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Abstract. It is well established that the Cauchy problem for second-order differential equations serves as a canonical

model of gradient conservative or weakly damped dynamical systems, widely applied in mechanics, astronomy,

molecular and structural dynamics, acoustics, and radio-frequency systems. Exact solutions are usually attainable only

for linear or simple functions, whereas in most other cases approximate solution methods are employed. In this work,

we make use of the Sobolev method to develop an optimal explicit difference formula of the Störmer type for the Cauchy

problem of second-order differential equations.

1. Introduction

Ordinary differential equations are widely used in various fields of science, engineering, and

mathematics for modeling physical, biological, and dynamical systems [1–5].

The analytical solution of ordinary differential equations presents significant difficulties or

becomes impossible for complex differential equations [6–8]. Therefore, numerical methods play

an important role in approximating the solutions of such equations.

Among the types of problems for ordinary differential equations, the Cauchy problem is of par-

ticular importance, where the values of the unknown function and its derivatives are specified at

the initial point. Many researchers have developed various methods for the approximate solution

of ordinary differential equations with initial conditions. In [9], spectral schemes were developed
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using Legendre polynomials as basis functions. Moreover, spectral methods are based on rep-

resenting the solution as a series of basis functions, such as Legendre polynomials, Chebyshev

polynomials, and Fourier series ( [6], [10], [11]).

In [12], the Euler method and the fourth-order Runge–Kutta method are applied to the numerical

solution of the Cauchy problem.

In [13], efficient multi-step block methods for the direct solution of general second-order Cauchy

problems are considered. This work is an extension of [14].

It should be noted that the literature contains a wide variety of methods for the direct approx-

imation of the solution to the Cauchy problem [15–18]. It is known that the first appearance of

block methods is associated with [19]. A considerable number of works have been published on

this topic. An interesting monograph in this field was written by Brugnano and Trigiante [20].

In [21], an implicit three-point block method is proposed for the direct solution of second-order

ordinary differential equations.

In [22], new types of functionally fitted block methods are proposed for second-order Cauchy

problems.

In [23], a transformation of an integro-differential equation into a system of weakly coupled

local evolution equations is presented.

In [24], an implicit optimal difference formula in the Sobolev space L(3)
2 (0, 1) was constructed

for the approximate solution of the Cauchy problem for a second-order differential equation, and

an error bound for the constructed formula was derived.

For the approximate solution of first-order Cauchy problems, optimal difference formulas in

Hilbert spaces were constructed using the Sobolev method in [25–29]. By using this method, it

is possible to construct not only optimal difference formulas but also optimal quadrature and

interpolation formulas (for example, [30–32]).

In this work, we consider the approximate solution of the following second-order ordinary

differential equation

y′′ = f (x, y), x ∈ [0, 1], (1.1)

subject to the initial conditions

y(0) = y0, y′(0) = u0. (1.2)

Let the differential equation in the form (1.1) with the initial conditions (1.2) have a unique solution

on the segment x ∈ [0, 1]. It is required to find the approximate solution of this problem on the

interval [0, 1]. Let us divide this interval into N parts of length h = 1
N , and denote the solution of

problem (1.1)–(1.2) at the points xn = nh, n = 0, 1, ... , N by y(xn), while its approximate values

will be denoted by ỹn.

2. Problem Statement

To obtain an approximate solution of problem (1.1)–(1.2), we consider the following general

difference formula [33, 34]:
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k∑
β=0

C[β]ϕ[β] − h2
k∑

β=0

C(‖)[β]ϕ′′[β] � 0. (2.1)

Here, C[β] and C(‖)[β] are the unknown coefficients of the difference formula, h = 1
N , [β] = hβ, (β =

0, 1, ... , k), and ϕ(x) ∈ L(4)
2 (0, 1). L(4)

2 (0, 1) is a Sobolev space, which is defined as follows:

L(4)
2 (0, 1) =

{
ϕ : [0, 1]→ R

∣∣∣ ϕ(3)(x) is absolutely continuous on [0, 1], ϕ(4)(x) ∈ L2(0, 1)
}
.

