Optimal Difference Formulas for the Approximate Solution of the Second-Order Cauchy Problem

Main Article Content

Kh.M. Shadimetov, A.K. Boltaev, S.Q. Shonazarov

Abstract

It is well established that the Cauchy problem for second-order differential equations serves as a canonical model of gradient conservative or weakly damped dynamical systems, widely applied in mechanics, astronomy, molecular and structural dynamics, acoustics, and radio-frequency systems. Exact solutions are usually attainable only for linear or simple functions, whereas in most other cases approximate solution methods are employed. In this work, we make use of the Sobolev method to develop an optimal explicit difference formula of the Störmer type for the Cauchy problem of second-order differential equations.

Article Details

References

  1. K. Sobczyk, Stochastic Differential Equations: With Applications to Physics and Engineering, Springer, (2001).
  2. S. Zhu, An Exact and Explicit Solution for the Valuation of American Put Options, Quant. Financ. 6 (2006), 229–242. https://doi.org/10.1080/14697680600699811. pagebreak.
  3. R.W. Hamming, Numerical Methods for Scientists and Engineers, Dover Publications, (2012).
  4. S. Chapra, S.C. Chapra, R.P. Canale, Numerical Methods for Engineers, McGraw-Hill College, (2010).
  5. A. Brissaud, U. Frisch, Solving Linear Stochastic Differential Equations, J. Math. Phys. 15 (1974), 524–534. https://doi.org/10.1063/1.1666678.
  6. B. Denis, An Overview of Numerical and Analytical Methods for Solving Ordinary Differential Equations, arXiv:2012.07558 (2020). https://doi.org/10.48550/ARXIV.2012.07558.
  7. J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations, Wiley, (1987).
  8. S.N. Jator, J. Li, Boundary Value Methods via a Multistep Method With Variable Coefficients for Second Order Initial and Boundary Value Problems, Int. J. Pure Appl. Math. 50 (2009), 403–420.
  9. M.J. Hossain, M.S. Alam, M.B. Hossain, A Study on Numerical Solutions of Second Order Initial Value Problems (IVP) for Ordinary Differential Equations with Fourth Order and Butcher's Fifth Order Runge-Kutta Methods, Am. J. Comput. Appl. Math. 7 (2017), 129–137.
  10. K. Hussain, F. Ismail, N. Senu, Solving Directly Special Fourth-Order Ordinary Differential Equations Using Runge–Kutta Type Method, J. Comput. Appl. Math. 306 (2016), 179–199. https://doi.org/10.1016/j.cam.2016.04.002.
  11. M. Kamruzzaman, M.C. Nath, A Comparative Study on Numerical Solution of Initial Value Problem by Using Euler's Method, Modified Euler's Method and Runge-Kutta Method, J. Comput. Math. Sci. 9 (2018), 493–500. https://doi.org/10.29055/jcms/784.
  12. A. Cromer, Stable Solutions Using the Euler Approximation, Am. J. Phys. 49 (1981), 455–459. https://doi.org/10.1119/1.12478.
  13. H. Ramos, S.N. Jator, M.I. Modebei, Efficient K-Step Linear Block Methods to Solve Second Order Initial Value Problems Directly, Mathematics 8 (2020), 1752. https://doi.org/10.3390/math8101752.
  14. H. Ramos, P. Popescu, How Many K-Step Linear Block Methods Exist and Which of Them Is the Most Efficient and Simplest One?, Appl. Math. Comput. 316 (2018), 296–309. https://doi.org/10.1016/j.amc.2017.08.036.
  15. H. Ramos, G. Singh, V. Kanwar, S. Bhatia, An Efficient Variable Step-Size Rational Falkner-Type Method for Solving the Special Second-Order IVP, Appl. Math. Comput. 291 (2016), 39–51. https://doi.org/10.1016/j.amc.2016.06.033.
  16. H. Ramos, M. Rufai, Third Derivative Modification of K-Step Block Falkner Methods for the Numerical Solution of Second Order Initial-Value Problems, Appl. Math. Comput. 333 (2018), 231–245. https://doi.org/10.1016/j.amc.2018.03.098.
  17. H. Ramos, M. Rufai, A Third-Derivative Two-Step Block Falkner-Type Method for Solving General Second-Order Boundary-Value Systems, Math. Comput. Simul. 165 (2019), 139–155. https://doi.org/10.1016/j.matcom.2019.03.003.
