Soft Union Tri-bi-ideals of Semigroups
Main Article Content
Abstract
The concept of tri-quasi ideal was presented as a generalization of quasi-ideal, interior ideal, and bi-ideal. In this paper, we transfer this concept to soft set theory and semigroups,and introduce a novel type of soft union (S-uni) ideal form called "soft union (S-uni) tri-bi-ideal”. The main aim of this study is to obtain the relations between S-uni tri-bi-ideals and other certain types of S-uni ideals of a semigroup. Our results show that every S-uni tri-bi-ideal of a band is an S-uni subsemigroup. Moreover, an S-uni tri-bi-ideal is a generalization of an S-uni ideal, interior ideal, bi-ideal, quasi-ideal, weak-interior ideal, bi-interior ideal and bi-quasi ideal, however in order to satisfy the converses, the semigroup should have specific conditions. We also demonstrate that the S-uni quasi-interior ideal of a left or right simple semigroup is an S-uni tri-bi-ideal, nevertheless the converse holds for the zero semigroup. Furthermore, the S-uni bi-quasi-interior ideal of a commutative semigroup is an S-uni tri-bi-ideal, however, for the converse to hold the semigroup must be a band. We have shown that an S-uni tri-ideal coincides with an S-uni tri-bi-ideal of a band, and every S-uni tri-bi-ideal of a group is an S-uni tri-ideal. We also obtain a relation between tri-bi-ideal and its soft characteristic function, enabling us to get the relation between semigroup and soft set theory. Furthermore, we present conceptual characterizations and analysis of the new concept in terms of the soft set operations, the soft (anti/inverse) image, supporting our assertions with illuminating examples.
Article Details
References
- R.A. Good, D.R. Hughes, Associated Groups for a Semigroup, Bull. Amer. Math. Soc. 58 (1952), 624-625.
- O. Steinfeld, Uher die Quasi Ideals, Publ. Math. Debrecen 4 (1956), 262-275.
- S. Lajos, (m;k;n)-Ideals in Semigroups, Notes on Semigroups II, Karl Marx University of Economics Department of Mathematics, Budapest, 12–19, (1976).
- G. Szasz, Interior Ideals in Semigroups, Notes on Semigroups IV, Karl Marx University of Economics Department of Mathematics, Budapest, 1-7, (1977).
- G. Szasz, Remark on Interior Ideals of Semigroups, Stud. Sci. Math. Hung. 16 (1981), 61–63.
- M.M.K. Rao, Bi-interior Ideals of Semigroups, Discuss. Math. - Gen. Algebr. Appl. 38 (2018), 69–78. https://doi.org/10.7151/dmgaa.1283.
- K. Murali, A Study of a Generalization of Bi-ideal, Quasi Ideal and Interior Ideal of Semigroup, Math. Moravica 22 (2018), 103-115. https://doi.org/10.5937/matmor1802103m.
- M.M.K. Rao, Left Bi-quasi Ideals of Semigroups, Southeast Asian Bull. Math. 44 (2020), 369–376.
- M.M.K. Rao, Quasi-interior Ideals and Weak-Interior Ideals, Asia Pac. J. Math. 7 (2020), 21. https://doi.org/10.28924/APJM/7-21.
- M.M.K. Rao, Tri-Ideals of Semigroups, Bull. Int. Math. Virtual Inst. 14 (2024), 213–223.
- S. Baupradist, B. Chemat, K. Palanivel, R. Chinram, Essential Ideals and Essential Fuzzy Ideals in Semigroups, J. Discret. Math. Sci. Cryptogr. 24 (2020), 223-233. https://doi.org/10.1080/09720529.2020.1816643.
- M.M.K. Rao, R.K. Kona, N. Rafi, V. Bolineni, Tri-Quasi Ideals and Fuzzy Tri-Quasi Ideals of Semigroups, Ann. Commun. Math. 7 (2024), 281-295. https://doi.org/10.62072/acm.2024.070307.
- O. Grošek, L. Satko, A New Notion in the Theory of Semigroup, Semigroup Forum 20 (1980), 233-240. https://doi.org/10.1007/bf02572683.