In the space L(4)
2 (0, 1), the inner product of any two functions ϕ and ψ is defined as follows [35]:

〈
ψ,ϕ

〉
=

1∫
0

ϕ(4) (x)ψ(4) (x)dx. (2.2)

Similarly, in the space L(4)
2 (0, 1) , the norm of a function corresponding to the inner product (2.2)

is defined as follows: ∥∥∥∥ϕ ∣∣∣∣L(4)
2 (0, 1)

∥∥∥∥ =


1∫
0

(
ϕ(4)(x)

)2
dx


1
2

(2.3)

In the considered formula (2.1), the difference between the given sums

(`,ϕ) =
k∑

β=0

C[β]ϕ[β] − h2
k∑

β=0

C(‖)[β]ϕ′′[β]

=

∫
∞

−∞

 k∑
β=0

C[β]δ(x− hβ) − h2
k∑

β=0

C(‖)[β]δ′′(x− hβ)

ϕ(x) dx

(2.4)

is called the error of the difference formula (2.1). For the obtained expression (2.4), the following

error functional belonging to the dual space L(4)∗
2 (0, 1) corresponds, and it has the form

`(x) =
k∑

β=0

C[β]δ(x− hβ) − h2
k∑

β=0

C(‖)[β]δ′′(x− hβ), (2.5)

where L(4)∗
2 (0, 1) is the dual space of L(4)

2 (0, 1), and δ(x) is the Dirac delta function. Based on the

Cauchy–Schwarz inequality, we obtain the following estimate:∣∣∣(`, ϕ)∣∣∣ ≤ ‖`‖
L(4)∗

2
·

∥∥∥ϕ∥∥∥
L(4)

2
. (2.6)

Thus, the error (2.4) of the difference formula (2.1) is bounded from above by the norm of the error

functional (2.5) taken from the dual space L(4)∗
2 (0, 1) and the norm of the functions ϕ taken from

the space L(4)
2 (0, 1). For the error functional `, the following conditions hold:

(`, xα) = 0, α = 0, 1, 2, 3. (2.7)

From the condition (2.7) above, we obtain the following orthogonality conditions for the coeffi-

cients:
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k∑
β=0

C [β] = 0, (2.8)

k∑
β=0

C [β] · (hβ) = 0, (2.9)

k∑
β=0

C [β] · (hβ)2
− 2h2

k∑
β=0

C(‖) [β] = 0, (2.10)

k∑
β=0

C [β] · (hβ)3
− 6h2

k∑
β=0

C(‖) [β] (hβ) = 0. (2.11)

Thus, the norm of the error functional depends on the coefficients C [β] va C(‖) [β], as well as

on the grid points hβ (β = 0, 1, ..., N). In the optimal difference formula under consideration, the

norm of the error functional is minimized with respect to the coefficients C(‖) [β]. The coefficients

C [β] are chosen, in the sense of Dahlquist, to be stable so that they satisfy condition (2.8). The

norm of the functional is a number. From this, the following problems arise.

Problem 2.1. To find the expression of the square of the norm of the error functional of the difference formula
(2.1) in the space L(4)∗

2 (0, 1).

It is clear that the norm of the error functional ` depends on the coefficients C(‖)[β] and the nodes

[β]. The problem of minimization of the quantity ‖`‖ by coefficients C(‖)[β] is a linear problem and

by nodes [β] is, in general, a complicated and non-linear problem. We consider the problem of

minimization of the quantity ‖`‖ by coefficients C(‖)[β] when the nodes [β] are fixed.

If there are coefficients
◦

C(‖)[β] that minimize the norm of the error functional, that is,∥∥∥∥∥ ◦`|L(4)∗
2 (0, 1)

∥∥∥∥∥ = inf
C(||)[β]

∥∥∥∥`|L(4)∗
2 (0, 1)

∥∥∥∥ (2.12)

then they are called the optimal coefficients and the corresponding difference formula

k∑
β=0

C [β]ϕ [β] − h2
k∑

β=0

◦

C(‖) [β]ϕ′′ [β] � 0

is called the optimal difference formula in the space L(4)
2 (0, 1).

Thus, in order to construct the optimal difference formula in the space L(4)
2 (0, 1) we need to

solve the next problem.

Problem 2.2. Find the coefficients
◦

C(||) [β] that give the quantity (2.12) when the nodes [β] are fixed.

3. The upper bound of the error of the difference formula

To calculate the norm of the error functional `, we use the concept of the extremal function

introduced by Sergey Sobolev [35], that is,
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∣∣∣(`, ψ`)∣∣∣ = ∥∥∥∥` ∣∣∣∣L(4)∗
2 (0, 1)

∥∥∥∥ · ∥∥∥∥ψ` ∣∣∣∣L(4)
2 (0, 1)

∥∥∥∥ ,

where ψ` is the extremal function.

