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Abstract. This paper examines the temporal evolution of a competitive duopoly game model, emphasizing the iden-
tification of significant bifurcation points that influence the system’s dynamics throughout time. The analysis centers
on codimension-one bifurcations, specifically two primary categories: flip (period-doubling) bifurcations, potentially
leading to quasiperiodic motion on invariant closed curves, and Neimark—Sacker bifurcations, indicative of the onset of
periodic or chaotic dynamics. These bifurcations provide substantial insights into the stability, complexity, and strategic

interactions between the two competing firms within a nonlinear duopoly framework.

1. INTRODUCTION

In a dynamic Cournot duopoly model, each firm adjusts its strategy based on the actions of
its rival. The structure of such models is strongly influenced by how firms form expectations.
Specifically, it depends on the decision-making rules they use to update future output. The
original Cournot model assumed firms believed their competitors” output would stay constant.
This assumption is simple but unrealistic. Later research showed that such simplicity can lead to
a loss of important market information. It also fails to capture the complex nature of real-world
competition [1-5].

Several researchers have highlighted constrained rationality as a more realistic behavioral as-
sumption to address these constraints. This technique involves enterprises adjusting their output
according to the marginal profit, defined as the partial derivative of the profit function relative to
their production level. If the marginal profit is positive (negative), firms increase (decrease) their

output in the following period. This adjustment rule is often referred to as the gradient adjustment
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or gradient compensation mechanism [6]. Bischi et al. [6] proposed a general framework for such
dynamically adaptive Cournot models with bounded rationality.

In addition to bounded rationality, adaptive expectations have also received significant atten-
tion. In this approach, as formalized by Agiza and Elsadany [7, 8] firms adjust their output by
moving between their previous output and a perceived equilibrium output. The speed and di-
rection of this adjustment are governed by an adaptive coefficient, which determines the degree
of "oscillation" toward equilibrium. It’s important to note that naive expectations are a type of
adaptive expectations where the adaptive coefficient has a certain number.

Firms may adopt different expectation schemes, either uniformly (homogeneous expectations)
or individually (heterogeneous expectations). Several studies have examined models where firms
share the same type of expectation, revealing a rich spectrum of dynamic behaviors, including
cycles and chaos [9,11]. Conversely, other researchers have explored duopoly games with het-
erogeneous expectations. Zhang et al. [12] examined a Cournot duopoly model with quadratic
cost structures that included both bounded rationality and strategic flexibility. Similarly, Long et
al. [13] studied a dynamic duopoly model that incorporates asymmetric spillover effects and di-
verse strategic behaviors. The coupled competition map mentioned and investigated numerically

in [14] are as follows:

(1.1)

Xpt+1 = Xn + a1X, (A1 — 2x, — Byy),
Ynt+1 = Yn + a2yn(A2 — 2y, + Bxy),

This model exhibits flip, pitchfork, and Neimark-Sacker bifurcations, along with chaotic behavior,
as demonstrated by numerical study. This research conducts a theoretical and analytical analysis
of many types of codimension one bifurcation and their dynamical behaviors within this model.
The manuscript’s structure is delineated as follows: In Section 2, we demonstrated the existence
and stability of fixed points in a Cournot model that includes relative profit maximization and
homogeneous expectations. In Section 3, we investigate the flip bifurcation of this system, utilizing
the center manifold theorem and normal form theory to establish the necessary and sufficient
conditions for the parameter set during a flip bifurcation. This is accompanied by pertinent
numerical simulations. The analytical findings presented in Section 4 are validated by numerical

results. The results are summarized in Section 5.

2. EXISTENCE AND STABILITY OF FIXED POINTS

This section examines the existence and stability of the fixed points of model (1.1). Clearly,
model (1.1) mainly has the four fixed points: Eg = (0,0), E; = (%,O), E; (0, ‘%), and E*(x*, ")

where x* = 24842 514 y = %. The last fixed point exists only if 241 > BA,. The fixed

B2+4
points Eg, E1, and E; are border fixed points, whereas the fixed point E* is referred to as an interior

fixed point or Nash equilibrium point. We will now examine the local stability of these fixed
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locations. The Jacobian matrix | of system (1.1), assessed at a fixed point E(x, y), is defined as
I(E) = 1+ a1(A; —4x - By) —a1Bx
aBy 1+ az(Az -4y + Bx)

