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Abstract. This paper examines the temporal evolution of a competitive duopoly game model, emphasizing the iden-

tification of significant bifurcation points that influence the system’s dynamics throughout time. The analysis centers

on codimension-one bifurcations, specifically two primary categories: flip (period-doubling) bifurcations, potentially

leading to quasiperiodic motion on invariant closed curves, and Neimark–Sacker bifurcations, indicative of the onset of

periodic or chaotic dynamics. These bifurcations provide substantial insights into the stability, complexity, and strategic

interactions between the two competing firms within a nonlinear duopoly framework.

1. Introduction

In a dynamic Cournot duopoly model, each firm adjusts its strategy based on the actions of

its rival. The structure of such models is strongly influenced by how firms form expectations.

Specifically, it depends on the decision-making rules they use to update future output. The

original Cournot model assumed firms believed their competitors’ output would stay constant.

This assumption is simple but unrealistic. Later research showed that such simplicity can lead to

a loss of important market information. It also fails to capture the complex nature of real-world

competition [1–5].

Several researchers have highlighted constrained rationality as a more realistic behavioral as-

sumption to address these constraints. This technique involves enterprises adjusting their output

according to the marginal profit, defined as the partial derivative of the profit function relative to

their production level. If the marginal profit is positive (negative), firms increase (decrease) their

output in the following period. This adjustment rule is often referred to as the gradient adjustment
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or gradient compensation mechanism [6]. Bischi et al. [6] proposed a general framework for such

dynamically adaptive Cournot models with bounded rationality.

In addition to bounded rationality, adaptive expectations have also received significant atten-

tion. In this approach, as formalized by Agiza and Elsadany [7, 8] firms adjust their output by

moving between their previous output and a perceived equilibrium output. The speed and di-

rection of this adjustment are governed by an adaptive coefficient, which determines the degree

of "oscillation" toward equilibrium. It’s important to note that naïve expectations are a type of

adaptive expectations where the adaptive coefficient has a certain number.

Firms may adopt different expectation schemes, either uniformly (homogeneous expectations)

or individually (heterogeneous expectations). Several studies have examined models where firms

share the same type of expectation, revealing a rich spectrum of dynamic behaviors, including

cycles and chaos [9, 11]. Conversely, other researchers have explored duopoly games with het-

erogeneous expectations. Zhang et al. [12] examined a Cournot duopoly model with quadratic

cost structures that included both bounded rationality and strategic flexibility. Similarly, Long et

al. [13] studied a dynamic duopoly model that incorporates asymmetric spillover effects and di-

verse strategic behaviors. The coupled competition map mentioned and investigated numerically

in [14] are as follows:  xn+1 = xn + α1xn(A1 − 2xn − Byn),

yn+1 = yn + α2yn(A2 − 2yn + Bxn),
(1.1)

This model exhibits flip, pitchfork, and Neimark-Sacker bifurcations, along with chaotic behavior,

as demonstrated by numerical study. This research conducts a theoretical and analytical analysis

of many types of codimension one bifurcation and their dynamical behaviors within this model.

The manuscript’s structure is delineated as follows: In Section 2, we demonstrated the existence

and stability of fixed points in a Cournot model that includes relative profit maximization and

homogeneous expectations. In Section 3, we investigate the flip bifurcation of this system, utilizing

the center manifold theorem and normal form theory to establish the necessary and sufficient

conditions for the parameter set during a flip bifurcation. This is accompanied by pertinent

numerical simulations. The analytical findings presented in Section 4 are validated by numerical

results. The results are summarized in Section 5.

2. Existence and stability of fixed points

This section examines the existence and stability of the fixed points of model (1.1). Clearly,

model (1.1) mainly has the four fixed points: E0 = (0, 0), E1 = (A1
2 , 0), E2(0, A2

2 ), and E∗(x∗, y∗)
where x∗ = 2A1−BA2

B2+4 and y∗ = 2A2+BA1
B2+4 . The last fixed point exists only if 2A1 ≥ BA2. The fixed

points E0, E1, and E2 are border fixed points, whereas the fixed point E∗ is referred to as an interior

fixed point or Nash equilibrium point. We will now examine the local stability of these fixed
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locations. The Jacobian matrix J of system (1.1), assessed at a fixed point E(x, y), is defined as

J(E) =

 1 + α1(A1 − 4x− By) −α1Bx
α2By 1 + α2(A2 − 4y + Bx)

 .

