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Abstract. Given H is a finitely or countably generated Hilbert A-module over a unital C*-algebra A, and given a frame

in H. We introduce several iterative methods for solving the operator equation:

Lu=f *)

Where L is a bounded, invertible, and symmetric operator on H. We present algorithms that utilize frame bounds, the
Chebyshev method, and the conjugate gradient method to provide approximate solutions to the problem. Additionally,

we analyze the convergence and optimality of these methods.

1. INTRODUCTION AND PRELIMINARIES

Frames for Hilbert spaces were introduced by Duffin and Schaefer [3] in 1952 to study some deep
problems in nonharmonic Fourier series by abstracting the fundamental notion of Gabor [6] for
signal processing. In fact, in 1946, Gabor showed that any function f € L?(IR) can be reconstructed
via a Gabor system {g(x — ka)e?™"~ : k, m € Z} where g is a continuous compact support function.
These ideas did not generate much interest outside of nonharmonic Fourier series and signal
processing until the landmark paper of Daubechies, Grossmann, and Meyer [2] in 1986, where
they developed the class of tight frames for signal reconstruction and they showed that frames can
be used to find series expansions of functions in L?(IR) that are very similar to the expansions using

orthonormal bases. After this innovative work, the theory of frames began to be widely studied.
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While orthonormal bases have been widely used for many applications, it is the redundancy that
makes frames useful in applications.
Formally, a frame in a separable Hilbert space H is a sequence { f};c; for which there exist positive

constants A, B > 0 called frame bounds such that

Al < )" Kx, O < BIdP, Vx € H.
i€l
It is remarkable that the above inequalities imply the existence of a dual frame { ﬁ}id, such that
the following reconstruction formula holds for every x € H: Y, [(x, ffi. In particular, any
orthonormal basis for H is a frame. However, in general, a frame need not be a basis, and, in fact,
most useful frames are overcomplete. The redundancy that frames carry is what makes them very
useful in many applications.

Today, frame theory is an exciting, dynamic, and fast-paced subject with applications to a wide
variety of areas in mathematics and engineering, including sampling theory, operator theory,
harmonic analysis, nonlinear sparse approximation, pseudodifferential operators, wavelet theory,
wireless communication, data transmission with erasures, filter banks, signal processing, image
processing, geophysics, quantum computing, sensor networks, and more. The last decades have
seen tremendous activity in the development of frame theory, and many generalizations of frames
have come into existence. For more detailed information, readers are recommended to consult
[1,4,7-11,13,15-30].

In the context of Hilbert C*-modules, the iterative method typically refers to the process of
constructing solutions to certain problems (e.g., equations or inequalities) by iterating through
successive approximations, usually with the aim of converging to a desired solution. A Hilbert
C*-module is a generalization of a Hilbert space, where the scalars are elements of a C*-algebra
(instead of the field of complex numbers) and the inner product satisfies certain properties related
to the algebraic structure of the C*-algebra. These modules play an important role in various areas
of functional analysis, particularly in operator theory and the theory of C*-algebra.

In this work we present an algorithm to approximate the solution of the operator equation
Lx = y where L : H — H is a boundedly invertible and self-adjoint operator on a finitely or
countably generated Hilbert A-module over a unital C*-algebra A.

Definition 1.1. [12] Let A be a C*-algebra and H be a left A-module. We assume that the linear operations
of A and H are compatible, i.e., A(ax) = (Aa)x = a(Ax) forevery A € C,a € A, and x € H. Recall that H
is a pre-Hilbert A-module if there exists a sesquilinear mapping {-,-) : HX H — A with the properties

(1) (x,x) > 0;if (x,x) = 0, then x = 0 for every x € H.

(2) (x,y) = (y,x)" for every x,y € H.
(3) (ax,y) = alx,y) foreverya € A, x,y € H.
4) (x+y,z) = (x,z) +(y, z) for every x,y,z € H.

1
The map H —» R, x - |lx|lg = |, x)HIIj{ is a norm on H and the following properties hold:
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(@) llaxllg < |Ixllgllalla forall x € H, a € A,
(i) <x, »uy, Vu < Iyllalx, X)u forall x,y € H,
(i) IKx, Yulla < lIxlallylly for all x, y € H.
If H is complete under the norm || - ||g, then H is called a Hilbert A-module or Hilbert C*-module over A.