Since the space L(4)
2 (0, 1) is a Hilbert space, by the Riesz theorem on the general form of a linear

continuous functional (see [36]), there exists a unique function ψ` in this space that satisfies the

following equalities:

(`, ϕ) =
〈
ψ`,ϕ

〉
L(4)

2 (0,1)
,

and

‖`‖ =
∥∥∥ψ`∥∥∥ ,

where
〈
ψ`,ϕ

〉
L(4)

2 (0,1)
denotes the inner product of the functions ψ` and ϕ in the space L(4)

2 (0, 1)

For the extremal function of the error functional ` and for the square of its norm, the following

theorems hold:

Theorem 3.1. In the Sobolev space L(4)
2 (0, 1), for the extremal function of the error functional ` of the

difference formula (2.1), the following expression holds:

ψ`(x) = `(x) ∗G4(x) + P3(x),

where G4(x) =
|x|7

2·7! and it satisfies the equality d8G4(x)
dx8 = δ(x), and P3(x) is a cubic polynomial.

Theorem 3.2. For the square of the norm of the error functional corresponding to the difference formula
(2.1), the following equality holds:∥∥∥∥` ∣∣∣∣ L(4)∗

2 (0, 1)
∥∥∥∥2

=
k∑

β=0

k∑
γ=0

C[β]C[γ]G3(hβ− hγ)

− 2h2
k∑

β=0

k∑
γ=0

C[β]C(‖)[γ]G′′4 (hβ− hγ) + h4
k∑

β=0

k∑
γ=0

C(‖)[β]C(‖)[γ]GIV
4 (hβ− hγ).

Here G4(hβ− hγ) = |hβ−hγ|
7

2·7! , G′′4 (hβ− hγ) = |hβ−hγ|
5

2·5! , GIV
4 (hβ− hγ) = |hβ−hγ|

3

2·3! .

The proof of this theorem follows from the proofs of Theorems 3.1 and 3.2 in [37] for the case

m = 4.

Thus, Problem 2.1 is solved.

4. Finding the conditional minimum for the norm of the error functional

Now we proceed to solve Problem 2.2. For this, we minimize the square of the norm of the error

functional ` of the difference formula (2.1) with respect to the coefficients C(‖)[β]. That is, we use

the method of Lagrange multipliers, which is applied in finding the extremum of a multivariable

function.
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Thus, we construct the following Lagrangian function:

Λ
(
C(‖), d

)
= ‖`‖2 − 2

3∑
α=0

dα (`, xα).

From the function Λ
(
C(‖), d

)
, we set the partial derivatives with respect to C(‖)[β] and dα equal to

zero:
∂Λ

∂C(‖) [β]
= 0 , β = 0, 1, ..., k,

∂Λ
∂dα

= 0 , α = 0, 1, 2, 3.

As a result, we obtain the following system of equations:

h2
k∑

γ=0

◦

C(‖) [γ]G(IV)
4 (hβ− hγ) + d0 + d1 · [β] =

k∑
γ=0

C [γ]G′′4 (hβ− hγ), β = 0, 1, ..., k, (4.1)

k∑
γ=0

◦

C(‖) [γ] = 1, (4.2)

k∑
γ=0

◦

C(‖) [γ] · γ = k− 1. (4.3)

The solution of the system of linear equations (4.1)–(4.3) with respect to the unknowns
◦

C(‖)[β], d0,

and d1 represents the critical points of the function Λ
(
C(‖), d

)
. The solutions obtained, in accordance

with conditions (2.8)–(2.11), provide the conditional minimum of the norm of the error functional.

It is known that, in the sense of Dahlquist [38, 39], the stability of the difference formula (2.1)

depends only on the coefficients C [β] , β = 0, 1, ..., k. Thus, in this work we choose the coefficients

C [β] so that they are stable in the sense of Dahlquist and satisfy the equality
k∑

γ=0
C [γ] = 0, as

follows:

C[γ] =



0, for γ = 0, . . . , k− 3,

1, for γ = k− 2,

−2, for γ = k− 1,

1, for γ = k.

(4.4)

In the system of equations (4.1)–(4.3), we set
◦

C(‖) [k] = 0 and consider constructing an explicit

(Störmer type) difference formula. In that case, the system (4.1)–(4.3) takes the following form:

h2
k−1∑
γ=0

◦

C(‖) [γ]G(IV)
4 (hβ− hγ) + d0 + d1 · [β] =

k∑
γ=0

C [γ]G′′4 (hβ− hγ), β = 0, 1, ..., k− 1, (4.5)

k−1∑
γ=0

◦

C(‖)[γ] = 1, (4.6)
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k−1∑
γ=0

◦

C(‖)[γ] · γ = k− 1, (4.7)

where
◦

C(‖)[γ], γ = 0, k− 1, are the unknown coefficients, and d0, d1 are unknown constants.

