Approximated Solution Based on the Frame Bounds in Hilbert C∗-Modules

Main Article Content

Fatima Zohra Fenani, Maryam G. Alshehri, Mohamed Rossafi

Abstract

Given \(\mathcal{H}\) is a finitely or countably generated Hilbert \(\mathcal{A}\)-module over a unital \(C^*\)-algebra \(\mathcal{A}\), and given a frame in \(\mathcal{H}\). We introduce several iterative methods for solving the operator equation:
\[Lu=f\]
where \(L\) is a bounded, invertible, and symmetric operator on \(\mathcal{H}\). We present algorithms that utilize frame bounds, the Chebyshev method, and the conjugate gradient method to provide approximate solutions to the problem. Additionally, we analyze the convergence and optimality of these methods.

Article Details

References

  1. N. Assila, H. Labrigui, A. Touri, M. Rossafi, Integral Operator Frames on Hilbert $C^{ast}$-Modules, Ann. Univ. Ferrara 70 (2024), 1271–1284. https://doi.org/10.1007/s11565-024-00501-z.
  2. I. Daubechies, A. Grossmann, Y. Meyer, Painless Nonorthogonal Expansions, J. Math. Phys. 27 (1986), 1271–1283. https://doi.org/10.1063/1.527388.
  3. R.J. Duffin, A.C. Schaeffer, A Class of Nonharmonic Fourier Series, Trans. Am. Math. Soc. 72 (1952), 341–366. https://doi.org/10.1090/s0002-9947-1952-0047179-6.
  4. R. El Jazzar, R. Mohamed, On Frames in Hilbert Modules Over Locally $C^{ast}$-Algebras, Int. J. Anal. Appl. 21 (2023), 130. https://doi.org/10.28924/2291-8639-21-2023-130.
  5. M. Frank, D.R. Larson, Frames in Hilbert $C^*$-Modules and $C^*$-Algebras, J. Oper. Theory 48 (2002), 273–314. https://www.jstor.org/stable/24715567.
  6. D. Gabor, Theory of Communications, J. Inst. Electr. Eng. 93 (1946), 429–457.
  7. M. Ghiati, M. Rossafi, M. Mouniane, H. Labrigui, A. Touri, Controlled Continuous $*$-g-Frames in Hilbert $C^{*}$-Modules, J. Pseudo-Differential Oper. Appl. 15 (2023), 2. https://doi.org/10.1007/s11868-023-00571-1.
  8. A. Karara, M. Rossafi, A. Touri, K-biframes in Hilbert Spaces, J. Anal. 33 (2024), 235–251. https://doi.org/10.1007/s41478-024-00831-3.
  9. A. Lfounoune, R. El Jazzar, K-frames in Super Hilbert $C^{ast}$-Modules, Int. J. Anal. Appl. 23 (2025), 19. https://doi.org/10.28924/2291-8639-23-2025-19.
  10. H. Massit, M. Rossafi, C. Park, Some Relations Between Continuous Generalized Frames, Afr. Mat. 35 (2024), 12. https://doi.org/10.1007/s13370-023-01157-2.
  11. F. Nhari, R. Echarghaoui, M. Rossafi, K-g-Fusion Frames in Hilbert $C^{ast}$-Modules, Int. J. Anal. Appl. 19 (2021), 836–857. https://doi.org/10.28924/2291-8639-19-2021-836.
  12. G.J. Murphy, $C^{ast}$-Algebras and Operator Theory, Academic Press, 1990.
  13. E. Ouahidi, M. Rossafi, Woven Continuous Generalized Frames in Hilbert $C^{ast}$-Modules, Int. J. Anal. Appl. 23 (2025), 84. https://doi.org/10.28924/2291-8639-23-2025-84.
