Woven Continuous Frames in Hilbert Spaces

Main Article Content

Hafida Massit, Maryam G. Alshehri, Mohamed Rossafi

Abstract

In this present paper we introduce weaving Hilbert space frames in the continuous case, we propose new approaches for manufacturing pairs of woven continuous frames, and we obtain new properties in continuous weaving frame theory related to dual frames. Also, we provide some approaches for constructing continuous weaving frames by using small perturbations. These methods not only enhance the understanding of frame theory but also open avenues for practical applications in signal processing and data representation. Future research may further explore the implications of these findings in more complex systems and their potential interdisciplinary benefits.

Article Details

References

  1. S. Ali, J. Antoine, J. Gazeau, Continuous Frames in Hilbert Space, Ann. Phys. 222 (1993), 1–37. https://doi.org/10.1006/aphy.1993.1016.
  2. N. Assila, H. Labrigui, A. Touri, M. Rossafi, Integral Operator Frames on Hilbert $C^{*}$-Modules, Ann. Univ. Ferrara 70 (2024), 1271–1284. https://doi.org/10.1007/s11565-024-00501-z.
  3. T. Bemrose, P.G. Casazza, K. Gröchenig, M.C. Lammers, R.G. Lynch, Weaving Frames, Oper. Matrices (2016), 1093–1116. https://doi.org/10.7153/oam-10-61.
  4. P.G. Casazza, R.G. Lynch, Weaving Properties of Hilbert Space Frames, in: 2015 International Conference on Sampling Theory and Applications (SampTA), IEEE, 2015, pp. 110-114. https://doi.org/10.1109/SAMPTA.2015.7148861.
  5. P.G. Casazza, D. Freeman, R.G. Lynch, Weaving Schauder Frames, J. Approx. Theory 211 (2016), 42–60. https://doi.org/10.1016/j.jat.2016.07.001.
  6. I. Daubechies, A. Grossmann, Y. Meyer, Painless Nonorthogonal Expansions, J. Math. Phys. 27 (1986), 1271–1283. https://doi.org/10.1063/1.527388.
  7. R.J. Duffin, A.C. Schaeffer, A Class of Nonharmonic Fourier Series, Trans. Am. Math. Soc. 72 (1952), 341–366. https://doi.org/10.1090/s0002-9947-1952-0047179-6.
  8. R. El Jazzar, R. Mohamed, On Frames in Hilbert Modules Over Locally $C^{*}$-Algebras, Int. J. Anal. Appl. 21 (2023), 130. https://doi.org/10.28924/2291-8639-21-2023-130.
  9. J. Gabardo, D. Han, Frames Associated with Measurable Spaces, Adv. Comput. Math. 18 (2003), 127–147. https://doi.org/10.1023/a:1021312429186.
  10. M. Ghiati, M. Rossafi, M. Mouniane, H. Labrigui, A. Touri, Controlled Continuous $*$-G-Frames in Hilbert $C^{*}$-Modules, J. Pseudo-Differ. Oper. Appl. 15 (2023), 2. https://doi.org/10.1007/s11868-023-00571-1.
  11. A. Karara, M. Rossafi, A. Touri, K-Biframes in Hilbert Spaces, J. Anal. 33 (2024), 235–251. https://doi.org/10.1007/s41478-024-00831-3.
  12. A. Lfounoune, R. El Jazzar, K-Frames in Super Hilbert $C^{*}$-Modules, Int. J. Anal. Appl. 23 (2025), 19. https://doi.org/10.28924/2291-8639-23-2025-19.
  13. A. Lfounoune, H. Massit, A. Karara, M. Rossafi, Sum of G-Frames in Hilbert $C^{*}$-Modules, Int. J. Anal. Appl. 23 (2025), 64. https://doi.org/10.28924/2291-8639-23-2025-64.
  14. H. Massit, M. Rossafi, C. Park, Some Relations Between Continuous Generalized Frames, Afr. Mat. 35 (2023), 12. https://doi.org/10.1007/s13370-023-01157-2.
  15. E.H. Ouahidi, M. Rossafi, Woven Continuous Generalized Frames in Hilbert $C^{*}$-Modules, Int. J. Anal. Appl. 23 (2025), 84. https://doi.org/10.28924/2291-8639-23-2025-84.
  16. M. Rossafi, H. Massit, C. Park, Weaving Continuous Generalized Frames for Operators, Montes Taurus J. Pure Appl. Math. 6 (2024), 64–73.
  17. M. Rossafi, A. Karara, R. El Jazzar, Biframes in Hilbert $C^*$-Modules, Montes Taurus J. Pure Appl. Math. 7 (2025), 69–80.
  18. M. Rossafi, F. Nhari, C. Park, S. Kabbaj, Continuous $g$-Frames with $C^{*}$-Valued Bounds and Their Properties, Complex Anal. Oper. Theory 16 (2022), 44. https://doi.org/10.1007/s11785-022-01229-4.
  19. M. Rossafi, K. Mabrouk, M. Ghiati, M. Mouniane, Weaving Operator Frames for $B(H)$, Methods Funct. Anal. Topol. 29 (2023), 111–124.
  20. M. Rossafi, F. Nhari, A. Touri, Continuous Generalized Atomic Subspaces for Operators in Hilbert Spaces, J. Anal. 33 (2024), 927–947. https://doi.org/10.1007/s41478-024-00869-3.
  21. M. Rossafi, S. Kabbaj, $ast$-K-Operator Frame for $operatorname{End}_{mathcal{A}}^{ast}(mathcal{H})$, Asian-Eur. J. Math. 13 (2020), 2050060. https://doi.org/10.1142/S1793557120500606.
  22. S. Touaiher, R. El Jazzar, M. Rossafi, Properties and Characterizations of Controlled K-G-Fusion Frames Within Hilbert $C^*$-Modules, Int. J. Anal. Appl. 23 (2025), 111. https://doi.org/10.28924/2291-8639-23-2025-111.
  23. A. Touri, H. Labrigui, M. Rossafi, S. Kabbaj, Perturbation and Stability of Continuous Operator Frames in Hilbert $C^*$-Modules, J. Math. 2021 (2021), 5576534. https://doi.org/10.1155/2021/5576534.
  24. A. Touri, H. Labrigui, M. Rossafi, New Properties of Dual Continuous K-g-Frames in Hilbert Spaces, Int. J. Math. Math. Sci. 2021 (2021), 6671600. https://doi.org/10.1155/2021/6671600.