The following lemma explains how stable equilibrium point E(x, y) is:

Lemma 2.1. Let F(A) = A2 + PA + Q. Suppose that F(1) > 0, A;,i = 1,2 are the two roots of F(A) = 0.
Then
(1) The fixed point is locally asymptotically stable i.e. |A;| < 1,i =1,2iff F(-1) >0, Q < 1.
(2) The fixed point is saddle point i.e. |A1| < 1 and [Az| > 1 (or |A1] > 1 and |A5] < 1) iff F(-1) < 0.
(3) The fixed point is a source i.e. |Aj| > 1,i =1,2iff F(-1) > 0and Q > 1.
(4) Ay =-1and|Ay| # 1iff F(-1) =0and P #0,2.
(5) Ay and Ay are complex conjugate numbers with |Aj| =1,i =1,2, z'ﬁP2 —-4Q<0and Q = 1.

In the last two cases, the fixed point is not hyperbolic. From the above lemma, we can come up

with the following propositions.

Proposition 2.1. The eigenvalues associated with the fixed point Eyare Ay = 14+ a1Ajand Ay = 14 azAs.
Thus, Ey is a source point.

Proposition 2.2. The eigenvalues associated with the fixed point E; are Ay = 1 —a1Ay and Ay =
1+ ax(Ax+ #). Then,

(1) Eq is unstable saddle point if 0 < a1A; < 2.

(2) Eq is unstable source point if a1 Ay > 2.

(3) Ej is non-hyperbolic if a1 = A%.

You can also get similar findings for the fixed point E;. You may write the characteristic equation

of the interior fixed point E* as

A= (2+GA+1+G+aaH =0,

where
G = =2(a1x"+my"),
H = (B>+4)xy".
Let
F(A) =A2= 24+ G)A+1+G + marH,
then

F(1) = amyapH > 0, F(-1) =4+2G+ ajapH.
At the fixed point E*, we may handle the local dynamics by using Lemma (1).

Proposition 2.3. A fixed point E* in the interior is categorized:

(1) Sink if 4 +2G + anaoH >0, and G+ ajaH < 0.
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(2) Saddleif 4+ 2G + ay1aH < 0.
(3) Sourceif4 +2G + ayaoH >0, and G+ ayjaH > 0.
(4) Non-hyperbolic if any of the conditions that follow:

e 4+2G+ ajaoH =0and G # -2,-4.

o G <2+vma,Hand aq = a_z—%

Let
4+2G

asz
then, the interior fixed point E* exhibits flip bifurcation behavior if the parameter a; is perturbed

Fp = {(Al,Az,Otl,Oéz,B) eER’|ay =— and G # -2, —4},

in a small neighborhood of Fg.
Let

G
NSp = {(Al,Az,al,az,B) € 1R5 | ap = 5 and G < 2\/0410(2H}.
2

3. CODIMENSION-ONE BIFURCATION ANALYSIS

3.1. Bifurcation at ]51(A ,0). Our first topic is the ﬂip bifurcation at El(%,O). Using a; as the
bifurcation parameter. Flip bifurcation may occur at El( ,0) whena; = A% = a]. The eigenvalues
of the Jacobian matrix at E; are Ay = —land A, = 1+ ax(Az + %), with |A2] # 1. The fixed point
E; is translated to the origin by setting ¥ = x — %, 7 = y. Thus, system (1.1) becomes:

( ; )% A(al)[ i )+F<X), (3.1)
Y Yy

where A(ap) = J(E1) and F(X) is the nonlinear part of map (1.1). Its Taylor expansion close to the

origin can be written like this:
1 1
F(X) = 5B(X,X) + zC(X, X, X), X = (%, 7).

where

—20,7* — Bay % + OJIX]I%,

e
_
—~
Rad
\'K:z

)
=
SN—

|

Fa(%,§,a1) = =201 + Bapxij + OlIX||*.

The multilinear functions B(X, X) and C(X, X, X) are defined as follows:
2

Z *F1(&,a1)
= 9808 o0&k
= —a1(4x1y1 + Bx1y2 + Bxay1), (3.3)
Zz‘ *Fa(&, a1)
C9E0& &Ej0Ek

jk=1

XYk
&=0

XYk,
£=0
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= ap(Bx1y2 + Bxoyr — 4x212),

2
831:1 5 a1
1(ey Z:aa&%zL”WW_Q
jkI=1 &=0
2 PE(E )
(x,v, xiyeu; = 0.
yu kZ: 35k3€z o iYiUi
Two eigenvectors p,q € R?, each with the eigenvalue A; = -1, are such that A(a})g = —q and
AT(a)p = —p. After some calculations we obtain
9 ~ (L0,
DézAlB

p ~ 2+ axAr+ ,B)T.