The following lemma explains how stable equilibrium point E(x, y) is:

Lemma 2.1. Let F(λ) = λ2 + Pλ+ Q. Suppose that F(1) > 0, λi, i = 1, 2 are the two roots of F(λ) = 0.
Then

(1) The fixed point is locally asymptotically stable i.e. |λi| < 1, i = 1, 2 iff F(−1) > 0, Q < 1.
(2) The fixed point is saddle point i.e. |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1) iff F(−1) < 0.
(3) The fixed point is a source i.e. |λi| > 1, i = 1, 2 iff F(−1) > 0 and Q > 1.
(4) λ1 = −1 and |λ2| , 1 iff F(−1) = 0 and P , 0, 2.
(5) λ1 and λ2 are complex conjugate numbers with |λi| = 1, i = 1, 2, iff P2

− 4Q < 0 and Q = 1.

In the last two cases, the fixed point is not hyperbolic. From the above lemma, we can come up

with the following propositions.

Proposition 2.1. The eigenvalues associated with the fixed point E0 areλ1 = 1+α1A1 andλ2 = 1+α2A2.
Thus, E0 is a source point.

Proposition 2.2. The eigenvalues associated with the fixed point E1 are λ1 = 1 − α1A1 and λ2 =

1 + α2(A2 +
A1B

2 ). Then,

(1) E1 is unstable saddle point if 0 < α1A1 < 2.
(2) E1 is unstable source point if α1A1 > 2.
(3) E1 is non-hyperbolic if α1 = 2

A1
.

You can also get similar findings for the fixed point E2. You may write the characteristic equation

of the interior fixed point E∗ as

λ2
− (2 + G)λ+ 1 + G + α1α2H = 0,

where

G = −2(α1x∗ + α2y∗),

H = (B2 + 4)x∗y∗.

Let

F(λ) = λ2
− (2 + G)λ+ 1 + G + α1α2H,

then

F(1) = α1α2H > 0, F(−1) = 4 + 2G + α1α2H.

At the fixed point E∗, we may handle the local dynamics by using Lemma (1).

Proposition 2.3. A fixed point E∗ in the interior is categorized:

(1) Sink if 4 + 2G + α1α2H > 0, and G + α1α2H < 0.
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(2) Saddle if 4 + 2G + α1α2H < 0.
(3) Source if 4 + 2G + α1α2H > 0, and G + α1α2H > 0.
(4) Non-hyperbolic if any of the conditions that follow:

• 4 + 2G + α1α2H = 0 and G , −2,−4.
• G < 2

√
α1α2H and α1 = −G

α2H .

Let

FB =
{
(A1, A2,α1,α2, B) ∈ R5

+| α1 = −
4 + 2G
α2H

and G , −2,−4
}

,

then, the interior fixed point E∗ exhibits flip bifurcation behavior if the parameter α1 is perturbed

in a small neighborhood of FB.

Let

NSB =
{
(A1, A2,α1,α2, B) ∈ R5

+| α1 = −
G
α2H

, and G < 2
√
α1α2H

}
.

3. Codimension-one bifurcation analysis

3.1. Bifurcation at E1(
A1
2 , 0). Our first topic is the flip bifurcation at E1(

A1
2 , 0). Using α1 as the

bifurcation parameter. Flip bifurcation may occur at E1(
A1
2 , 0)whenα1 = 2

A1
= α∗1. The eigenvalues

of the Jacobian matrix at E1 are λ1 = −1 and λ2 = 1 + α2(A2 +
A1B

2 ), with |λ2| , 1. The fixed point

E1 is translated to the origin by setting x̃ = x− A1
2 , ỹ = y. Thus, system (1.1) becomes: x̃

ỹ

→ A(α1)

 x̃
ỹ

+ F(X), (3.1)

where A(α1) = J(E1) and F(X) is the nonlinear part of map (1.1). Its Taylor expansion close to the

origin can be written like this:

F(X) =
1
2

B(X, X) +
1
6

C(X, X, X), X = (x̃, ỹ)T.

where

F(X) =

 F1(x̃, ỹ,α1)

F2(x̃, ỹ,α1)

 ,

F1(x̃, ỹ,α1) = −2α1x̃2
− Bα1x̃ỹ + O||X||4,

F2(x̃, ỹ,α1) = −2α2 ỹ2 + Bα2x̃ỹ + O||X||4.
(3.2)