Now, by solving the system of equations (4.5)–(4.7) using Sobolev’s method, we obtain the

optimal explicit coefficients.

5. Finding the coefficients of the optimal explicit difference formula

Theorem 5.1. In the Sobolev space L(4)
2 (0, 1), the coefficients of the unique explicit optimal difference

formula of Störmer type corresponding to the difference formula (2.1) are determined as follows:

◦

C(‖)[0] =
3 (1 + q) qk−1

10 (1− q2k−2) (1− q)
,

◦

C(‖)[β] = −
3qk−1

10 (1− q2k−2)

(
qβ − q−β

)
, β = 1, k− 3,

◦

C(‖)[k− 2] =
1
20

+
3
(
q− q2k−3

)
10 (1− q2k−2)

,

◦

C(‖)[k− 1] =
19
20
−

3
(
q + q2k−2

)
10 (1− q) (1− q2k−2)

.

Here, q =
√

3− 2 is the root of the quadratic Euler polynomial.

Proof. We denote the right-hand side of equation (4.5) by f4(hβ):

f4 [β] =
k∑

γ=0

C [γ]G′′4 (hβ− hγ), β = 0, k− 1. (5.1)

Now, we find the explicit form of expression (5.1) in the form of a piecewise function.

Using G′′4 (hβ− hγ) = |hβ−hγ|
5

2·5! and expression (4.4), we can rewrite equality (5.1) in the following

form:

f4 [β] =
k∑

γ=0

C [γ]

∣∣∣hβ− hγ
∣∣∣5

2 · 5!
=

h5

2 · 5!

[∣∣∣β− k + 2
∣∣∣5 − 2

∣∣∣β− k + 1
∣∣∣5 + ∣∣∣β− k

∣∣∣5] . (5.2)

In (5.2), we expand the absolute value for β ∈ 0, k− 2:

f4[β] = −
h5

2 · 5!

[
(β− k + 2)5

− 2(β− k + 1)5 + (β− k)5
]

= −
h5

4!

[
2β3
− 6β2(k− 1) + β

(
6(k− 1)2 + 1

)
− (k− 1)

(
2(k− 1)2 + 1

)]
.

For β = k− 1 we obtain:

f4 [β] =
h5

2 · 5!

[
|k− 1− k + 2|5 − 2|k− 1− k + 1|5 + |k− 1− k|5

]
=

h5

2 · 5!
· 2 =

h5

5!
.
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Thus,

f4[β] =


−

h5

4!

[
2β3
− 6β2(k− 1) + β

(
6(k− 1)2 + 1

)
− (k− 1)

(
2(k− 1)2 + 1

)]
, β = 0, k− 2,

h5

5!
, β = k− 1.

(5.3)

Now we can write equation (4.5) in the following form:

h2
k−1∑
γ=0

◦

C(‖) [γ]GIV
4 (hβ− hγ) + d0 + d1 · [β] = f4 [β] . (5.4)

Denoting the right-hand side of equation (5.4) by U4[β], we can also write it in the following form:

U4 [β] = V4 [β] + d0 + d1 · [β] . (5.5)

In equation (5.5), V4[β] is given by

V4 [β] = h2
k−1∑
γ=0

◦

C(‖) [γ]GIV
4 (hβ− hγ). (5.6)

Since in equation (5.6) we have GIV
4 (hβ− hγ) =

|hβ− hγ|3

2 · 3!
, it follows that

V4 [β] = h2
k−1∑
γ=0

◦

C(‖) [γ]

∣∣∣hβ− hγ
∣∣∣3

2 · 3!
=

h5

2 · 3!

k−1∑
γ=0

◦

C(‖) [γ]
∣∣∣β− γ∣∣∣3.

For β < 0 we have

V4 [β] = −
h5

2 · 3!

k−1∑
γ=0

◦

C(‖) [γ](β− γ)3 = −
h5

2 · 3!

β3
− 3β2(k− 1) + 3β

k−1∑
γ=0

◦

C(‖) [γ] · γ2
−

k−1∑
γ=0

◦

C(‖) [γ] · γ3

 ,

and for β > k− 1 we have

V4 [β] =
h5

2 · 3!

β3
− 3β2(k− 1) + 3β

k−1∑
γ=0

◦

C(‖) [γ] · γ2
−

k−1∑
γ=0

◦

C(‖) [γ] · γ3

 .

We can rewrite U4[β] as follows:

U4[β] =



−
h5

2 · 3!

[
β3
− 3β2(k− 1) + d−0 + d−1 [β]

]
, β < 0,

f4[β], β = 0, 1, . . . , k− 1, .

h5

2 · 3!