Lemma 1.1. [14]. Let H be a Hilbert A-module. If T € End’;(H), then
(Tx, Tx) < ||T|IP(x, x), ¥x € H.

Theorem 1.1. [12] (Spectral Mapping). Let a be a normal element of a unital C*-algebra A, and f €
C(o(a)). Then

Definition 1.2. Let a be a element of a unital C*-algebra A. We define the spectral radius by:

r(a) = sup |A|.
A€a(a)

Theorem 1.2. [12] If a is a self-adjoint element of a C*-algebra A, then r(a) = |lall.

Theorem 1.3. Let a be a element of a unital C*-algebra A.
Suppose T is a bounded self-adjoint linear operator and f € C(a(a)). Then

IF(T)I = max £ (1)

teo

Proof. The proof is similar to the one in the case of Hilbert. m|

Definition 1.3. [5] A set of vectors {x,}uer is a frame of a Hilbert space C*— modules H if there exist two
constants A > 0 and B > A > 0 such that

VxeH, A{xx)< Z(x, X)Xy, X) < B{x, x).

nel

The frame is said to be tight if A and B are equal.

Since a frame {x,}>1 is a Bessel sequence, the operator
T : 2(A) - H
{hiz1 = Lgor G
is bounded, where
2(A) = {{qi}iel €A : Z qiq; converge in A}
T is called the synthesis operator or the pre-frameleéperator.
The adjoint operator is given by
T : H » (*(A)
x = G xhe

The operator T" is called the analysis operator.
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By composing T and T", we obtain the frame operator

S : H - H
X TT*x:Zkzl(X,kak

2. AN APPROXIMATED SOLUTION BASED ON THE FRAME BOUNDS
Throughout the paper, we consider A an unital C*-algebra.
2.1. Frame Algorithm. We know that if {x;}s> is a frame for H, and S is its frame operator, then

X = x, S7lxi)x;.
Y (x5

i>1

However, for this formula to be useful, we must invert the frame operator, which can be compli-

for every element x € H:

cated if the dimension of H is large. To address this, an algorithm is used to obtain approximations

of x. A classical algorithm for this is known as the frame algorithm.

Lemma 2.1. (Frame Algorithme) Let H be a finitely or countably generated Hilbert A-module, and a
family {fi},c; of elements of H is a frame for H with bounds A et B, we define de sequence {y;},., for all
x€H:

Yo=0, vk =Yke1 + ——=S(x—yp1) k=21

A+B
then yy converge to x with error estimation: ||x — yill < ( A) [1x]].

Proof. Let {fi}e; a frame for H with bounds A et B, then for all x € H, and x € H:

we have:
2

Ye = Y1+ 75 S (0 yi)

then )
X—=VYr = X— Yk 1—m5(X—yk—l)
2
= (1= 7555) e

then

2 k
ee=(1-7759) - w

gty

For the frame operator S, we have as well:

<(I — IﬁS)x, x> (x,x) — m Z (x, X (xg, x)

then,

(x,x) — (x x) < <(I— IﬁS)x x> < {x,x)— %(x,x).
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B-A 2
— < -_— .
A+B<x’x>‘<(I A+Bs)x x> <x x)
then:
2 B-A
o< {1~ 25gs el < 255 W
So
e
A+B B+ A
then
— I_ -
bl = 1= )
2 B-A
'I_A+BS (B+A) Il
So we observe that {1}, converge to x. o

2.2. Transformation of Frames via a boundedly invertible and self adjoint operator.

Lemma 2.2. Let H be a finitely or countably generated Hilbert A-module, L : H — H is a boundedly

invertible and self adjoint operator, and a family F =

A et B.

Then the sequence G = {gi

{fi}ie; of elements of H is a frame for H with bounds

Yier = {Lfi}ig is a frame for H with bounds —“r e 1” 2 and BIIL|[%. Its operator frame

is denoted by S’ where S’ = LSL.