  14. W.L. Paschke, Inner Product Modules over $B^{ast}$-Algebras, Trans. Am. Math. Soc. 182 (1973), 443–468. https://doi.org/10.2307/1996542.
  15. M. Rossafi, F. Nhari, Controlled K-g-fusion Frames in Hilbert $C^{ast}$-Modules, Int. J. Anal. Appl. 20 (2022), 1. https://doi.org/10.28924/2291-8639-20-2022-1.
  16. M. Rossafi, F.D. Nhari, K-g-Duals in Hilbert $C^{ast}$-Modules, Int. J. Anal. Appl. 20 (2022), 24. https://doi.org/10.28924/2291-8639-20-2022-24.
  17. M. Rossafi, F. Nhari, C. Park, S. Kabbaj, Continuous $g$-Frames with $C^{*}$-Valued Bounds and Their Properties, Complex Anal. Oper. Theory 16 (2022), 44. https://doi.org/10.1007/s11785-022-01229-4.
  18. M. Rossafi, S. Kabbaj, Generalized Frames for $B(H, K)$, Iran. J. Math. Sci. Inform. 17 (2022), 1–9. https://doi.org/10.52547/ijmsi.17.1.1.
  19. M. Rossafi, M. Ghiati, M. Mouniane, F. Chouchene, A. Touri, S. Kabbaj, Continuous Frame in Hilbert $C^{*}$-Modules, J. Anal. 31 (2023), 2531–2561. https://doi.org/10.1007/s41478-023-00581-8.
  20. M. Rossafi, F. Nhari, A. Touri, Continuous Generalized Atomic Subspaces for Operators in Hilbert Spaces, J. Anal. 33 (2024), 927–947. https://doi.org/10.1007/s41478-024-00869-3.
  21. M. Rossafi, S. Kabbaj, $ast$-K-Operator Frame for $operatorname{End}_{mathcal{A}}^{ast}(mathcal{H})$, Asian-Eur. J. Math. 13 (2020), 2050060. https://doi.org/10.1142/S1793557120500606.
  22. M. Rossafi, S. Kabbaj, Operator Frame for $operatorname{End}_{mathcal{A}}^{ast}(mathcal{H})$, J. Linear Topol. Algebra 8 (2019), 85–95.
  23. M. Rossafi, S. Kabbaj, $ast$-K-$g$-Frames in Hilbert $mathcal{A}$-modules, J. Linear Topol. Algebra 7 (2018), 63–71.
  24. M. Rossafi, S. Kabbaj, $ast$-$g$-Frames in Tensor Products of Hilbert $C^{ast}$-Modules, Ann. Univ. Paedagog. Crac. Stud. Math. 17 (2018), 17–25.
  25. M. Rossafi, A. Karara, R. El Jazzar, Biframes in Hilbert $C^*$-Modules, Montes Taurus J. Pure Appl. Math. 7 (2025), 69–80.
  26. M. Rossafi, K. Mabrouk, M. Ghiati, M. Mouniane, Weaving Operator Frames for $B(H)$, Methods Funct. Anal. Topol. 29 (2023), 111–124.
  27. S. Touaiher, R. El Jazzar, M. Rossafi, Properties and Characterizations of Controlled K-G-Fusion Frames Within Hilbert $C^*$-Modules, Int. J. Anal. Appl. 23 (2025), 111. https://doi.org/10.28924/2291-8639-23-2025-111.
  28. S. Touaiher, M. Rossafi, Construction of New Continuous K-g-Frames Within Hilbert $C^*$-Modules, Int. J. Anal. Appl. 23 (2025), 232. https://doi.org/10.28924/2291-8639-23-2025-232.
  29. A. Touri, H. Labrigui, M. Rossafi, S. Kabbaj, Perturbation and Stability of Continuous Operator Frames in Hilbert $C^*$-Modules, J. Math. 2021 (2021), 5576534. https://doi.org/10.1155/2021/5576534.
  30. A. Touri, H. Labrigui, M. Rossafi, New Properties of Dual Continuous K-g-Frames in Hilbert Spaces, Int. J. Math. Math. Sci. 2021 (2021), 6671600. https://doi.org/10.1155/2021/6671600.