- S. Bogdanovic, Semigroups in Which Some Bi-Ideal Is a Group, Rev. Res. Fac. Sci.-Univ. Novi Sad. 11 (1981), 261-266.
- K. Wattanatripop, R. Chinram, T. Changphas, Quasi-A-Ideals and Fuzzy A-Ideals in Semigroups, J. Discret. Math. Sci. Cryptogr. 21 (2018), 1131-1138. https://doi.org/10.1080/09720529.2018.1468608.
- N. Kaopusek, T. Kaewnoi, R. Chinram, On Almost Interior Ideals and Weakly Almost Interior Ideals of Semigroups, J. Discret. Math. Sci. Cryptogr. 23 (2020), 773-778. https://doi.org/10.1080/09720529.2019.1696917.
- A. Iampan, R. Chinram, P. Petchkaew, A Note on Almost Subsemigroups of Semigroups, Int. J. Math. Comput. Sci. 16 (2021), 1623-1629.
- R. Chinram, W. Nakkhasen, Almost Bi-Quasi-Interior Ideals and Fuzzy Almost Bi-Quasi-Interior Ideals of Semigroups, J. Math. Comput. Sci. 26 (2021), 128-136. https://doi.org/10.22436/jmcs.026.02.03.
- T. Gaketem, Almost Bi-Interior Ideal in Semigroups and Their Fuzzifications, Eur. J. Pure Appl. Math. 15 (2022), 281-289. https://doi.org/10.29020/nybg.ejpam.v15i1.4279.
- G. Thiti, C. Ronnason, Almost Bi-Quasi-Ideals and Their Fuzzifications in Semigroups, Ann. Univ. Craiova Math. Comput. Sci. Ser. 50 (2023), 342-352. https://doi.org/10.52846/ami.v50i2.1708.
- K. Wattanatripop, R. Chinram, T. Changphas, Fuzzy Almost Bi-Ideals in Semigroups, Int. J. Math. Comput. Sci. 13 (2018), 51-58.
- W. Krailoet, A. Simuen, R. Chinram, P. Petchkaew, A Note on Fuzzy Almost Interior Ideals in Semigroups, Int. J. Math. Comput. Sci. 16 (2021), 803-808.
- D. Molodtsov, Soft Set Theory—First Results, Comput. Math. Appl. 37 (1999), 19-31. https://doi.org/10.1016/s0898-1221(99)00056-5.
- P. Maji, R. Biswas, A. Roy, Soft Set Theory, Comput. Math. Appl. 45 (2003), 555-562. https://doi.org/10.1016/s0898-1221(03)00016-6.
- D. Pei, Duoqian Miao, From Soft Sets to Information Systems, in: 2005 IEEE International Conference on Granular Computing, IEEE, 2005, pp. 617-621 Vol. 2. https://doi.org/10.1109/grc.2005.1547365.
- M.I. Ali, F. Feng, X. Liu, W.K. Min, M. Shabir, On Some New Operations in Soft Set Theory, Comput. Math. Appl. 57 (2009), 1547-1553. https://doi.org/10.1016/j.camwa.2008.11.009.
- A. Sezgin, A.O. Atagün, On Operations of Soft Sets, Comput. Math. Appl. 61 (2011), 1457-1467. https://doi.org/10.1016/j.camwa.2011.01.018.
- A. Sezgin, M. Sarıalioğlu, A New Soft Set Operation: Complementary Soft Binary Piecewise Theta (θ) Operation, Kadirli Uygulamalı Bilimler Fakültesi Dergisi, 4 (2024), 325-357.
- A. Sezgin, K. Dagtoros, Complementary Soft Binary Piecewise Symmetric Difference Operation: A Novel Soft Set Operation, Sci. J. Mehmet Akif Ersoy Univ. 6 (2023), 31-45.
- A. Sezgin, H. Çalışıcı, A Comprehensive Study on Soft Binary Piecewise Difference Operation, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B-Teorik Bilimler, 12 (2024), 32-54. https://doi.org/10.20290/estubtdb.1356881.