[
β3
− 3β2(k− 1) + d+0 + d+1 [β]

]
, β > k− 1,

(5.7)

Here d−0 = d0 +
h5

2·3!

k−1∑
γ=0

◦

C(‖) [γ] · γ3, d−1 = d1 −
h4

4

k−1∑
γ=0

◦

C(‖) [γ] · γ2, d+0 = d0 −
h5

2·3!

k−1∑
γ=0

◦

C(‖) [γ] · γ3,

d+1 = d1 +
h4

4

k−1∑
γ=0

◦

C(‖) [γ] · γ2.
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Now, substituting β = 0 and β = k− 1 into equation (5.7), we obtain the following results.

For β = 0 we have

d−0 =
h5

4!
(k− 1)

(
2(k− 1)2 + 1

)
. (5.8)

For β = k− 1 we obtain

d+0 =
h5

5!
+

h5

3!
(k− 1)3

− d+1 h(k− 1). (5.9)

Equations (5.8) and (5.9) thus give the explicit forms of d−0 and d+0 corresponding to the boundary

values β = 0 and β = k− 1.

Substituting expressions (5.8) and (5.9) into equation (5.7), we obtain the final form of U4[β] as

follows:

U4[β] =



−
h5

4!

[
2β3
− 6β2(k− 1) + (k− 1)

(
2(k− 1)2 + 1

)]
+ d−1 [β], β < 0,

f4[β], β = 0, 1, . . . , k− 1, .

h5

4!

[
2β3
− 6β2(k− 1) + 4(k− 1)3 + 1

5

]
+ d+1 h(β− k + 1), β > k− 1.

(5.10)

Since
◦

C(‖)[γ] = 0 for β < 0 and β > k− 1, we can rewrite U4[β] in the convolution form as

U4 [β] = h2 ◦C(‖) [β] ∗GIV
4 [β] + d0 + d1 · [β] . (5.11)

Now, from equation (5.11), in order to determine the coefficients
◦

C(‖)[β], we make use of the

following operator [40]:

D2[β] =
6
h4



A2q|β|−1, |β| ≥ 2,

1 + A2, |β| = 1,

−8 +
A2

q
, β = 0.

, (5.12)

where A2 = 6
√

3q and q =
√

3− 2.

Applying the operator D2[β] to both sides of equation (5.11), we obtain

U4 [β] ∗D2 [β] = h2 ◦C(‖) [β] ∗GIV
4 [β] ∗D2 [β] + d0 ∗D2 [β] + d1 · [β] ∗D2 [β] .

Since GIV
4 [β] ∗D2[β] = δ[β], δ[β] ∗

◦

C(‖)[β] =
◦

C(‖)[β], D2[β] ∗ d0 = 0, and D2[β] ∗ d1 · [β] = 0, we can

write
◦

C(‖)[β] = h−1D2[β] ∗U4[β]. (5.13)

Expanding equation (5.13), we obtain

◦

C(‖)[β] = h−1

h5

5!
[β− k + 1] +

∞∑
γ=1

D2[β+ γ]
(
U−4 [−γ] − f [−γ]

)
+
∞∑
γ=k

D2[β− γ]
(
U+

4 [γ] − f [γ]
) ,

(5.14)
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here, U−4 [γ] and U+
4 [γ] are the expressions of equation (5.10) for β < 0 and β > k − 1, respectively,

while f [γ] denotes the expression of f4[γ] for β = 0, k− 2.

Now, by applying operator (5.12) to formula (5.14), we separately determine the form of the

optimal coefficients
◦

C(‖)[β] for β = 1, k− 3 and β = k− 2:
◦

C(‖)[β] = aqβ + bqk−1−β, β = 1, k− 3, (5.15)
◦

C(‖)[k− 2] =
1

20
+ aqk−2 + bq ,

where a and b are respectively equal to the following:

a =
6
h5 A2

∞∑
γ=1

qγ−1
(
U−4 [−γ] − f [−γ]

)
, (5.16)

b =
A2

20q
+

6
h5 A2

∞∑
γ=1

qγ−1
(
U+

4 [γ+ k− 1] − f [γ+ k− 1]
)

(5.17)

If we determine the coefficients
◦

C(‖)[0] and
◦

C(‖)[k − 1] using equations (4.6) and (4.7), respectively,

we obtain the following:

◦

C(‖) [0] = −
1

20 (k− 1)
−

(a− b)
(
1− qk−1

)
6 (k− 1)

−
aq− bqk−1

1− q
,

◦

C(‖) [k− 1] =
19k− 18

20 (k− 1)
+

(a− b)
(
1− qk−1

)
6 (k− 1)

+
aqk−1

− bq
1− q

.