Proof. F =

Since L € End’,(H) then

and

L is invertible then:

So:

and

In conclusion:

{fi}ie; is a frame for H with bounds A et B, and Vx € H, Lx € H, then:

A(Lx,Lx) < Y (Lx, fi)(f;, Lx) < B(Lx, Lx)

iel

A(Lx, Lxy < Y (6, LFXL, x) < B(Lx, Lx)

iel
(Lx, Lx) < [ILI*(x, x)
(L7'Lx, L Lx) < |IL7Y/*(Lx, Lx)
(x,x) < |IL7Y*(Lx, Lx)

1
= ——(x,x) < {(Lx,Lx)

(L, Ly < )G LAXL S, %) < BIILIA(Lx, Lx)

iel

IL~ 1||2



6 Int. J. Anal. Appl. (2025), 23:283

S'x = Z (x,8i) g

iel
= Y (% LfILf
i€l

=LY (L5 f)f,

iel

However:

= LSLx
O

Theorem 2.1. Let H be a finitely or countably generated Hilbert A-module, a family {f:},, is a frame for
= {Lfi};; is a frame for H with operator frame S” and bounds A et B,
we define de sequence {y;},; for all x € H:

H with operator frame S, and {g;}

iel

Yo = 0, Yk = Yp-1 T mLS(y Lyk—l) k>1
then yy converge to x with error estimation: ||x — yl| < (%)k [|x]].

Proof. Let {fi}c; a frame for H with bounds A et B, then Vx € H, and x € H:
Since Lx = y then:

]/k = yk—l —+ mLS(Lx - Lyk_])
then ,
Yk = Y1+ mLSL(x = Yi-1)
So:
X — Y :x—yk_l—A+BLSL(x Vi-1)
(I - mLSL) (X = Y1)
then

k
X—yp = (I - mLSL) (x —yo)

) k
X— Y= (I - mLSL) (X)

Other wise: S, we have as well:

<(I - ALBLSL)x x> (x,x) — A—+B Z &, fr) {fi,x)

kel
then,
(x, x) — 2 (xx)<<(I—LLSL)xx><<xx> (x, x).
’ A+B7T T A+B T A+B
B-A 2
— < _ - .
A+B<x’x>_<(1 A+BLSL)”> B<x’x>
then:

o< -
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So
2 B-A
- <
ERNTY
then
= I——L L
bl = 1= gt
k
I———=LSL .
<[r- 2 BSHIIII_ (5 ) I
So we observe that {1}, converge to x. o

If the upper bound of the frame is significantly larger than the lower bound, convergence may

be slow. However, when the frame is close to a tight frame, faster convergence can be achieved.
Remark 2.1. If {fi},o; is a tight frame (i.e A = B), then x = +LSy

Proof. if A = B then (S")"! = %I, we have:
Lx=1y
& LSLx = LSy
& S'x = LSy
e x=(8)"LSy
= x= %LS]/
o

2.3. Chebyshev Acceleration Method in Hilbert A-Modules. In this section, we extend the
iterative method based on frames to the setting where H is a finitely or countably generated

Hilbert A-module over a unital C*-algebra A. Our goal is to solve the operator equation
Lu = f,
where L : H — H is a bounded adjointable operator, subject to given boundary conditions.
2.3.1. Richardson Iteration on Hilbert A-Modules. The equation can be reformulated as
u=(I-Lu+f.
Starting with an initial guess 1y € H, define the iteration
U1 = (I-L)ur+ f, k=0.

Since Lu = f, it follows that
U1 —u = (I=L)(ux —u).

Applying the module norm || - ||y and the operator norm || - || L(H) yields

let1 — ullgr <N — Ll gy otk — vl
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Therefore, the sequence (uy) converges to u if
Il =Ll gy < 1.
The non-stationary Richardson iteration in this context is
Upsr = Up +ap(f —Lug), k=0,
where g, € R" are parameters to be chosen. Denote the residual 7, := f — Luy. Then,
re = Qe(L)ro, u—ux= Qk(L)(u—uo),

where

B

-1

Qr(x):= 1|1 —aix), Qk(0) =1,

i

Il
o

with the operator functional calculus applied in L(H).