- A. Sezgin, N. Çağman, A.O. Atagün, F.N. Aybek, Complemental Binary Operations of Sets and Their Application to Group Theory, Matrix Sci. Math. 7 (2023), 114-121. https://doi.org/10.26480/msmk.02.2023.114.121.
- A. Sezgin, E. Yavuz, Soft Binary Piecewise Plus Operation: A New Type of Operation for Soft Sets, Uncertain. Discourse Appl. 1 (2024), 79-100.
- A. SEZGİN, A Complete Study on And-Product of Soft Sets, Sigma J. Eng. Nat. Sci. 43 (2025), 1-14. https://doi.org/10.14744/sigma.2025.00002.
- A. Sezgin, F.N. Aybek, A.O. Atagün, A New Soft Set Operation: Complementary Soft Binary Piecewise Intersection (∩) Operation, Black Sea J. Eng. Sci. 6 (2023), 330-346. https://doi.org/10.34248/bsengineering.1319873.
- A. Sezgin, E. Yavuz, Ş. Özlü, Insight into Soft Binary Piecewise Lambda Operation: A New Operation for Soft Sets, J. Umm Al-Qura Univ. Appl. Sci. (2024). https://doi.org/10.1007/s43994-024-00187-1.
- A.O. Atagün, A. Sezgin, A New View to Near-Ring Theory: Soft Near-Rings, South East Asian J. Math. Math. Sci. 14 (2018), 19-32.
- A.O. Atagün, A. Sezgi̇n, More on Prime, Maximal and Principal Soft Ideals of Soft Rings, New Math. Nat. Comput. 18 (2021), 195-207. https://doi.org/10.1142/s1793005722500119.
- A. Sezgin, E. Yavuz, A New Soft Set Operation: Soft Binary Piecewise Symmetric Difference Operation, Necmettin Erbak. Univ. Fen Mühendis. Bilimleri Derg. 5 (2023), 189-208. https://doi.org/10.47112/neufmbd.2023.18.
- A. Sezgin, İ. Durak, Z. Ay, Some New Classifications of Soft Subsets and Soft Equalities with Soft Symmetric Difference-Difference Product of Groups, Amesia 6 (2025), 16-32. https://doi.org/10.54559/amesia.1730014.
- A. Sezgin, M. Sarıalioğlu, Complementary Extended Gamma Operation: A New Soft Set Operation, Nat. Appl. Sci. J. 7 (2024), 15-44. https://doi.org/10.38061/idunas.1482044.
- A. Sezgin, E. Şenyiğit, A New Product For Soft Sets With Its Decision-Making: Soft Star-Product, Big Data Comput. Visions 5 (2025), 52–73.
- N. Çağman, S. Enginoğlu, Soft Set Theory and Uni–Int Decision Making, Eur. J. Oper. Res. 207 (2010), 848-855. https://doi.org/10.1016/j.ejor.2010.05.004.
- N. Çağman, F. Çıtak, H. Aktaş, Soft Int-Group and Its Applications to Group Theory, Neural Comput. Appl. 21 (2011), 151-158. https://doi.org/10.1007/s00521-011-0752-x.
- A. Sezgin, A New Approach to Semigroup Theory I: Soft Union Semigroups, Ideals And Bi-Ideals, Algebra Lett. 2016 (2016), 3.
- A. Sezgin, N. Çağman, A.O. Atagün, A New Approach to Semigroup Theory II; Soft Union Interior Ideals, Quasi-Ideals and Generalized Bi-Ideals, Thai J. Math. in Press.
- A.S. Sezer, N. Çağman, A.O. Atagün, A Novel Characterization for Certain Semigroups by Soft Union Ideals, Inf. Sci. Lett. 4 (2015), 13.
- A. Sezgin, Completely Weakly, Quasi-Regular Semigroups Characterized by Soft Union Quasi Ideals, (Generalized) Bi-Ideals and Semiprime Ideals, Sigma J. Eng. Nat. Sci. 41 (2023), 868-874. https://doi.org/10.14744/sigma.2023.00093.
- A. İlgin, A. Sezgin, Soft Union Weak-interior Ideals of Semigroups, Int. J. Open Probl. Comput. Sci. Math. 18 (2025), 1-26.