Now, by expanding both the left-hand side and the right-hand side of equation (4.5) in powers

of β and equating the corresponding coefficients, we determine the values of a and b. In our case,

the right-hand side of equation (4.3) has been evaluated in formula (5.3). Therefore, we can rewrite

the right-hand side as

S + d0 + d1 · [β] ,

where

S = h2
k−1∑
γ=0

◦

C (‖) [γ]GIV
4 (hβ− hγ). (5.18)

Since in the sum (5.18) we have

GIV
4 (hβ− hγ) =

|hβ− hγ|3

12
,

we can rewrite and compute it as follows:

S = h2
β∑

γ=0

◦

C(‖)[γ]
(hβ− hγ)3

12
− h2

k−1∑
γ=β

◦

C(‖)[γ]
(hβ− hγ)3

12

= h2
β∑

γ=0

◦

C(‖)[γ]
(hβ− hγ)3

6
− h2

k−1∑
γ=0

◦

C(‖)[γ]
(hβ− hγ)3

12
= K1 −K2.

First, we calculate the sum K2:
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K2 = h2
k−1∑
γ=0

◦

C(‖)[γ]
(hβ− hγ)3

12
=

h5

12
β3
−

h5(k− 1)
4

β2 +
h3

4
β

k−1∑
γ=0

◦

C(‖)[γ] [γ]2 −
h2

12

k−1∑
γ=0

◦

C(‖)[γ] [γ]3.

Now we simplify the sum K1:

K1 = h2
β∑

γ=0

◦

C(‖)[γ]
(hβ− hγ)3

6
=

h2

6

◦

C(‖)[0](hβ)3 + h2
β∑

γ=1

◦

C(‖)[γ]
(hβ− hγ)3

6
.

Substituting the coefficients
◦

C(‖)[γ] from formula (5.15), we obtain

K1 =
h2

6

◦

C(‖)[0](hβ)3 +
h5

6

β∑
γ=1

(
hβ− hγ

)3 (
aqγ + bqk−1−γ

)
. (5.19)

In formula (5.19), let us change variables: set β − γ = γ1 and denote γ1 again by γ. Then the

summation limit changes to β− 1, and we have

K1 =
h2

6

◦

C(‖)[0](hβ)3 +
h5

6

a
β−1∑
γ=0

qβ−γ γ3 + b
β−1∑
γ=0

qk−1−β+γ γ3

 . (5.20)

We compute this sum using the following known formula:

n−1∑
γ=0

qγ γp =
1

1− q

p∑
i=0

(
q

1− q

)i

∆i0p
−

qn

1− q

p∑
i=0

(
q

1− q

)i

∆iγp
∣∣∣
γ=n , (5.21)

where ∆iγp denotes the i-th order finite difference of γp, and

∆i0p = ∆iγp
∣∣∣
γ=0 , ∆iγp =

k∑
µ=0

(
k
µ

)
γ p−µ ∆i0µ.

If in formula (5.21) we substitute q−1 in place of q, we obtain the following summation formula:

n−1∑
γ=0

q−γ γp =
q

q− 1

p∑
i=0

(
1

q− 1

)i

∆i0p
−

q−n+1

q− 1

p∑
i=0

(
1

1− q

)i

∆iγp
∣∣∣
γ=n .

Let us denote the first sum in expression (5.20) by K3 and evaluate it. Then we obtain

K3 =

β−1∑
γ=0

qβ−γγ3 = −
q

q− 1

β3 +
3β2

q− 1
+ β

3 (q + 1)

(q− 1)2

 .

Next, let us denote the second sum in expression (5.20) by K4 and compute it:

K4 =

β−1∑
γ=0

qk−1−β+γ
· γ3 = qk−1−β

·

β−1∑
γ=0

qγ · γ3.

By applying formula (5.21) to this sum, we obtain
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K4 = −
qk−1

1− q
·

β3 + β2 3q
1− q

+ β
3q (q + 1)

(1− q)2

 .

Thus, the sum S takes the following form:

S = K1 −K2 =
h5

6

◦

C(‖)[0]β3 +
h5

6

a
q

1− q

(
β3 + β2 3

1− q
+ β

3(q + 1)
(1− q)2

)

+ b
q k−1

q− 1

(
β3 + β2 3q

1− q
+ β

3q(q + 1)
(1− q)2

)
−

h5

12
β3 +

h5(k− 1)
4

β2
−

h5

4
β

k−1∑
γ=0

◦

C(‖)[γ] γ2 +
h5

12

k−1∑
γ=0

◦

C(‖)[γ] γ3.