The normalization of these vectors is set to 1, where (., .) is the standard scalar product in R2. So,

we have
g = (1,0),

p:(l, 2

T
44+ 2a0A5 + (J(zAlB) ’
Based on the methods explained in [15], we change map (1.1) to the following normal form at a;:

E— —&+c(a})& +0(eY),

where
c(as) = £p,C(g,4,0) = 5P, Blg, (A=) 'B(g,)),
where I denotes the identity matrix of dimensions 2 X 2. Direct computations yield
16(1+B)> 8(1+B)(B-4)
AZ A1(2A; + A1B)

clag) = %1(2 +3B) — (3.4)

Based on the above analysis and the theory in [15], we can say the following;:

Theorem 3.1. If c(a]) is given by (3.4), then a flip bifurcation occurs at Eqy (4t +,0) of map (1.1) at ay = &=
Further, if c(a}) < 0 (resp., c(a) > 0), then the process of division is subcritical (or supercritical), which

means that the two newborn periods are stable (or unstable).

3.2. Bifurcation at E3(x*, y*). We initially examine the possibility of flip bifurcation at E*, which
may occur if the parameters are selected from the set Fg, where a; is regarded as the bifurcation
parameter.. The eigenvalues of J(E*) are Ay = —1 and A, = 3 + G. The condition [A5| # 1 results in
G # —2,—4. Map (1.1) is rewritten as follows by transforming E* to the origin using the translations

f=x—-x"andj=y—-y"

(f)—uﬁi(al)[ . ]+P(X), (3.5)
7 7

where A(a1) = J(E), X = (%,#)7, and F(X) denotes the nonlinear term of map (1.1), which is as
similar as those given in (3.2). The multilinear functions B(X, X) and C(X, X, X) are identical to
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those provided in (3.3). Two eigenvectors p,q € IR? are such that A(a;)g = —g and AT (a;)p = —p.
Following the completion of calculations, we acquire

g ~ (yBx",2- 2a1x*)T,

p ~ (2-2ay",aBx)T.
The corresponding normalized vectors p and g are

g = (qBx",2-2a1x")7,
( 22wy 1
a1 Bx*[4 = 2(a1x* + apy*)]” 4= 2(eqx* + aoy*)

We convert map (1.1) to the following normal form at a; in accordance with the algorithms
introduced in [15]:

p =

£ =& +(a)E®+0(eY),
where
clar) = 0 Cla.0,0)) - 5Bl (A~ D 'B(@,9)
In this case, I is the unit matrix that is 2 by 2. The following theorem follows from the above

analysis and the theorem in [15]:

Theorem 3.2. If G # —2,—4 and ¢(a1) # 0, then a flip bifurcation occurs at E* of map (1.1) at aq =
_4;2%{@ = _4;3((;‘2‘: gjfyy:) . Further, if c(a1) < 0 (resp., c(a1) > 0), then the bifurcation is subcritical (or

supercritical), which means that the period-2 orbits that split off from E* are stable (or unstable).

Next, we analyze Neimark-Sacker bifurcation at E*. Consider map (1.1) with arbitrary
(@1,a2,A1,A2,B) € NSg. The eigenvalues of J(E*) are a pair of complex conjugate integers A
and A with modulus 1, as shown by Proposition 3.

—P(d1) +i+/4Q(&1) — P2(ay)
. .

AA =

and
P(a) = - (2+G(a1)), Q(a1) =1+ G(a1) + dazH.