The multilinear functions B(X, X) and C(X, X, X) are defined as follows:

B1(x, y) =
2∑

j,k=1

∂2F1(ξ,α1)

∂ξ j∂ξk

∣∣∣∣∣∣
ξ=0

x jyk,

= −α1(4x1y1 + Bx1y2 + Bx2y1),

B2(x, y) =
2∑

j,k=1

∂2F2(ξ,α1)

∂ξ j∂ξk

∣∣∣∣∣∣
ξ=0

x jyk,

(3.3)
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= α2(Bx1y2 + Bx2y1 − 4x2y2),

C1(x, y, u) =
2∑

j,k,l=1

∂3F1(ξ,α1)

∂ξ j∂ξk∂ξl

∣∣∣∣∣∣
ξ=0

x jykul = 0,

C2(x, y, u) =
2∑

j,k,l=1

∂3F2(ξ,α1)

∂ξ j∂ξk∂ξl

∣∣∣∣∣∣
ξ=0

x jykul = 0.

Two eigenvectors p, q ∈ R2, each with the eigenvalue λ1 = −1, are such that A(α∗1)q = −q and

AT(α∗1)p = −p. After some calculations we obtain

q ∼ (1, 0)T,

p ∼ (2 + α2A2 +
α2A1B

2
, B)T.

The normalization of these vectors is set to 1, where 〈., .〉 is the standard scalar product in R2. So,

we have

q = (1, 0)T,

p = (1,
2

4 + 2α2A2 + α2A1B
)T,

Based on the methods explained in [15], we change map (1.1) to the following normal form at α1:

ξ→ −ξ+ c(α∗1)ξ
3 + O(ξ4),

where

c(α∗1) =
1
6
〈p, C(q, q, q)〉 −

1
2
〈p, B(q, (A− I)−1B(q, q))〉,

where I denotes the identity matrix of dimensions 2× 2. Direct computations yield

c(α1) =
−1
3
(2 + 3B) −

16(1 + B)2

A2
1

−
8(1 + B)(B− 4)
A1(2A2 + A1B)

. (3.4)

Based on the above analysis and the theory in [15], we can say the following:

Theorem 3.1. If c(α∗1) is given by (3.4), then a flip bifurcation occurs at E1(
A1
2 , 0) of map (1.1) at α1 = 2

A1
.

Further, if c(α∗1) < 0 (resp., c(α∗1) > 0), then the process of division is subcritical (or supercritical), which
means that the two newborn periods are stable (or unstable).

3.2. Bifurcation at E3(x∗, y∗). We initially examine the possibility of flip bifurcation at E∗, which

may occur if the parameters are selected from the set FB, where α1 is regarded as the bifurcation

parameter.. The eigenvalues of J(E∗) are λ1 = −1 and λ2 = 3 + G. The condition |λ2| , 1 results in

G , −2,−4. Map (1.1) is rewritten as follows by transforming E∗ to the origin using the translations

x̂ = x− x∗ and ŷ = y− y∗:  x̂
ŷ

→ Ã(α1)

 x̂
ŷ

+ F(X), (3.5)

where Ã(α1) = J(E∗), X = (x̂, ŷ)T, and F(X) denotes the nonlinear term of map (1.1), which is as

similar as those given in (3.2). The multilinear functions B̃(X, X) and C̃(X, X, X) are identical to
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those provided in (3.3). Two eigenvectors p, q ∈ R2 are such that Ã(α1)q = −q and ÃT(α1)p = −p.

Following the completion of calculations, we acquire

q ∼ (α1Bx∗, 2− 2α1x∗)T,

p ∼ (2− 2α2y∗,α1Bx∗)T.

The corresponding normalized vectors p and q are

q = (α1Bx∗, 2− 2α1x∗)T,

p =

(
2− 2α2y∗

α1Bx∗[4− 2(α1x∗ + α2y∗)]
,

1
4− 2(α1x∗ + α2y∗)

)T

.