(5.22)

By adding d0 + d1 · [β] to expression (5.22) and collecting the terms of the left-hand side of equation

(4.5) with respect to the powers of β, we obtain the following:

β3h5


◦

C(‖)[0]
6
−

aq
6(q− 1)

+
bq k−1

6(q− 1)
−

1
12

+ β2h5
(

a
12

+
bq k−1

12
+

k− 1
4

)

+ βh5
(

a(q + 1)
12(q− 1)

+
bq k−1(q + 1)

12(q− 1)

)
−

1
4

k−1∑
γ=0

◦

C(‖)[γ]γ2 + d1h4 +
h5

12

k−1∑
γ=0

◦

C(‖)[γ]γ3 + d0.

(5.23)

Now, by equating the coefficients of the powers of β in expression (5.23) with the coefficients of

the powers of β on the right-hand side of equation (4.5), that is, in formula (5.3), we determine the

values of a and b. First, let us rewrite formula (5.3) in terms of the powers of β:

−
h5

12
β3 +

h5 (k− 1)
4

β2
−

(
k2

4
−

k
2
−

7
24

)
β+

k3

12
−

k2

4
+

7k
24
−

1
8

. (5.24)

By equating the coefficients of β3 and β2 in expressions (5.23) and (5.24), we obtain the following

system of equations: 

◦

C(‖)[0]
6
−

aq
6(q− 1)

+
bq k−1

6(q− 1)
−

1
12

= −
1
12

,

a
12

+
bq k−1

12
+

k− 1
4

=
k− 1

4
.

(5.25)

Solving the system (5.25), the values of a and b are obtained as follows:

a = −
3qk−1

10 (1− q2k−2)
, (5.26)

b =
3

10 (1− q2k−2)
. (5.27)

Using the values of a and b, we can rewrite the coefficients
◦

C(‖)[β], β = 0, k− 1 as follows:
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◦

C (‖) [0] =
3 (1 + q) qk−1

10 (1− q2k−2) (1− q)
,

◦

C (‖) [β] = −
3qk−1

10 (1− q2k−2)

(
qβ − q−β

)
, β = 1, k− 3,

◦

C (‖) [k− 2] =
1
20

+
3
(
q− q2k−3

)
10 (1− q2k−2)

,

◦

C (‖) [k− 1] =
19
20
−

3
(
q + q2k−2

)
10 (1− q) (1− q2k−2)

,

Thus, Theorem 5.1 is fully proved and Problem 2.2 is also solved.

6. Computation of the norm of the error functional of the explicit optimal difference

formula in the Sobolev space L(4)
2 (0, 1)

Theorem 6.1. In the Sobolev space L(4)
2 (0, 1), the square of the norm of the error functional of the optimal

explicit difference formula is expressed by the following formula:∥∥∥∥` ∣∣∣∣L(4)∗
2 (0, 1)

∥∥∥∥2
=

(
421

50400
−

q + q2k−2

400 (1− q) (1− q2k−2)

)
h7,

where q =
√

3− 2 is the root of the Euler polynomial of order two.

Proof. Initially, we determine the unknown coefficient d−1 by equating expressions (5.16) and

(5.26). Calculating the sum in (5.16), we obtain

a =
A2

24q

(
6(k− 1)2 + 1

)
+

A2

h4q
d−1 . (6.1)

We equate (6.1) with (5.26):

A2

24q

(
6(k− 1)2 + 1

)
+

A2

h4q
d−1 = −

3q k−1

10 (1− q 2k−2)
. (6.2)

From equation (6.2), we find d−1 :

d−1 = −
3h4q k

10A2 (1− q 2k−2)
−

h4

24

(
6(k− 1)2 + 1

)
.

Now, we determine the coefficient d+1 by equating expressions (5.17) and (5.27). Here as well, if

we first expand and simplify the sum in expression (5.17), it is equal to the following:

b =
A2

20
+

A2(k− 1)2

4q
−

A2

h4q
d+1 . (6.3)

We equate (6.3) with (5.27):

A2

20
+

A2(k− 1)2

4q
−

A2

h4q
d+1 =

3
10 (1− q 2k−2)

. (6.4)

From equation (6.4), we find d+1 :
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d+1 =
h4q
120

+
h4(k− 1)2

4
−

3h4q
10A2 (1− q 2k−2)

.

Using the values of d−1 and d+1 , we obtain d1:

d1 = 1
2

(
d−1 + d+1

)
=

1
20

(
q− 5

12
−

3q
A2 (1− q k−1)

)
h4.

