Iterative Methods for General Bivariational Inequalities
Main Article Content
Abstract
Some new classes of general bivariational inequalities, which can be viewed as a novel important special case of variational equalities, are investigated. Projection method, auxiliary principle and dynamical systems coupled with finite difference approach are used to suggest and analyzed a number of new and known numerical techniques for solving bivariational inequalities. Convergence analysis of these methods is investigated under suitable conditions. One can obtain a number of new classes of bivariational inequalities by interchanging the role of operators. Sensitivi anaysis of the bivariational inequalities is also discussed. Some important special cases are highlighted. Several open problems are suggested for future research.
Article Details
References
- F. Alvarez, Weak Convergence of a Relaxed and Inertial Hybrid Projection-Proximal Point Algorithm for Maximal Monotone Operators in Hilbert Space, SIAM J. Optim. 14 (2004), 773–782. https://doi.org/10.1137/s1052623403427859.
- A.A. AlShejari, M.A. Noor, K.I. Noor, Recent Developments in General Quasi Variational Inequalities, Int. J. Anal. Appl. 22 (2024), 84. https://doi.org/10.28924/2291-8639-22-2024-84.
- Ashish, M. Rani, R. Chugh, Julia Sets and Mandelbrot Sets in Noor Orbit, Appl. Math. Comput. 228 (2014), 615–631. https://doi.org/10.1016/j.amc.2013.11.077.
- Ashish, R. Chugh, M. Rani, Fractals and Chaos in Noor Orbit: A Four-Step Feedback Approach, Lap Lambert Academic Publishing, Saarbrucken, Germany, (2021).
- D. Aussel, R. Gupta, A. Mehra, Gap Functions and Error Bounds for Inverse Quasi-Variational Inequality Problems, J. Math. Anal. Appl. 407 (2013), 270–280. https://doi.org/10.1016/j.jmaa.2013.03.049.
- A. Barbagallo, S. Guarino Lo Bianco, A Random Elastic Traffic Equilibrium Problem via Stochastic Quasi-Variational Inequalities, Commun. Nonlinear Sci. Numer. Simul. 131 (2024), 107798. https://doi.org/10.1016/j.cnsns.2023.107798.
- A. Bnouhachem, A. Hamdi, Parallel LQP Alternating Direction Method for Solving Variational Inequality Problems with Separable Structure, J. Inequal. Appl. 2014 (2014), 392. https://doi.org/10.1186/1029-242x-2014-392.
- A. Bnouhachem, M.A. Noor, M. Khalfaoui, S. Zhaohan, A Self-Adaptive Projection Method for a Class of Variant Variational Inequalities, J. Math. Inequal. 5 (2011), 117–129. https://doi.org/10.7153/jmi-05-11.
- S.Y. Cho, A.A. Shahid, W. Nazeer, S.M. Kang, Fixed Point Results for Fractal Generation in Noor Orbit and s-Convexity, SpringerPlus 5 (2016), 1843. https://doi.org/10.1186/s40064-016-3530-5.
- R.W. Cottle , J.S. Pang, R.E. Stone, The Linear Complementarity Problem, SIAM, Philadelphia, 2009.
- G. Cristescu, L. Lupsa, Non-Connected Convexities and Applications, Kluwer Academic Publishers, Dordrecht, 2002.
- G. Cristescu, G. Mihail, Shape Properties of Noor's g-Convex Sets, in: Proceeding of the 12th Symposium of Mathematics and Its Applications, Timisoara, Romania, pp. 1–13, (2009).
- S. Dafermos, Sensitivity Analysis in Variational Inequalities, Math. Oper. Res. 13 (1988), 421–434. https://doi.org/10.1287/moor.13.3.421.
- P. Dupuis, A. Nagurney, Dynamical Systems and Variational Inequalities, Ann. Oper. Res. 44 (1993), 7–42. https://doi.org/10.1007/bf02073589.
- R. Glowinski, J.L. Lions, R. Tremolieres, Numerical Analysis of Variational Inequalities, North Holland, Amsterdam, (1981).
- R. Glowinski, P. Le Tallec, Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, 1989.
- A. Hamdi, A Moreau-Yosida Regularization of a Difference of Two Convex Functions, Appl. Math. E-Notes 5 (2005), 164–170. http://eudml.org/doc/52992.
- A. Hamdi, A Modified Bregman Proximal Scheme to Minimize the Difference of Two Convex Functions, Appl. Math. E-Notes 6 (2006), 132–140. http://eudml.org/doc/55428.