2.3.2. Frame-Based Scheme and Frame Bounds. Let ¥ = ({)y) en C H be a frame with associated
frame operator S : H — H, which is bounded, positive and invertible in L(H). Assume the
family (L)) ren is also a frame for H with frame bounds A, B > 0, i.e., forallv € H,

A, 007 < ) (0, L dallpr, 0)a < B(o,0)a
A
Define the iterative sequence by

2
= Up_ —L — Luy_ k>1.
We =1+ 7 S(f—Lug), k=

Theorem 2.2. With the above notations, the operator

2

R:=1-——=LSL
A+B
satisfies
B-A
R < —.
IRl gy < BrA

Consequently, for any initial uy € H, the sequence (uy) converges to the solution u of Lu = f.

Proof. For any v € H, using the A-valued inner product and frame inequalities, we have

2 2
<(I - mLSL) 0, U>ﬂ = <U, U>y{ - m <LSLU, U)ﬂ

2
= @)= 375 2@ Ly)alys, v
A

By symmetry, a corresponding lower bound holds, proving the norm estimate. m]
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2.3.3. Chebyshev Polynomial Acceleration. Since LSL is a positive operator in L(H), the spectral

theorem extends naturally in this framework. The spectral radius of R is contained in [—ay, ag]

with ag := %.

To accelerate convergence, we define weighted combinations

n n

h, = Z ay Uk, with Z anp =1,

k=1 k=1

and the corresponding polynomial
n

Qu(x) = Z an,kxk.

k=1
The Chebyshev polynomials (Cy),»o satisfy the recurrence

Co(x) =1, Ci(x)=x Cu(x) =2xCp_1(x) — Cpa(x),
and exhibit the minimax property, minimizing

min max |Q,(x)].

Qn(l):1 [x|<ag
Setting
G ()
Pn (X) == 1 ,
Cu ()
the error satisfies
1
ll = hallgs < ———= Il = tioll-
Cu(a)

2.3.4. Algorithm. Using the above, the accelerated Chebyshev iteration in H proceeds as follows:

Algorithm 2.1 Chebyshev Frame Method in Hilbert A-Modules

1: Input: L, f,e,A,B,m

2: Setag = %, o= ://_E;Y/_‘%

3: Initialize ho := 0, hy := ;25LSf, B1:=2,n:=1
4

5

: while Tro% m > e do

: n:=n+1
a% -1
6: Bni=|1- Z‘B”_l

2
7 hn = ﬁn (hn—l - hn—Z + mLS(f - Lhn—l)) + hn—Z

8: end while

Ne)

: Output: u; := hy,_

The output satisfies the error bound

llu = uclly < e.
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2.4. Conjugate gradient method: In this section, we demonstrate how to solve an operator equa-
tion with prescribed boundary conditions using frames and the conjugate gradient method. Ad-
ditionally, we introduce a stopping criterion based on the frame bounds.

For the Chebyshev method to be effective, it is necessary to know an interval [a, b]that contains
the spectrum ofL. If this interval is too broad, the process becomes less efficient. A key benefit of
the conjugate gradient method is that it does not require any prior knowledge about the spectrum’s
location. Also in contrast to Chebyshev method, the conjugate gradient method is adaptive. The
hidden polynomials Q, depend nonlinearly on u and arise from a minimization problem.

Suppose that S is the frame operator of the frame (i3),.,. Let a mapping:
Orst: HXH — A (2.1)
(x,y) = {x, y)rsp = {x,LSLy) (2.2)
For allx, y et z € H and a € A. Since LSL is Positive definite we have:
(1) (x,x)rsr. = {x,LSLx) = ( LSLx,x) > 0.

)
(,x)1 5. =0 (x,LSLx) =0 (SLx,Lx) =0 lx =0 x = 0.
(3) {ax+z,y)LsL = {ax +z,LSLy) = alx, LSLy) +(z,LSLy) = a{x, y)rsL + {z, Y)LsL-
(4) <x, )74 = <x,LSLy)* = (LSLy, x) = (y,LSLx) = (y, X)LsL-
So (, )rsr is a inner product for H.

Then we can define the LSL—norm for the space H by
A = IKF, Forscll? = IKf,LSLANE, Vf € H

corresponding to the inner product {, )rs.