So, we have
diA(aq)]
da1

2"+ aH
- 2

a

In addition, it is required that /\k(ﬁzl), )_\k(o”zl) # 1(k=1,2,3,4), which leads to

# 0.

|/\|0(1:5(1 = Q(&l) - 1/

G(a) # -2, -3. (3.6)

Let g € C? be an eigenvector of A(@;) corresponding to the eigenvalue A(&;) such that A(d)g =
¢'%g, and p € C? be an eigenvector of the transposed matrix AT (@) corresponding to the eigenvalue
A(d) such that AT (@;)p = e7¥p. By direct calculation, we have

. CNKlBJC’F
1= 1-2ax—A )
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481 0 H-G2 (1) i (28 X ~200, ")

p — 201 Bx* \/45(10(2H—G2(511)

-
4a,0a,H-G? (@)

It is clear that (p, g) = 1, where (.,.) means the standard scalar product in C?,(p, q) = P191 + Poq2-
Any vector X € R?. can be represented for aj near &; as X = zq + 2§, for some complex z. Thus,

system (3.3) can be transformed for sufficiently small |a;| (near &;) into the following form:
z = AMar)z+g(z,z,a1),

where A(d;) can be written as A(a;) = (1 + @(ay))e’?@) (where ¢(a;) is a smooth function with
@(a@1) = 0) and g is a complex-valued smooth function of z, z, and a1, whose Taylor expression
with respect to (z,Z) contains quadratic and higher-order terms:

After some transformations similarly introduced in (), we can transform map (1.1) to the normal

form on the center manifold at a; = ajng as follows:
z - e00Ns) 7 (1 4 dy|z1) + O(Jz[*),

where ¢/0(@1ns) = AMayns), z € Z? and the real number d(a1ys) = Re dy is given as follows:

Has) = Rele™ ) [(p,C(g,0,7)
+ 2p,B(q, (1= A(ains)) ™' B(q,7)))]
£ (B (01- Aarns) Bl )

Which decides whether the bifurcating closed invariant curve attracts or repels. The following

theorem is obtained from [15].

Theorem 3.3. If (3.6) and d(ains) # O hold, a Neimark-Sacker bifurcation occurs at E* of map (1.1)
when ay = ains. The sign of d(ains) determines the stability of a closed invariant bifurcating curve. If

d(aing) <0 (resp., arns) > 0), the bifurcating closed invariant curve attracts (resp., repels) for a1 > ainsg

(resp., a1 < a1Ng)-

4. NUMERICAL RESULTS

4.1. Numerical simulations. In this section, we will illustrate the above analytical findings by
means of phase portraits, bifurcation diagrams and Lyapunov exponent. This also will show the
more complex dynamics of model (1.1). The codimension-one bifurcations will be investigated
numerically by MATCONTM.
(1) Fix Ay = 59, A, = 58, and let B = 0.5, a; = 0.27, and ap = 0.41. The fixed point
E; = (%,O) = (2.85,0.1), taking (x,, o) = (2.9,0.1), we can see the E; is an unstable
saddle as depicted in Fig.(1)(a). However, E; is an unstable source at @; = 0.37 as seen in
Fig.(1)(b). The fixed point E* = (x*, ") = (2.0941, 3.4235), so if we start at (x,, y,) = (2,3.3),

we can see that E* is a spiral sink in Fig.(1)(c) if &1 = 0.41, and a, = 0.3, while E* is a source
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when a; = 0.25, and a; = 0.5 as depicted in Fig.(1)(d). The chaotic attractor is shown in
both Fig.(1)(e) and (f) for a1 = 0.1, ap = 0.42 and a7 = 0.49, a; = 0.32, respectively.

(2) Now let B = 0.2, ap = 0.25 and vary aj, according to Theorem 1, a flip bifurcation
occurs at the fixed point E; when a; = A% = 0.3390 as shown in Fig. (2)(a) and the
corresponding maximal Lyapunov exponent (MLE) is depicted in Fig. (2)(b). At ax = 0.42,
a flip bifurcation occurs at E* when a; = 0.3649 according to Theorem 2 which is clearly
seen in Fig. (2)(c) and the corresponding MLE is shown in Fig. (2)(d). For B = 0.6 and
ap = 0.28, a Neimark-Saker bifurcation occurs at a; = 0.4551 according to theorem 3. as
seen in Fig. (2)(e) and its corresponding MLE is shown in Fig. (2)(f).

