Structural Properties of (l,r)- and (r, l)-Derivations in IUP-Algebras

Main Article Content

Nalinthip Phaeyai, Chanchanok Langsun, Aphinya Thongkham, Aiyared Iampan

Abstract

The notion of derivations in BCI-algebras was initially introduced by Jun and Xin in 2004 [18], providing a foundation for structural analysis in non-classical logics. In this paper, we extend the study of derivations to the framework of IUP-algebras X = (X, ·, 0) by introducing and examining two new types: (l,r)-derivations and (r, l)- derivations. These operators are defined via the binary operation ∧ given by x∧y = (y · x)· x for all x, y ∈ X, which plays a central role in the algebraic structure. We explore fundamental properties of these derivations, analyze their interaction with IUP-substructures, and establish several characterizations. Additionally, we define two special subsets—Kerd(X) (the kernel) and Fixd(X) (the fixed-point set)—associated with a derivation d, and investigate conditions under which they exhibit algebraic regularity. Our results enrich the theory of derivations in IUP-algebras and open new directions for the study of morphism-based operations in non-associative systems.

Article Details

References

  1. H.A.S. Abujabal, N.O. Al-Sehri, Some Results on Derivations of BCI-Algebras, J. Nat. Sci. Math. 46 (2006), 13–19.
  2. H.A.S. Abujabal, N.O. Al-Shehri, On Left Derivations of BCI-Algebras, Soochow J. Math. 33 (2007), 435–444.
  3. S. Afriastuti, S. Gemawati, Syamsudhuha, On $(f,g)$-Derivation in BCH-Algebra, SINTECHCOM: Sci. Technol. Commun. J. 1 (2021), 89–94.
  4. R.M. Al-Omary, On $(alpha ,beta)$-Derivations in d-Algebras, Boll. Unione Mat. Ital. 12 (2019), 549–556. https://doi.org/10.1007/s40574-018-00190-5.
  5. L.K. Ardakani, B. Davvaz, $f$-Derivations and $(f, g)$-Derivations of MV-Algebras, J. Algebr. Syst. 1 (2013), 11–31. https://doi.org/10.22044/jas.2013.167.
  6. T. Bantaojai, C. Suanoom, J. Phuto, A. Iampan, A Bi-Endomorphism Induces a New Type of Derivations on B-Algebras, Ital. J. Pure Appl. Math. 48 (2022), 336–348.
  7. C. Chanmanee, W. Nakkhase, R. Prasertpong, P. Julatha, A. Iampan, Notes on External Direct Products of Dual IUP-Algebras, South East Asian J. Math. Math. Sci. 19 (2023), 13–30. https://doi.org/10.56827/seajmms.2023.1903.2.
  8. C. Chanmanee, R. Prasertpong, P. Julatha, N. Lekkoksung, A. Iampan, On External Direct Products of IUP-Algebras, Int. J. Innov. Comput. Inf. Control 19 (2023), 775–787.
  9. G.T. Dejen, T. Gebrekidan, On Fuzzy Derivation of Ideals of BF‐Algebras, J. Math. 2022 (2022), 5470197. https://doi.org/10.1155/2022/5470197.
  10. T. Ganeshkumar, M. Chandramouleeswaran, Generalized Derivation on TM-Algebras, Int. J. Algebr. 7 (2013), 251–258. https://doi.org/10.12988/ija.2013.13025.
  11. S. Ghorbani, L. Torkzadeh, S. Motamed, $(odot, oplus)$-Derivations and $(ominus, odot)$-Derivations on $MV$-Algebras, Iran. J. Math. Sci. Inform. 8 (2013), 75–90. http://dx.doi.org/10.7508/ijmsi.2013.01.008.
  12. A. Iampan, Derivations of UP-Algebras by Means of UP-Endomorphisms, Algebr. Struct. Appl. 3 (2016), 1–20.
  13. A. Iampan, R. Alayakkaniamuthu, P. Gomathi Sundari, N. Rajesh, Derivations of Hilbert Algebras, Int. J. Anal. Appl. 21 (2023), 39. https://doi.org/10.28924/2291-8639-21-2023-39.
  14. A. Iampan, P. Julatha, P. Khamrot, D.A. Romano, Independent UP-Algebras, J. Math. Comput. Sci. 27 (2022), 65–76. https://doi.org/10.22436/jmcs.027.01.06.
  15. A. Iampan, N. Rajesh, C. Arivazhagi, R. Vennila, Structural Derivations in Hilbert Algebras by Endomorphisms, Int. J. Anal. Appl. 22 (2024), 213. https://doi.org/10.28924/2291-8639-22-2024-213.
  16. C. Inthachot, K. Moonnon, M. Visutho, P. Julatha, A. Iampan, Bipolar Fuzzy Sets in IUP-Algebras: Concepts and Analysis, Trans. Fuzzy Sets Syst. 5 (2026), 39–58. https://doi.org/10.71602/TFSS.2026.1194460.