  18. G.S. null, H. Ramos, An Optimized Two-Step Hybrid Block Method Formulated in Variable Step-Size Mode for Integrating $y''=f(x,y,y')$ Numerically, Numer. Math.: Theory Methods Appl. 12 (2019), 640–660. https://doi.org/10.4208/nmtma.oa-2018-0036.
  19. W.E. Milne, Numerical Solution of Differential Equations, Dover Publications, 1970.
  20. L. Brugnano, D. Trigiante, Solving Differential Equations by Multistep Initial and Boundary Value Methods, CRC Press, (1998).
  21. R. Allogmany, F. Ismail, Direct Solution of $u''=f(t,u,u')$ Using Three Point Block Method of Order Eight with Applications, J. King Saud Univ. - Sci. 33 (2021), 101337. https://doi.org/10.1016/j.jksus.2020.101337.
  22. J. Wu, H. Tian, Functionally-Fitted Block Methods for Second Order Ordinary Differential Equations, Comput. Phys. Commun. 197 (2015), 96–108. https://doi.org/10.1016/j.cpc.2015.08.010.
  23. P.N. Vabishchevich, Numerical Solution of the Cauchy Problem for a Second-Order Integro-Differential Equation, Differ. Equ. 58 (2022), 899–907. https://doi.org/10.1134/s0012266122070047.
  24. K.M. Shadimetov, S. Shonazarov, On an Implicit Optimal Difference Formula, Uzb. Math. J. 68 (2025), 128–136. https://doi.org/10.29229/uzmj.2024-4-15.
  25. K. Shadimetov, R. Mirzakabilov, On a Construction Method of Optimal Difference Formulas, AIP Conf. Proc. 2365 (2021), 020032. https://doi.org/10.1063/5.0056964.
  26. K. Shadimetov, R.N. Mirzakabilov, Optimal Difference Formulas in the Sobolev Space, J. Math. Sci. 278 (2024), 712–721. https://doi.org/10.1007/s10958-024-06951-2.
  27. K.M. Shadimetov, R.S. Karimov, Optimization of Adams-Type Difference Formulas in Hilbert Space $ W_2^{(2,1)} (0,1)$, J. Comput. Anal. Appl. 32 (2024), 300–319.
  28. K.M. Shadimetov, R.S. Karimov, Optimal Coefficients of an Implicit Difference Formula in the Hilbert Space, AIP Conf. Proc. 3045 (2024), 060030. https://doi.org/10.1063/5.0200065.
  29. K.M. Shadimetov, A. Hayotov, R.S. Karimov, Optimization of Explicit Difference Methods in the Hilbert Space $W_2^{(2,1)}$, AIP Conf. Proc. 2997 (2023), 020054. https://doi.org/10.1063/5.0144805.
  30. K.M. Shadimetov, A. Boltaev, R. Parovik, Optimization of the Approximate Integration Formula Using the Discrete Analogue of a High-Order Differential Operator, Mathematics 11 (2023), 3114. https://doi.org/10.3390/math11143114.
  31. A.K. Boltaev, Existence and Uniqueness of the Solution for a Linear System of Optimal Coeffcients, Uzbek Math. J. 67 (2023), 31–38.
  32. K.M. Shadimetov, A.K. Boltaev, An Exponential-Trigonometric Optimal Interpolation Formula, Lobachevskii J. Math. 44 (2023), 4379–4392. https://doi.org/10.1134/s1995080223100359.
  33. A.A. Samarsky, Introduction to Numerical Methods, Nauka, 1987.
  34. I. Babuška, E. Vitasek, M. Prager, Numerical Processes for Solution of Differential Equations, Mir, 1969.
  35. S.L. Sobolev, Introduction to the Theory of Cubature Formulas, Nauka, 1974.
  36. K. Atkinson, W. Han, Theoretical Numerical Analysis, Springer, New York, 2005. https://doi.org/10.1007/978-0-387-28769-0.
  37. K.M. Shadimetov, S.K. Shonazarov, Difference Formulas for an Approximate Solution of a Second-Order Differential Equation, Probl. Comput. Appl. Math. 2/1 (2023), 117–126.
  38. G. Dahlquist, Convergence and Stability in the Numerical Integration of Ordinary Differential Equations, Math. Scand. 4 (1956), 33–53. https://www.jstor.org/stable/24490010.
  39. G. Dahlquist, Stability and Error Bounds in the Numerical Integration of Ordinary Differential Equations, Thesis, University of Stockholm, 1958.
  40. K.M. Shadimetov, F.A. Nuraliev, Optimization of Quadrature Formulas with Derivatives, Probl. Comput. Appl. Math. 4 (2017), 61–70.