- A. İlgin, A. Sezgin, T. Gaketem, Generalized Soft Union Bi-Ideals and Interior Ideals of Semigroups: Soft Union Bi-Interior Ideals of Semigroups, Int. J. Anal. Appl. 23 (2025), 149. https://doi.org/10.28924/2291-8639-23-2025-149.
- B. Onur, A. Sezgin, T. Gaketem, Soft Union Bi-Quasi Ideals of Semigroup, Int. J. Anal. Appl. 23 (2025), 100. https://doi.org/10.28924/2291-8639-23-2025-100.
- F.Z. Kocakaya, A. Sezgin, E. Aygün, Soft Union Quasi-İnterior İdeals of Semigroups, Int. J. Math. Phys. in Press.
- Z.H. Baş, A. Sezgin, N. Stojanović, Soft Union Bi-Quasi-Interior Ideals of Semigroups, J. Mat. Integratif 21 (2025), 55-74. https://doi.org/10.24198/jmi.v21.n1.62779.55-74.
- A. İlgin, A. Sezgin, Soft Union Tri-İdeals of Semigroups, J. Fundam. Math. Appl. in Press.
- A. Sezgin, A. İlgin, Soft Intersection Almost Ideals of Semigroups, J. Innov. Eng. Nat. Sci. 4 (2024), 466-481. https://doi.org/10.61112/jiens.1464344.
- A. Sezgin, A. İlgin, Soft Intersection Almost Bi-Interior Ideals of Semigroups, J. Nat. Appl. Sci. Pak. 6 (2024), 1619-1638.
- A. Sezgin, A. İlgin, Soft Intersection Almost Bi-Quasi Ideals of Semigroups, Soft Comput. Fusion Appl. 1 (2024), 27-42.
- A. Sezgin, A. İlgin, Soft Intersection Almost Weak-Interior Ideals of Semigroups: A Theoretical Study, J. Nat. Sci. Math. UT 9 (2024), 372-385. https://doi.org/10.62792/ut.jnsm.v9.i17-18.p2834.
- A. Sezgin, B. Onur, Soft Intersection Almost Bi-Ideals of Semigroups, Syst. Anal. 2 (2024), 95-105. https://doi.org/10.31181/sa21202415.
- A. Sezgin, F.Z. Kocakaya, A. İlgin, Soft Intersection Almost Quasi-Interior Ideals of Semigroups, Eskişehir Tek. Üniversitesi Bilim Teknol. Derg. B - Teor. Bilim. 12 (2024), 81-99. https://doi.org/10.20290/estubtdb.1473840.
- A. Sezgin, A. İlgin, Soft Intersection Almost Subsemigroups of Semigroups, Int. J. Math. Phys. 15 (2024), 13-20. https://doi.org/10.26577/ijmph.2024v15i1a2.
- A. Sezgin, Z.H. Baş, A. İlgin, Soft Intersection Almost Bi-Quasi-Interior Ideals of Semigroups, J. Fuzzy Ext. Appl. 6 (2025), 43-58. https://doi.org/10.22105/jfea.2024.452790.1445.
- A. Sezgin, B. Onur, A. İlgin, Soft Intersection Almost Tri-Ideals of Semigroups, SciNexuses 1 (2024), 126-138. https://doi.org/10.61356/j.scin.2024.1414.
- A. Sezgin, A. İlgin, A.O. Atagün, Soft İntersection Almost Tri-Bi-İdeals of Semigroups, Sci. Technol. Asia, 29 (2024), 1-13.
- A. Sezgin, F.Z. Kocakaya, Soft İntersection Almost Quasi-İdeals of Semigroups, Songklanakarin J. Sci. Technol. in Press.
- A. Sezgin, Z.H. BAŞ, Soft-Int Almost Interior Ideals for Semigroups, Inf. Sci. Appl. 4 (2024), 25-36. https://doi.org/10.61356/j.iswa.2024.4374.
- A. Sezgin, N. Çağman, F. Çıtak, Α-Inclusions Applied to Group Theory via Soft Set and Logic, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68 (2018), 334-352. https://doi.org/10.31801/cfsuasmas.420457.