  17. M.A. Javed, M. Aslam, A Note on $f$-Derivations of BCI-Algebras, Commun. Korean Math. Soc. 24 (2009), 321–331. https://doi.org/10.4134/ckms.2009.24.3.321.
  18. Y.B. Jun, X.L. Xin, On Derivations of BCI-Algebras, Inf. Sci. 159 (2004), 167–176. https://doi.org/10.1016/j.ins.2003.03.001.
  19. N. Kandaraj, P. Ganesan, On Generalized $(g, h)$-Derivations of BH-Algebras, J. Math. Comput. Sci. 11 (2021), 8400–8414. https://doi.org/10.28919/jmcs/6732.
  20. M. Khan, D. Khan, K. Mir Aalm, Characterization of Associative PU-Algebras by the Notion of Derivations, Am. J. Math. Comput. Model. 6 (2021), 14–18. https://doi.org/10.11648/j.ajmcm.20210601.13.
  21. K. Kuntama, P. Krongchai, P. Prasertpong, P. Julatha, A. Iampan, Fuzzy Set Theory Applied to IUP-Algebras, J. Math. Comput. Sci. 34 (2024), 128–143. https://doi.org/10.22436/jmcs.034.02.03.
  22. S.M. Lee, K.H. Kim, A Note on $f$-Derivations of BCC-Algebras, Pure Math. Sci. 1 (2012), 87–93.
  23. P. Muangkarn, C. Suanoom, A. Iampan, New Derivations of $d$-Algebras Based on Endomorphisms, Int. J. Math. Comput. Sci. 17 (2022), 1025–1032.
  24. G. Muhiuddin, On $(sigma,tau)$-Derivations of BCI-Algebras, Southeast Asian Bull. Math. 43 (2019), 715–723.
  25. G. Muhiuddin, A.M. Al-Roqi, On $(alpha,beta)$‐Derivations in BCI‐Algebras, Discret. Dyn. Nat. Soc. 2012 (2012), 403209. https://doi.org/10.1155/2012/403209.
  26. G. Muhiuddin, A.M. Al-roqi, On $t$‐Derivations of BCI‐Algebras, Abstr. Appl. Anal. 2012 (2012), 872784. https://doi.org/10.1155/2012/872784.
  27. G. Muhiuddin, A.M. Al-Roqi, On Generalized Left Derivations in BCI-Algebras, Appl. Math. Inf. Sci. 8 (2014), 1153–1158. https://doi.org/10.12785/amis/080326.
  28. G. Muhiuddin, A.M. Al-roqi, On Left $(theta,phi)$-Derivations in BCI-Algebras, J. Egypt. Math. Soc. 22 (2014), 157–161. https://doi.org/10.1016/j.joems.2013.07.013.
  29. F. Nisar, On F-Derivations of BCI-Algebras, J. Prime Res. Math. 5 (2009), 176–191.
  30. K. Sawika, R. Intasan, A. Kaewwasri, A. Iampan, Derivations of UP-Algebras, Korean J. Math. 24 (2016), 345–367. https://doi.org/10.11568/kjm.2016.24.3.345.
  31. K. So, S. Ahn, Complicated BCC-Algebras and Its Derivation, Honam Math. J. 34 (2012), 263–271. https://doi.org/10.5831/hmj.2012.34.2.263.
  32. K. Suayngam, P. Julatha, W. Nakkhasen, A. Iampan, Structural Insights into IUP-Algebras via Intuitionistic Neutrosophic Set Theory, Eur. J. Pure Appl. Math. 18 (2025), 5857. https://doi.org/10.29020/nybg.ejpam.v18i2.5857.
  33. K. Suayngam, P. Julatha, W. Nakkhasen, R. Prasertpong, A. Iampan, Pythagorean Neutrosophic IUP-Algebras: Theoretical Foundations and Extensions, Eur. J. Pure Appl. Math. 18 (2025), 6171. https://doi.org/10.29020/nybg.ejpam.v18i3.6171.
  34. A. Aiyared, P. Julatha, R. Prasertpong, A. Iampan, Neutrosophic Sets in IUP-Algebras: A New Exploration, Int. J. Neutrosophic Sci. 25 (2025), 540–560. https://doi.org/10.54216/ijns.250343.
  35. K. Suayngam, R. Prasertpong, N. Lekkoksung, P. Julatha, A. Iampan, Fermatean Fuzzy Set Theory Applied to IUP-Algebras, Eur. J. Pure Appl. Math. 17 (2024), 3022–3042. https://doi.org/10.2139/ssrn.4898342.
  36. K. Suayngam, R. Prasertpong, W. Nakkhasen, P. Julatha, A. Iampan, Pythagorean Fuzzy Sets: A New Perspective on IUP-Algebras, Int. J. Innov. Comput. Inf. Control 21 (2025), 339–357.
  37. K. Suayngam, T. Suwanklang, P. Julatha, R. Prasertpong, A. Iampan, New Results on Intuitionistic Fuzzy Sets in IUP-Algebras, Int. J. Innov. Comput. Inf. Control 20 (2024), 1125–1141.
  38. J. Wang, P. He, Y. She, Some Results on Derivations of MV-Algebras, Appl. Math. J. Chin. Univ. 38 (2023), 126–143. https://doi.org/10.1007/s11766-023-4054-8.
  39. J. Thomys, $f$-Derivation of weak BCC-Algebras, Int. J. Algebra 5 (2011), 325–334.
  40. H. Yazarli, A Note on Derivations in MV-Algebras, Miskolc Math. Notes 14 (2013), 345–354. https://doi.org/10.18514/mmn.2013.420.