To determine d0, we need the explicit form of the unknown coefficient d+0 . Since d−0 is known

from formula (5.8), we have

d+0 =
h5

120
−

h5(k− 1)3

12
−

h5q(k− 1)
120

+
3h5q(k− 1)

10A2 (1− q 2k−2)
.

Therefore

d0 = 1
2

(
d−0 + d+0

)
=

(
1 + (k− 1)(5− q)

240
+

3q(k− 1)
20A2 (1− q 2k−2)

)
h5.

In explicit form, according to Theorem 3.2, the square of the norm is given by the following:∥∥∥∥` ∣∣∣∣ L(4)∗
2 (0, 1)

∥∥∥∥2
=

k∑
β=0

k∑
γ=0

C[β]C[γ]G3(hβ− hγ)

− 2h2
k∑

β=0

k−1∑
γ=0

C[β]C(‖)[γ]G′′4 (hβ− hγ) + h4
k−1∑
β=0

k−1∑
γ=0

C(‖)[β]C(‖)[γ]GIV
4 (hβ− hγ).

(6.5)

Now, let us compute (6.5):∥∥∥∥` ∣∣∣∣ L(4)∗
2 (0, 1)

∥∥∥∥2
=

k∑
β=0

k∑
γ=0

C[β]C[γ]G3(hβ− hγ) − h2
k−1∑
γ=0

◦

C(‖)[γ]

 k∑
β=0

C[β]G′′4 (hβ− hγ) + d0 + d1[β]


=

k∑
β=0

k∑
γ=0

C[β]C[γ]G3(hβ− hγ) − h2
k−1∑
γ=0

◦

C(‖)[γ] [ f4[β] + d0 + d1[β]] = T1 + T2.

where

T1 =
k∑

β=0

k∑
γ=0

C[β]C[γ]G3(hβ− hγ),

T2 = −h2
k−1∑
γ=0

◦

C(‖)[γ] [ f4[β] + d0 + d1[β]] .

Now, let us compute T1 and T2 separately and then add them together. First, we compute T1:

T1 =
k∑

β=0

k∑
γ=0

C[β]C[γ]G3(hβ− hγ) = −8G4(h) + 2G4(2h) = −8
h7

2 · 7!
+ 2

(2h)7

2 · 7!
=

31
1260

h7.

Now, we calculate T2:

T2 = −h2
k−1∑
γ=0

◦

C(‖)[γ]
[

f4[γ] + d0 + d1[γ]
]
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= −h2
◦

C(‖)[k− 1] f4[k− 1] − h2
k−2∑
γ=0

◦

C(‖)[γ] f4[γ] − h2d0 − h3(k− 1)d1.

After simplification, we obtain

T2 = −
h7

5!

◦

C(‖)[k− 1] − h2d+0 − h3(k− 1)d+1 +
h7(k− 1)3

6
. (6.6)

Substituting
◦

C(‖)[k− 1], d+0 , and d+1 into (6.6), we have

T2 = −
39

20 · 5!
h7 +

3
(
q + q2k−2

)
10 · 5!

(
1− q2k−2

) h7.

Now, adding T1 and T2:

T1 + T2 =
31

1260
h7
−

39
20 · 5!

h7 +
3
(
q + q2k−2

)
10 · 5!

(
1− q2k−2

) h7 =

(
421

50400
−

q + q2k−2

400(1− q)(1− q2k−2)

)
h7.

Therefore, the square of the norm is∥∥∥∥` ∣∣∣∣ L(4)∗
2 (0, 1)

∥∥∥∥2
=

(
421

50400
−

q + q2k−2

400(1− q)(1− q2k−2)

)
h7.

Thus, Theorem 6.1 is completely proved.

7. Conclusion

In conclusion, it can be stated that in this work, the extremal function was derived for com-

puting the norm of the error functional of the explicit optimal difference formula constructed for

the approximate solution of second-order ordinary differential equations in the Sobolev space

L(4)
2 (0, 1). Based on the obtained extremal function, an analytical expression for the square of the

norm was established. To determine the optimal coefficients, the method of Lagrange multipliers

was applied, and the corresponding Lagrangian function was constructed. By equating the partial

derivatives of the Lagrangian with respect to the unknown variables to zero, a system of equations

was obtained. This system was solved using the Sobolev method, yielding explicit forms of the

optimal coefficients. Utilizing these coefficients, the square of the norm of the error functional was

computed. Thus, an exact upper bound for the error of the constructed difference formula was

established.
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