- Y. Han, N. Huang, J. Lu, Y. Xiao, Existence and Stability of Solutions to Inverse Variational Inequality Problems, Appl. Math. Mech. 38 (2017), 749–764. https://doi.org/10.1007/s10483-017-2191-9.
- B. He, X. He, H.X. Liu, Solving a Class of Constrained 'black-Box' Inverse Variational Inequalities, Eur. J. Oper. Res. 204 (2010), 391–401. https://doi.org/10.1016/j.ejor.2009.07.006.
- S. Jana, M.A. Noor, Mixed Quasi Hemiequilibrium Problems on Hadamard Manifolds, Int. J. Math. Stat. Oper. Res. 5 (2025), 269–285.
- D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, SIAM, Philadelphia, 2000.
- Y.C. Kwun, A.A. Shahid, W. Nazeer, S.I. Butt, M. Abbas, et al., Tricorns and Multicorns in Noor Orbit with s-Convexity, IEEE Access 7 (2019), 95297–95304. https://doi.org/10.1109/access.2019.2928796.
- J.L. Lions, G. Stampacchia, Variational Inequalities, Commun. Pure Appl. Math. 20 (1967), 493–519. https://doi.org/10.1002/cpa.3160200302.
- A. Nagurney, D. Zhang, Projected Dynamical Systems and Variational Inequalities with Applications, Kluwer Academic Publishers, 1996.
- S.K. Natarajan, D. Negi, Green Innovations Uniting Fractals and Power for Solar Panel Optimization, in: Green Innovations for Industrial Development and Business Sustainability, 1st ed., CRC Press, Boca Raton, 2024: pp. 146–152. https://doi.org/10.1201/9781003458944-10.
- C.P. Niculescu, L.E. Persson, Convex Functions and Their Applications, Springer, New York, 2018.
- M.A. Noor, On Variational Inequalities, PhD Thesis, Brunel University, London, 1975.
- M.A. Noor, Generalized Quasi Complementarity Problems, J. Math. Anal. Appl. 120 (1986), 321–327. https://doi.org/10.1016/0022-247x(86)90219-2.
- M.A. Noor, General Variational Inequalities, Appl. Math. Lett. 1 (1988), 119–122. https://doi.org/10.1016/0893-9659(88)90054-7.
- M.A. Noor, Quasi Variational Inequalities, Appl. Math. Lett. 1 (1988), 367–370. https://doi.org/10.1016/0893-9659(88)90152-8.
- M.A. Noor, Fixed Point Approach for Complementarity Problems, J. Math. Anal. Appl. 133 (1988), 437–448. https://doi.org/10.1016/0022-247x(88)90413-1.
- M.A. Noor, General Algorithm for Variational Inequalities, J. Optim. Theory Appl. 73 (1992), 409–413. https://doi.org/10.1007/bf00940189.
- M.A. Noor, New Approximation Schemes for General Variational Inequalities, J. Math. Anal. Appl. 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042.
- M.A. Noor, A Wiener-Hopf Dynamical System and Variational Inequalities, N. Z. J. Math. 31 (2002), 173–182.
- M.A. Noor, Computing the Fixed-Points of General Mixed Variational Inequalities, Math. Inequal. Appl. 5 (2002), 155–162. https://doi.org/10.7153/mia-05-16.
- M. Aslam Noor, Some Developments in General Variational Inequalities, Appl. Math. Comput. 152 (2004), 199–277. https://doi.org/10.1016/s0096-3003(03)00558-7.
- M. Noor, Stability of the Modified Projected Dynamical Systems, Comput. Math. Appl. 44 (2002), 1–5. https://doi.org/10.1016/s0898-1221(02)00125-6.
- M.A. Noor, Differentiable Non-Convex Functions and General Variational Inequalities, Appl. Math. Comput. 199 (2008), 623–630. https://doi.org/10.1016/j.amc.2007.10.023.
- M.A. Noor, Extended General Variational Inequalities, Appl. Math. Lett. 22 (2009), 182–186. https://doi.org/10.1016/j.aml.2008.03.007.
- M. Noor, K. Noor, New Inertial Approximation Schemes for General Quasi Variational Inclusions, Filomat 36 (2022), 6071–6084. https://doi.org/10.2298/fil2218071n.
- M.A. Noor, K.I. Noor, Dynamical System Technique for Solving Quasi Variational Inequalities, U.P.B. Sci. Bull., Ser. A 84 (2022), 55–66.
- M. Noor, K. Noor, General Bivariational Inclusions and Iterative Methods, Int. J. Nonlinear Anal. Appl. 14 (2023), 309–324. https://doi.org/10.22075/ijnaa.2022.26239.3271.