A1=5.9, A2=5.8, B=U.5,01=U.27, 02=U.4‘| A1=5.9, A2=5.8, B=U.5,O1=U.37, 02=U.41
45 45
4 4 e
a5 a5
3 3
25 25 .
> > .
2 2 s
15 15
1 1
05 05
0 0
16 18 2 22 24 26 28 3 12 14 16 18 2 22 24 26 28 3
X X
(a) (b)
A1=5.9, A2=5.8, B=U.5,(x1=U.41, 02=U.3 A1=5.9, A2=5.38, B=U.5,(x1=0.5, (x2=0.25
3.55 36
. 355
35 Tk, . .
N . 35
345 FPERRE - 3.45
> L Tty ! > 34
34 .. . ) 3.35
. H o a3
3.35
325
33 3.2
195 2 205 21 215 2.2 225 1.85 1.9 195 2 205 21 215 22 225 23
X X
(0 (d)
A1=5.9, A2=5.8, B=0.5,a1=0.‘|, 02=D.42 A1=5.9, A2=5.8, B=U.5,a1=0.49, 02=U.32
5 4.2

0 24
2 21 22 23 24 25 26 0.8 1 12 14 16 18 2 22 2.4 26 28
X X
(e) f)

Figure 1. Phase portraits of model (1.1).
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A1=5.9, A2=5.8, B=0.2, o,=0.25

4 05
a5 0.4
0.3
gL
02
25 ul
— 01
]
x 2 £ o
3
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0.2
Ak
03
05
04
0 0.5
0 0.1 0.2 0.3 06 0 0.1 0.2 03 0.4 05 06
[0}
1 “
(a) (b)
04
DJ}‘
02
w 0.1
-
w® 0 v
E
% 0.1
]
=5
0.3
0.4
0 0.5
o 01 0z 03 04 05 0 005 01 015 02 025 03 035 04 045 05
o
* 1
(0) (d)
0.1
0
0.1
w
-
— 0.2
«©
E
X
& 03
=
0.4
0.5
1 0.6
03 0.35 04 0.45 05 0.55 06 0.3 0.35 0.4 045 05 0.55 06
a@ @
1 1
(e) ()

Figure 2. Bifurcation diagrams and corresponding maximal Lyapunov exponent (MLE) of model
(1.1).

4.2. Numerical continuation. This part uses MATCONTM [15] to execute numerical continuation
at fixed locations E; and E*.. Example 1: Fix Ay = 5.9, A, = 5.8,B = 0.5, ap = 0.25, and vary a;.
The report of MATCONTM is as follows.
label PD, x= (2.950000 0.000000 0.338983),
Normal form coefficient for PD = 4.296380e-01
label NS, x= (2.950000 0.000000 0.104240),
Neutral Saddle
label BP, x= (2.950000 0.000000 -0.000000).
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According to Theorem 1, E; exhibits a flip bifurcation (Fig.(3)(a)) and a Neimark-sacker bifurcation
(NS), which has not been demonstrated theoretically. Example 2: Fix A; =5.9, A, =5.8,B =0.2,
ap = 0.42, and vary aq. The report of MATCONTM is as follows.

label NS, x= (2.633663 3.163366 0.299604),
Neutral Saddle
label PD, x= (2.633663 3.163366 0.364944),

Normal form coefficient for PD 5.583321e-01.

The fixed point E* has flip and Neimark-sacker bifurcations, which can be found in Theorems 2
and 3. Figure (3) shows this.

3.5

25

1=1-] b =Ta

25 2

x 15

15

0.5 0.5

0
0 0.1 0.2 0.3 0.4 0.5 06 O 01 02 03 04 05 06 07 08 09 1
“1 ('l'1

(@ (b)

Figure 3. Continuation of E; and E* in (aq,x)-plane. The branch point (BP), Neimark-Sacker point
(NS) and period doubling point (PD) obtained at (a)Theorem 1, and (b)Theorem 2 and 3.

5. CoNcCLUSION

This article examines a nonlinear dynamical system that represents a duopoly competition
game model. The model mimics the interaction strategies of two competitive firms under non-
linear adjustments. The system’s equilibrium points were identified by rigorous mathematical
analysis, and their local stability qualities were evaluated using linearization and eigenvalue anal-
ysis. Critical bifurcation possibilities in system dynamics were analyzed. Threshold parameters
were established for pitchfork, flip (period-doubling), and Neimark-Sacker (quasi-periodic) bifur-
cations. Bifurcations indicate transitions from stable equilibria to cycles and quasi-periodic orbits,
commonly observed in economic competition.

The results demonstrate how minute system attributes might affect the qualitative conduct of
rival companies. This approach elucidates nonlinear dynamics in duopoly markets and offers a

theoretical framework for forecasting and regulating complex competitive economic behaviors.
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