We convert map (1.1) to the following normal form at α1 in accordance with the algorithms

introduced in [15]:

ξ→ −ξ+ c̃(α1)ξ
3 + O(ξ4),

where

c̃(α1) =
1
6
〈p, C̃(q, q, q)〉 −

1
2
〈p, B̃(q, (A− I)−1B̃(q, q))〉,

In this case, I is the unit matrix that is 2 by 2. The following theorem follows from the above

analysis and the theorem in [15]:

Theorem 3.2. If G , −2,−4 and c̃(α1) , 0, then a flip bifurcation occurs at E∗ of map (1.1) at α1 =

−
4+2G
α2H = −

4−4(α1x∗+α2 y∗)
α2(B2+4)x∗y∗ . Further, if c(α1) < 0 (resp., c(α1) > 0), then the bifurcation is subcritical (or

supercritical), which means that the period-2 orbits that split off from E∗ are stable (or unstable).

Next, we analyze Neimark-Sacker bifurcation at E∗. Consider map (1.1) with arbitrary

(α̃1,α2, A1, A2, B) ∈ NSB. The eigenvalues of J(E∗) are a pair of complex conjugate integers λ

and λ̄ with modulus 1, as shown by Proposition 3.

λ, λ̄ =
−P(α̃1) ± i

√
4Q(α̃1) − P2(α̃1)

2
.

and

P(α̃1) = − (2 + G(α̃1)) , Q(α̃1) = 1 + G(α̃1) + α̃1α2H.

So, we have

|λ|α1=α̃1
=

√
Q(α̃1) = 1,

d|λ(α1)|

dα1

∣∣∣∣∣∣
α1=α̃1

=
−2x∗ + α2H

2
, 0.

In addition, it is required that λk(α̃1), λ̄k(α̃1) , 1(k = 1, 2, 3, 4), which leads to

G(α̃1) , −2,−3. (3.6)

Let q ∈ C2 be an eigenvector of A(α̃1) corresponding to the eigenvalue λ(α̃1) such that A(α̃1)q =

eiθq, and p ∈ C2 be an eigenvector of the transposed matrix AT(α̃1) corresponding to the eigenvalue

λ̄(α̃1) such that AT(α̃1)p = e−iθp. By direct calculation, we have

q =

 α̃1Bx∗

1− 2α̃1x∗ − λ

 ,
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p =


√

4α̃1α2H−G2(α̃1)−i(2α̃1x∗−2α2 y∗)

2α̃1Bx∗
√

4α̃1α2H−G2(α̃1)

−
i√

4α̃1α2H−G2(α̃1)

 ,

It is clear that 〈p, q〉 = 1, where 〈., .〉means the standard scalar product in C2, 〈p, q〉 = p1q1 + p2q2.

Any vector X ∈ R2. can be represented for α1 near α̃1 as X = zq + z̄q̄, for some complex z. Thus,

system (3.3) can be transformed for sufficiently small |α1| (near α̃1) into the following form:

z→ λ(α̃1)z + g(z, z̄, α̃1),

where λ(α̃1) can be written as λ(α1) = (1 + ϕ(α1))eiθ(α1) (where ϕ(α1) is a smooth function with

ϕ(α̃1) = 0) and g is a complex-valued smooth function of z, z̄, and α1, whose Taylor expression

with respect to (z, z̄) contains quadratic and higher-order terms:

After some transformations similarly introduced in (), we can transform map (1.1) to the normal

form on the center manifold at α1 = α1NS as follows:

z 7→ eiθ(α1NS)z(1 + d1|z|2) + O(|z|4),

where eiθ(α1NS) = λ(α1NS), z ∈ Z2 and the real number d̃(α1NS) = Re d1 is given as follows:

d̃(α1NS) =
1
2

Re{e−iθ(α1NS)[〈p, C̃(q, q, q)〉

+ 2〈p, B̃(q, (I − Ã(α1NS))
−1B̃(q, q))〉]

+ 〈p, B̃(q, (e2iθ(α1NS)I − Ã(α1NS))
−1B̃(q, q))〉]},

Which decides whether the bifurcating closed invariant curve attracts or repels. The following

theorem is obtained from [15].

Theorem 3.3. If (3.6) and d̃(α1NS) , 0 hold, a Neimark-Sacker bifurcation occurs at E∗ of map (1.1)
when α1 = α1NS. The sign of d̃(α1NS) determines the stability of a closed invariant bifurcating curve. If
d̃(α1NS) < 0 (resp., α1NS) > 0), the bifurcating closed invariant curve attracts (resp., repels) for α1 > α1NS

(resp., α1 < α1NS).

4. Numerical results

4.1. Numerical simulations. In this section, we will illustrate the above analytical findings by

means of phase portraits, bifurcation diagrams and Lyapunov exponent. This also will show the

more complex dynamics of model (1.1). The codimension-one bifurcations will be investigated

numerically by MATCONTM.