In this case if u is the solution of the equation (*) then:

eell? = 1K, LSLud|| = KL, SLad|| = IKf, SNl < BIIfI2.
Then
lllll < VBIIfII. (2.3)

Then, f can be reconstructed iteratively from the frame coefficients (f, e, ) by the following
algorithm: Puthp =0, v_;1 =0, ro=v9=LSf, n=0

A = {Tn, 0n) (O, L5L0n>_1 (2.4)
hﬂ+1 - hn + Anvn (2.5)
rne1 = rn — Ay LSLoy, (2.6)

vp+1 = LSLv, — (LSLv,, LSLv,) (vn,LSLvnYlvn —(LSLv,,LSLv,,_1) (vn_l,LSLvn_1>_1vn_1.
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Theorem 2.3. The following error estimate holds in the LSL-norm:

VB- VA
VB+ VA

20" 20"
lulll = ———
1+ o 1+ 0"

\/Ellfll where 0 =

lllu = hall| <

Proof. Considering the problem (*), definev_; = 0,99 = LSf and
U1 = LSLv, — (LSLv,,, LSLv,) (v, LSLvn)_lvn —(LSLv,,LSLv,,_1){v,,_1,LSLv,_1 )_1vn_1
Assume that u is the solution of the problem (*), then the following lemma holds.
Lemma 2.3. Let H, = span{(LSL)fu 1j=1,2,3,.. .,n}, then
{vo,v1,...,05-1} € Hy
Proof. you can prove this lemma by induction.
Forn =0:
v1 =LSLvgy — (LSLvy, LSLvg) (vo, LSLvo) vy — (LSLvg, LSLv_1) {v_1, LSLv_1) ‘v_4
—=(LSL)*u — (LSLvy, LSLvg) (vo, LSLvo) ' LSLu

So true forn = 1.
Now assume that, it is true for n € IN (ie: {vg,v1,...,v,-1} C Hy)
For n + 1 we have: v, =
LSLv,_q — (LSLv,_1, LSLvy_1) {vp—1, LSLvy_1) 0,1 — (LSLvy_1, LSLUp_2) (0y—2, LSLvy_2) 10,_2
Alors v, C H, 1. as we desired. O

Lemma 2.4. The system {vy, vy, ..., 0,1} forms an orthogonal basis for H,, with respect to the LSL-inner
product.

Proof. Since dim H, < n and span{vo, vy, ...,0,-1} is a subspace of H,, then it is enough to show
that {vg, v1, ..., v4-1} is an orthogonal system. By induction:

For n=2, since v_1 = 0:
1 = LSLvg — (LSLuvy, LSLvy) (v, LSLvp) vy,
and so,
(v1,v0)151, = (v1,LSLvg) = (LSLvg, LSLvgy) — (LSLvg, LSLvg) (0o, LSLUQ>_1 (vy, LSLvg) = 0.

So {vg, v1} is an LSL orthogonal basis for Ho.

Now assume that, it is true for n € IN (ie: {vg, vy, ..., v,-1}is an LSL orthogonal basis forH,,)

For n + 1 by putting

a = (LSLv,_1,LSLv,_1){vy_1, LSLv, 1)}
and

B = (LSLv,_1, LSLv,_3) (vy_2, LSLv, )"
we have:

a(vp-1,LSLvy—1) = (LSLvy-1, LSLvy-1)
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and
B {(vn-2,LSLvy—2) = (LSLv,_1,LSLv,—2).

So
(vy, LSLvy_1) = (LSLv,_1 — avy_1 — Bop—2, LSLvy_1)

= (LSLv,—1,LSLv,—1) — a{vy—1,LSLv,_1) — p{0n—2, LSLvy,_1)
= (LSLv,_1,LSLv,_1) = (LSLv,_1,LSLv,_1) = 0.
The same for (v, LSLv,,_»):
(vy, LSLvy—2) = (LSLv,_1 — avy_1 — fon—2, LSLvy—2)
= (LSLv,—1,LSLvy_2) — {01, LSLvy_) — B{Uy—2, LSLU, )
= (LSLvy_1, LSL0y2) — (LSLvy_1,LSLv,_s) = 0.

for j < n—1, we observe that LSLv; € LSL (H,-1) C H,. Since {vy, ..., v,-1} is a basis for Hy, hence,

there exist ¢y, ¢y, ..., ci—1 that:

