter but opposite with Prandtl number and Brownian motion.
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