(1) Fix A1 = 5.9, A2 = 5.8, and let B = 0.5, α1 = 0.27, and α2 = 0.41. The fixed point

E1 = (A1
2 , 0) = (2.85, 0.1), taking (xo, yo) = (2.9, 0.1), we can see the E1 is an unstable

saddle as depicted in Fig.(1)(a). However, E1 is an unstable source at α1 = 0.37 as seen in

Fig.(1)(b). The fixed point E∗ = (x∗, y∗) = (2.0941, 3.4235), so if we start at (xo, yo) = (2, 3.3),

we can see that E∗ is a spiral sink in Fig.(1)(c) if α1 = 0.41, and α2 = 0.3, while E∗ is a source
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when α1 = 0.25, and α2 = 0.5 as depicted in Fig.(1)(d). The chaotic attractor is shown in

both Fig.(1)(e) and (f) for α1 = 0.1, α2 = 0.42 and α1 = 0.49, α2 = 0.32, respectively.

(2) Now let B = 0.2, α2 = 0.25 and vary α1, according to Theorem 1, a flip bifurcation

occurs at the fixed point E1 when α1 = 2
A1

= 0.3390 as shown in Fig. (2)(a) and the

corresponding maximal Lyapunov exponent (MLE) is depicted in Fig. (2)(b). At α2 = 0.42,

a flip bifurcation occurs at E∗ when α1 = 0.3649 according to Theorem 2 which is clearly

seen in Fig. (2)(c) and the corresponding MLE is shown in Fig. (2)(d). For B = 0.6 and

α2 = 0.28, a Neimark-Saker bifurcation occurs at α1 = 0.4551 according to theorem 3. as

seen in Fig. (2)(e) and its corresponding MLE is shown in Fig. (2)(f).

(a) (b)

(c) (d)

(e) (f)

Figure 1. Phase portraits of model (1.1).
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Bifurcation diagrams and corresponding maximal Lyapunov exponent (MLE) of model

(1.1).

4.2. Numerical continuation. This part uses MATCONTM [15] to execute numerical continuation

at fixed locations E1 and E∗.. Example 1: Fix A1 = 5.9, A2 = 5.8, B = 0.5, α2 = 0.25, and vary α1.

The report of MATCONTM is as follows.

label PD, x= (2.950000 0.000000 0.338983),

Normal form coefficient for PD = 4.296380e-01 ,

label NS, x= (2.950000 0.000000 0.104240),

Neutral Saddle

label BP, x= (2.950000 0.000000 -0.000000).
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According to Theorem 1, E1 exhibits a flip bifurcation (Fig.(3)(a)) and a Neimark-sacker bifurcation

(NS), which has not been demonstrated theoretically. Example 2: Fix A1 = 5.9, A2 = 5.8, B = 0.2,

α2 = 0.42, and vary α1. The report of MATCONTM is as follows.

label NS, x= (2.633663 3.163366 0.299604),

Neutral Saddle

label PD, x= (2.633663 3.163366 0.364944),

Normal form coefficient for PD = 5.583321e-01.

The fixed point E∗ has flip and Neimark-sacker bifurcations, which can be found in Theorems 2

and 3. Figure (3) shows this.

(a) (b)

Figure 3. Continuation of E1 and E∗ in (α1, x)-plane. The branch point (BP), Neimark-Sacker point

(NS) and period doubling point (PD) obtained at (a)Theorem 1, and (b)Theorem 2 and 3.

5. Conclusion

This article examines a nonlinear dynamical system that represents a duopoly competition

game model. The model mimics the interaction strategies of two competitive firms under non-

linear adjustments. The system’s equilibrium points were identified by rigorous mathematical

analysis, and their local stability qualities were evaluated using linearization and eigenvalue anal-

ysis. Critical bifurcation possibilities in system dynamics were analyzed. Threshold parameters

were established for pitchfork, flip (period-doubling), and Neimark–Sacker (quasi-periodic) bifur-

cations. Bifurcations indicate transitions from stable equilibria to cycles and quasi-periodic orbits,

commonly observed in economic competition.

The results demonstrate how minute system attributes might affect the qualitative conduct of

rival companies. This approach elucidates nonlinear dynamics in duopoly markets and offers a

theoretical framework for forecasting and regulating complex competitive economic behaviors.
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