_

-
LSLZ)]' = Ci0;
1
(vn, LSLv}) = (LSLvy1 — as_1 — B2, LSLv;) = (LSLv,, LSLv;) — a (v, LSLv;)
n-1
¢; (v, LSLv;) = 0,
i=0
forevery j <n-—1. m]

Il
o

Theorem 2.4. The approximated solution h,, is the orthogonal projection of the solution u of the problem *

onto H,,. That is
llu = hallLsy < llu—gllese. Vg € Hy
Proof. By 2.5 we have h, = Z’]?;(l] Ajvj € Hy.
Then, by Lemma (2.4), (y, vn )51 = <Z;7;(1) A, U”>L5L =0
Also by (2.6) we have: r, = ro— LSL(¥./2) Ajv;) = LSLu — LSL, = LSL(u—hy) and by (24) we
have:
A = (P, 0n) (On, LSLOR) ™ = (tt = hiy, 051 (On, On) gy

So:

n—1 n—1
(U= hy, hdrsr = <u - ) A, /\jvj>

j=0 j=0 LSL
n-1
- ((“’ vj>LSL —A; <v]-, v]>L5L) A
j=0
n-1
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T
L

<hf’ Yj >LSL Al

<Z A vl,v]> Aj =0,

LSL

;MH i g

Since h, =€ H,, and (u — hy, h,); 51 = 0,50 we get our result.

Now let’s return to our theorem (2.3).

We have h,, € H, = span{(LSL)ju 1j=12, 3,...,n} The definition of h, implies that h, =

gn-1(LSL)LSLu, where g,-1(x) is a polynomial of degree n — 1. Then
u—hy, = (I-qn-1(LSL)LSL) u = ®,,(I - LSL)u

where ®,(x) =1 - (1 -x)g,-1(1 —x) is a polynomial of degree n with ®,(1) = 1. Thus
e = halll = NPy (I = LSL)ulll < [P (I = LSL)ull|

for all polynomials P, of degree n with P, (1) = 1.

Since
Vx € H, Il = <, LSLaylIE = [K(LSL)2x, (LSL)Zx)[IIF = [|(LSL) x|
So
1P (I = LSL)ull| = || LSL)*P (I—LSL)u”
Hence

i = Falll < WP (1 = LSL)ull = || (LSL)}Po(1 — LSL) (LSL) ¥ (LSL) bu

< H(LSL)%Pn(I ~LSL)(LSL)?

[P (1= LSL)|| Nl

A
5

Therefore, by (2.3) we conclude that

20"
—-h < —
llu = allLse 1+02nl|ul|L5L 7
_ NB-VA
where 0 = NV

3. NUMERICAL EXAMPLES

Example 3.1. :Frame-Algorithme:

Let H be a Hilbert space of dimension 3, and the matrix of our operator L is:

(LSL)2u

ax_ Py (2)] llulll (by theorem(1.3)).
S




14 Int. ]. Anal. Appl. (2025), 23:283

2 47
Mp=|1 3 8
59 2

Let the frame & = {f1, f2, f3, fa, f5} = {2e1 + 3ez, 2e1 + 4ea + 6e3,2e1 + 3ea + e3,3e1 + 4e3, 5es).
Therefore, the respective matrices of S and S’=LSL are:

21 20 26
Ms =[20 34 27
26 27 78

4503 8665 6460
Mg =[4571 8749 6189
3779 7489 7097

The frame bounds of S" are A = 0.29956005504190586 and B = 19143.563287821737. If we apply our
frame algorithm to the vector x = (3,4,2) with an error e = 107, after 495242 iterations we obtain the
vector x’ = (2.99999953.999999361.99999946 ).

0 100000 200000 300000 400000 500000
Iteration

Figurel : Convergence of Algorithme Frame

Example 3.2. :ChebychevMethod :

We want to solve the operator equation Lu = f, where L is the operator already mentioned in the previous
experiment, f = (4,7,9)) and we take the same Frame . Then, using the Chebyshev method and an error
tolerance of 0.0000001, we obtain after 2199 iterations an approximation u, = (—9.99999938 6.63636333 —

0.3636363).

Convergence of the Chebychev method

Erreur

0 500 1000 1500 2000

Figure2 : Convergence of the chebychev mathod
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