A Study on ϕ-Ricci Symmetric LP-Sasakian Manifolds
Main Article Content
Abstract
The present paper is devoted to an in-depth study of ϕ-Ricci symmetric LP-Sasakian manifolds, which represent a significant class of Lorentzian para-Sasakian manifolds with rich geometric structures and distinctive curvature characteristics. The notion of ϕ-Ricci symmetry imposes specific constraints on the Ricci tensor in relation to the structure tensor ϕ, offering deeper insight into the curvature behavior and intrinsic geometry of these manifolds. This investigation aims to explore various fundamental properties of ϕ-Ricci symmetric LP-Sasakian manifolds, examining how these symmetry conditions influence their global and local geometric features. To support and illustrate the theoretical analysis, we construct an explicit example of a three-dimensional ϕ-Ricci symmetric LP-Sasakian manifold. Moreover, we study W1-flat LP-Sasakian manifold.
Article Details
References
- K. Matsumoto, On Lorentzian Paracontact Manifolds, Bull. Yamagata Univ. Nat. Sci. 12 (1989), 151–156.
- I. Mihai, R. Rosca, On Lorentzian P-Sasakian Manifolds, in: Classical Analysis, World Scientific, Singapore, pp. 155–169, 1992.
- K. Matsumoto, I. Mihai, On a Certain Transformation in a Lorentzian Para Sasakian Manifold, Tensor (N.S.) 47 (1988), 189–197.
- U.C. De, K. Matsumoto, A.A. Shaikh, On Lorentzian Para-Sasakian Manifolds, Rend. Semin. Mat. Messina Ser. II Suppl. 3 (1999), 149–158.
- T.Q. Binh, L. Tamassy, U.C. De, M. Tarafdar, Some Remarks on Almost Kenmotsu Manifolds, Math. Pannon. 13 (2002), 31–39.
- U.C. De, G. Pathak, On 3-Dimensional Kenmotsu Manifolds, Indian J. Pure Appl. Math. 35 (2004), 159–165.
- U.C. De, A. Sarkar, On $phi$-Ricci Symmetric Sasakian Manifolds, Proc. Jangjeon Math. Soc. 11 (2008), 47–52.
- A. Haseeb, R. Prasad, On a Lorentzian Para-Sasakian Manifold with Respect to the Quarter-Symmetric Metric Connection, Novi Sad J. Math. 46 (2016), 103–116. https://doi.org/10.30755/nsjom.04279.
- C. "{O}zg"{u}r, M. Ahmad, A. Haseeb, CR-Submanifolds of an LP-Sasakian Manifold with a Semi-Symmetric Metric Connection, Hacet. J. Math. Stat. 39 (2010), 489–496.
- T. Takahashi, Sasakian $phi$-Symmetric Spaces, Tôhoku Math. J. 29 (1977), 91–113.
- M.A. Qayyoom, M. Ahmad, Hypersurfaces Immersed in a Golden Riemannian Manifold, Afr. Mat. 33 (2022), 3. https://doi.org/10.1007/s13370-021-00954-x.
- M.A. Qayyoom, R. Bossly, M. Ahmad, On Cr-Lightlike Submanifolds in a Golden Semi-Riemannian Manifold, AIMS Math. 9 (2024), 13043–13057. https://doi.org/10.3934/math.2024636.
- S.S. Shukla, M.K. Shukla, On $phi$-Ricci Symmetric Kenmotsu Manifolds, Novi Sad J. Math. 39 (2009), 89–95.
- M.N.I. Khan, F. Mofarreh, A. Haseeb, M. Saxena, Certain Results on the Lifts from an Lp-Sasakian Manifold to Its Tangent Bundle Associated with a Quarter-Symmetric Metric Connection, Symmetry 15 (2023), 1553. https://doi.org/10.3390/sym15081553.
- R. Kumar, L. Colney, S. Shenawy, N. Bin Turki, Tangent Bundles Endowed with Quarter-Symmetric Non-Metric Connection (QSNMC) in a Lorentzian Para-Sasakian Manifold, Mathematics 11 (2023), 4163. https://doi.org/10.3390/math11194163.
- A. Haseeb, S.K. Chaubey, Lorentzian Para-Sasakian Manifolds and *-Ricci Solitons, Kragujev. J. Math. 48 (2024), 167–179. https://doi.org/10.46793/kgjmat2402.167h.
- C. "{O}zg"{u}r, $phi$-Conformally Flat Lorentzian Para Sasakian Manifolds, Rad. Mat. 12 (2003), 99–106.
- C. "{O}zg"{u}r, C. Murathan, On Invariant Submanifolds of Lorentzian Para-Sasakian Manifolds, Arab. J. Sci. Eng. 34 (2009), 177–185.
- U.C. De, C. Dey, Almost Ricci Soliton and Gradient Almost Ricci Soliton on 3-Dimensional Lp-Sasakian Manifold, Bull. Transilv. Univ. Braşov Ser. III 11 (2018), 99–108.
- R. Prasad, A. Haseeb, A. Verma, V.S. Yadav, A Study of $varphi$-Ricci Symmetric LP-Kenmotsu Manifolds, Int. J. Maps Math. 7 (2024), 33–44.