- M.A. Noor, Fundamentals of Mixed Quasi Variational Inequalities, Int. J. Pure Appl. Math. 15 (2004), 137–258.
- M.A. Noor, K.I. Noor, Some New Iterative Schemes for Solving General Quasi Variational Inequalities, Le Matematiche, 79 (2024), 327–370.
- M.A. Noor, K.I. Noor, New Iterative Methods and Sensitivity Analysis for Inverse Quasi Variational Inequalities, Earthline J. Math. Sci. 15 (2025), 495–539. https://doi.org/10.34198/ejms.15425.495539.
- M.A. Noor, K.I. Noor, New Multi Step Methods for Solving General Mixed inverse Quasi Variational Inequalities, Int. J. Math. Stat. Oper. Res. 5 (2025), 183–196.
- M.A. Noor, K.I. Noor, General Mixed Bifuncfion Variational Inequalities, Can. Trans. Funct. Anal. 1 (2025), 250103.
- M.A. Noor, K.I. Noor, General Harmonic-Like Variational Inequalities, U.P.B. Sci. Bull., Ser. A 87 (2025), 49–58.
- M.A. Noor, K.I. Noor, M.T. Rassias, New Trends in General Variational Inequalities, Acta Appl. Math. 170 (2020), 981–1064. https://doi.org/10.1007/s10440-020-00366-2.
- M.A. Noor, K.I. Noor, M.Th. Rassias, General Variational Inequalities and Optimization, in: P.M. Pardalos, T.M. Rassias (Eds.), Geometry and Non-Convex Optimization, Springer Nature Switzerland, Cham, 2025: pp. 361–611. https://doi.org/10.1007/978-3-031-87057-6_14.
- M.A. Noor, K.I. Noor, T.M. Rassias, Some Aspects of Variational Inequalities, J. Comput. Appl. Math. 47 (1993), 285–312. https://doi.org/10.1016/0377-0427(93)90058-j.
- M.A. Noor, K.I. Noor, T.M. Rassias, Parametric General Quasi Variational Inequalities, Math. Commun. 15 (2010), 205–212.
- M.A. Noor, W. Oettli, On General Nonlinear Complementarity Problems and Quasi-Equilibria, Le Mathematiche, 49 (1994), 313–331.
- M. Patriksson, Nonlinear Programming and Variational Inequalities: A Unified Approach, Kluwer Academic Publishers, 1998.
- G. Stampacchia, Formes Bilineaires Coercitives sur les Ensembles Convexes, C.R. Acad. Sci. Paris 258 (1964), 4413–4416.
- S. Suantai, M.A. Noor, K. Kankam, P. Cholamjiak, Novel Forward–Backward Algorithms for Optimization and Applications to Compressive Sensing and Image Inpainting, Adv. Differ. Equ. 2021 (2021), 265. https://doi.org/10.1186/s13662-021-03422-9.
- T.Q. Trinh, P.T. Vuong, The Projection Algorithm for Inverse Quasi-Variational Inequalities with Applications to Traffic Assignment and Network Equilibrium Control Problems, Optimization 74 (2024), 1819–1842. https://doi.org/10.1080/02331934.2024.2329788.
- P.T. Vuong, X. He, D.V. Thong, Global Exponential Stability of a Neural Network for Inverse Variational Inequalities, J. Optim. Theory Appl. 190 (2021), 915–930. https://doi.org/10.1007/s10957-021-01915-x.
- Y. Xia, J. Wang, A Recurrent Neural Network for Solving Linear Projection Equations, Neural Netw. 13 (2000), 337–350. https://doi.org/10.1016/s0893-6080(00)00019-8.
- Y.S. Xia, J. Wang, On the Stability of Globally Projected Dynamical Systems, J. Optim. Theory Appl. 106 (2000), 129–150. https://doi.org/10.1023/a:1004611224835.
- A. Yadav, K. Jha, Parrondo's Paradox in the Noor Logisticmap, Int. J. Adv. Res. Eng. Technol. 7 (2016), 01–06.
- E.A. Youness, E-Convex Sets, E-Convex Functions, and E-Convex Programming, J. Optim. Theory Appl. 102 (1999), 439–450. https://doi.org/10.1023/a:1021792726715.
- Y. Zhang, G. Yu, Error Bounds for Inverse Mixed Quasi-Variational Inequality via Generalized Residual Gap Functions, Asia-Pacific J. Oper. Res. 39 (2021), 2150017. https://doi.org/10.1142/s0217595921500172.
- D.L. Zhu, P. Marcotte, An Extended Descent Framework for Variational Inequalities, J. Optim. Theory Appl. 80 (1994), 349–366. https://doi.org/10.1007/bf02192941.