- A. Sezgin, M. Orbay, Analysis of Semigroups with Soft Intersection Ideals, Acta Univ. Sapientiae, Math. 14 (2022), 166-210. https://doi.org/10.2478/ausm-2022-0012.
- C. Jana, M. Pal, F. Karaaslan, et al. (α,β)-Soft Intersectional Rings and Ideals with Their Applications, New Math. Nat. Comput. 15 (2019), 333-350. https://doi.org/10.1142/s1793005719500182.
- A.O. Atagün, H. Kamacı, İ. Taştekin, A. Sezgin, P-Properties in Near-Rings, J. Math. Fundam. Sci. 51 (2019), 152-167. https://doi.org/10.5614/j.math.fund.sci.2019.51.2.5.
- T. Manikantan, Soft Quasi-Ideals of Soft Near-Rings, Sigma J. Eng. Nat. Sci. 41 (2023), 565-574. https://doi.org/10.14744/sigma.2023.00062.
- A. Khan, M. Izhar, A. Sezign, Characterizations of Abel Grassmann's Groupoids by the Properties of Their Double-Framed Soft Ideals, Int. J. Anal. Appl., 15 (1) (2017), 62-74.
- A.O. Atagün, A.S. Sezer, Soft Sets, Soft Semimodules and Soft Substructures of Semimodules, Math. Sci. Lett. 4 (2015), 235-242.
- A.S. Sezer, A.O. Atagün, N. Çağman, A New View To N-Group Theory: Soft N-Groups, Fasc. Math. 51 (2013), 123-140.
- A. Sezgin, A New View on Ag-Groupoid Theory via Soft Sets for Uncertainty Modeling, Filomat 32 (2018), 2995-3030. https://doi.org/10.2298/fil1808995s.
- A. Sezgin, N. Çağman, A.O. Atagün, A Completely New View to Soft Intersection Rings via Soft Uni-Int Product, Appl. Soft Comput. 54 (2017), 366-392. https://doi.org/10.1016/j.asoc.2016.10.004.
- A. Sezgin, A.O. Atagün, N. Çağman, et al. On Near-Rings with Soft Union Ideals and Applications, New Math. Nat. Comput. 18 (2022), 495-511. https://doi.org/10.1142/s1793005722500247.
- M. Gulistan, F. Feng, M. Khan, et al. Characterizations of Right Weakly Regular Semigroups in Terms of Generalized Cubic Soft Sets, Mathematics 6 (2018), 293. https://doi.org/10.3390/math6120293.
- A.O. Atagun, A. Sezgin, Int-Soft Substructures of Groups and Semirings with Applications, Appl. Math. Inf. Sci. 11 (2017), 105-113. https://doi.org/10.18576/amis/110113.
- A.S. Sezer, A.O. Atagün, N. Çağman, N-Group SI-Action and Its Applications to N-Group Theory, Fasc. Math. 54 (2014), 139-153.
- A. Sezgin, A. İlgin, F.Z. Kocakaya, Z.H. Baş, B. Onur, et al., A Remarkable Contribution to Soft Int-Group Theory via a Comprehensive View of Soft Cosets, J. Sci. Arts 24 (2024), 905-934. https://doi.org/10.46939/j.sci.arts-24.4-a13.
- M.M.K. Rao, Tri-Quasi Ideals of Γ-Semirings, Discuss. Math. - Gen. Algebr. Appl. 41 (2021), 33-44. https://doi.org/10.7151/dmgaa.1360.
- M.M.K. Rao, Tri-Quasi Ideals of Semirings, Bull. Int. Math. Virt. Inst. 14 (2024), 93–104.
- A.H. Clifford, G.B. Preston, The Algebraic Theory of Semigroups, American Mathematical Society, (1964).
- E.V. Huntington, Simplified Definition of a Group, Bull. Am. Math. Soc. 8 (1902), 296-300. https://doi.org/10.1090/s0002-9904-1902-00898-7.
- E.Ö. Kir, A Note on $ss$-Supplement Submodules, Turk. J. Math. 47 (2023), 502-515. https://doi.org/10.55730/1300-0098.3374.