Codimension-One Bifurcation Analysis and Chaos of a Discrete Competition Duopoly Game

Main Article Content

A.A. Elsadany, A. M. Yousef

Abstract

This paper examines the temporal evolution of a competitive duopoly game model, emphasizing the identification of significant bifurcation points that influence the system’s dynamics throughout time. The analysis centers on codimension-one bifurcations, specifically two primary categories: flip (period-doubling) bifurcations, potentially leading to quasiperiodic motion on invariant closed curves, and Neimark–Sacker bifurcations, indicative of the onset of periodic or chaotic dynamics. These bifurcations provide substantial insights into the stability, complexity, and strategic interactions between the two competing firms within a nonlinear duopoly framework.

Article Details

References

  1. A. Cournot, Researches into the Mathematical Principles of the Theory of Wealth, in: Forerunners of Realizable Values Accounting in Financial Reporting, Routledge, 1982: pp. 3–13. https://doi.org/10.4324/9781003051091-2.
  2. D. Rand, Exotic Phenomena in Games and Duopoly Models, J. Math. Econ. 5 (1978), 173–184. https://doi.org/10.1016/0304-4068(78)90022-8.
  3. M. Kopel, Simple and Complex Adjustment Dynamics in Cournot Duopoly Models, Chaos Solitons Fractals 7 (1996), 2031–2048. https://doi.org/10.1016/s0960-0779(96)00070-7.
  4. G. Bischi, L. Stefanini, L. Gardini, Synchronization, Intermittency and Critical Curves in a Duopoly Game, Math. Comput. Simul. 44 (1998), 559–585. https://doi.org/10.1016/s0378-4754(97)00100-6.
  5. C. Hommes, Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems, Cambridge University Press, 2013. https://doi.org/10.1017/cbo9781139094276.
  6. G.I. Bischi, A. Naimzada, Global Analysis of a Dynamic Duopoly Game with Bounded Rationality, in: Advances in Dynamic Games and Applications, Birkhäuser, Boston, MA, 2000: pp. 361–385. https://doi.org/10.1007/978-1-4612-1336-9_20.
  7. H. Agiza, A. Elsadany, Chaotic Dynamics in Nonlinear Duopoly Game with Heterogeneous Players, Appl. Math. Comput. 149 (2004), 843–860. https://doi.org/10.1016/s0096-3003(03)00190-5.
  8. H. Agiza, A. Elsadany, Nonlinear Dynamics in the Cournot Duopoly Game with Heterogeneous Players, Physica: Stat. Mech. Appl. 320 (2003), 512–524. https://doi.org/10.1016/s0378-4371(02)01648-5.
  9. J. Grau-Climent, L. Garcia-Perez, R. Alonso-Sanz, J.C. Losada, Effect of Players’ Expectations and Memory in a Quantum Cournot Game, Chaos, Solitons Fractals 175 (2023), 113950. https://doi.org/10.1016/j.chaos.2023.113950.
  10. H. Li, R. He, W. Zhou, Dynamic Behaviors in a Cournot Duopoly Model with Knowledge Spillover Effect Based on Constant Conjectural Variation, Math. Comput. Simul. 201 (2022), 305–323. https://doi.org/10.1016/j.matcom.2022.05.006.
  11. S.E.I. Bouzeraa, R. Bououden, M.S. Abdelouahab, Fractional Logistic Map with Fixed Memory Length, Int. J. Gen. Syst. 52 (2023), 653–663. https://doi.org/10.1080/03081079.2023.2201001.
  12. X. Zhang, D. Sun, W. Jiang, Dynamics of a Heterogeneous Quantum Cournot Duopoly with Adjusting Players and Quadratic Costs, Quantum Inf. Process. 19 (2020), 403. https://doi.org/10.1007/s11128-020-02911-2.
  13. J. Long, H. Huang, A Dynamic Stackelberg–Cournot Duopoly Model with Heterogeneous Strategies Through One-Way Spillovers, Discret. Dyn. Nat. Soc. 2020 (2020), 3251609. https://doi.org/10.1155/2020/3251609.
  14. A. Elsadany, Dynamics of a Cournot Duopoly Game with Bounded Rationality Based on Relative Profit Maximization, Appl. Math. Comput. 294 (2017), 253–263. https://doi.org/10.1016/j.amc.2016.09.018.
  15. Y.A. Kuznetsov, I. Karatzas, M. Yor, Elements of Applied Bifurcation Theory, Springer, New York, 1998. https://doi.org/10.1007/b98848.