Fixed Point Results for Multivalued Graphic Contractions in F-Metric Spaces
Main Article Content
Abstract
The present paper is devoted to the introduction and development of the notions of multivalued graphic contractions and multivalued GF-contractions in the setting of F-metric spaces. By extending the idea of contractions to multivalued mappings associated with an underlying graph structure, we aim to enrich the existing theory of fixed point results in generalized metric frameworks. The main contribution of this study is the establishment of new fixed point theorems for these classes of mappings in F-metric spaces, which provide a natural extension of classical fixed point principles. Furthermore, in order to demonstrate the validity and applicability of our theoretical findings, we construct a non-trivial illustrative example that highlights how the proposed conditions can be effectively utilized. These results not only advance the fixed point theory in abstract metric settings but also open potential avenues for applications in mathematical analysis and applied sciences.
Article Details
References
- S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application aux Équations Intégrales, Fundam. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
- S.B. Nadler, Jr., Multi-Valued Contraction Mappings, Pac. J. Math. 30 (1969), 475–488. https://doi.org/10.2140/pjm.1969.30.475.
- M. Kikkawa, T. Suzuki, Three Fixed Point Theorems for Generalized Contractions with Constants in Complete Metric Spaces, Nonlinear Anal.: Theory Methods Appl. 69 (2008), 2942–2949. https://doi.org/10.1016/j.na.2007.08.064.
- P.D. Proinov, Fixed Point Theorems for Generalized Contractive Mappings in Metric Spaces, J. Fixed Point Theory Appl. 22 (2020), 21. https://doi.org/10.1007/s11784-020-0756-1.
- J. Jachymski, The Contraction Principle for Mappings on a Metric Space with a Graph, Proc. Am. Math. Soc. 136 (2007), 1359–1373. https://doi.org/10.1090/s0002-9939-07-09110-1.
- D. Wardowski, Fixed Points of a New Type of Contractive Mappings in Complete Metric Spaces, Fixed Point Theory Appl. 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94.
- F. Vetro, F-Contractions of Hardy-Rogers Type and Application to Multistage Decision, Nonlinear Anal.: Model. Control. 21 (2016), 531–546. https://doi.org/10.15388/na.2016.4.7.
- M.M. Fréchet, Sur Quelques Points du Calcul Fonctionnel, Rend. Circ. Mat. Palermo 22 (1906), 1–72. https://doi.org/10.1007/bf03018603.
- S. Czerwik, Contraction Mappings in b-Metric Spaces, Acta Math. Et Inform. Univ. Ostrav. 1(1993), 5–11. https://eudml.org/doc/23748.
- A. Branciari, A Fixed Point Theorem of Banach–Caccioppoli Type on a Class of Generalized Metric Spaces, Publ. Math. Debr. 57 (2000), 31–37. https://doi.org/10.5486/pmd.2000.2133.
- F. Khojasteh, E. Karapınar, S. Radenović, $theta$-Metric Space: A Generalization, Math. Probl. Eng. 2013 (2013), 504609. https://doi.org/10.1155/2013/504609.
- M. Jleli, B. Samet, On a New Generalization of Metric Spaces, J. Fixed Point Theory Appl. 20 (2018), 128. https://doi.org/10.1007/s11784-018-0606-6.
- S.A. Al-Mezel, J. Ahmad, G. Marino, Fixed Point Theorems for Generalized ($alpha beta $-$psi $)-Contractions in $mathcal{F}$-Metric Spaces with Applications, Mathematics 8 (2020), 584. https://doi.org/10.3390/math8040584.
- A. Hussain, T. Kanwal, Existence and Uniqueness for a Neutral Differential Problem with Unbounded Delay via Fixed Point Results, Trans. A. Razmadze Math. Inst. 172 (2018), 481–490. https://doi.org/10.1016/j.trmi.2018.08.006.
- A. Petruşel, I. Rus, Fixed Point Theorems in Ordered $L$-Spaces, Proc. Am. Math. Soc. 134 (2005), 411–418. https://doi.org/10.1090/s0002-9939-05-07982-7.
- H. Faraji, S. Radenović, Some Fixed Point Results for $mathcal{F}$-$G$-Contraction in $mathcal{F}$-Metric Spaces Endowed With a Graph, Journal of Mathematical Extension 16 (2022), 1–13. https://doi.org/10.30495/JME.2022.1513.
- S.K. Mohanta, Common Fixed Points in B-Metric Spaces Endowed With a Graph, Mat. Vesnik, 68 (2016), 140–154.
- I. Beg, A.R. Butt, S. Radojević, The Contraction Principle for Set Valued Mappings on a Metric Space with a Graph, Comput. Math. Appl. 60 (2010), 1214–1219. https://doi.org/10.1016/j.camwa.2010.06.003.
- A.H. Albargi, Some New Results in $ mathcal{F}$-Metric Spaces with Applications, AIMS Math. 8 (2023), 10420–10434. https://doi.org/10.3934/math.2023528.
- A. Asif, M. Nazam, M. Arshad, S.O. Kim, F-Metric, F-Contraction and Common Fixed-Point Theorems with Applications, Mathematics 7 (2019), 586. https://doi.org/10.3390/math7070586.
- R. Batra, S. Vashistha, Fixed Points of an $F$-Contraction on Metric Spaces With a Graph, Int. J. Comput. Math. 91 (2014), 2483–2490.
- H. Faraji, S. Radenovi'{c}, Some Fixed Point Results for F-G-Contraction in F-Metric Spaces Endowed With a Graph, J. Math. Ext. 16 (2022), 1–13.
- M. Cosentino, M. Jleli, B. Samet, C. Vetro, Solvability of Integrodifferential Problems via Fixed Point Theory in b-Metric Spaces, Fixed Point Theory Appl. 2015 (2015), 70. https://doi.org/10.1186/s13663-015-0317-2.
- Z. Mustafa, V. Parvaneh, M.M. Jaradat, Z. Kadelburg, Extended Rectangular b-Metric Spaces and Some Fixed Point Theorems for Contractive Mappings, Symmetry 11 (2019), 594. https://doi.org/10.3390/sym11040594.
- O. Acar, I. Altun, Multivalued $F$-Contractive Mappings with a Graph and Some Fixed Point Results, Publ. Math. Debr. 88 (2016), 305–317. https://doi.org/10.5486/pmd.2016.7308.