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Abstract. The present paper is devoted to the introduction and development of the notions of multivalued graphic

contractions and multivalued GF-contractions in the setting of F -metric spaces. By extending the idea of contractions

to multivalued mappings associated with an underlying graph structure, we aim to enrich the existing theory of fixed

point results in generalized metric frameworks. The main contribution of this study is the establishment of new fixed

point theorems for these classes of mappings in F -metric spaces, which provide a natural extension of classical fixed

point principles. Furthermore, in order to demonstrate the validity and applicability of our theoretical findings, we

construct a non-trivial illustrative example that highlights how the proposed conditions can be effectively utilized.

These results not only advance the fixed point theory in abstract metric settings but also open potential avenues for

applications in mathematical analysis and applied sciences.

1. Introduction

In the theory of fixed points, Banach contraction principle [1] is pioneer theorem which has

plenty of extensions in different directions (see. [2-4]). Jachymski [5] generalized this theorem

for single valued mappings in the situation of complete metric spaces (CMSs) equipped with the

graph. Wardowski et al. [6] gave a fashionable assortment of contraction by employing a precise

function is said to be F-contraction and furnished some examples to show the boldness of such

generalizations. Wardowski et al. [6] proved a fixed point result by utilizing the concept of F-

contraction and generalized conventional Banach contraction principle (BCP). Vetro [7] proved

fixed point results for Hardy-Rogers type F-contractions and applied their results to multistage

decision processes.
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In other direction, the supreme part in fixed point theory is the underlying space. The idea of

MS was laid by the French mathematician Maurice Fréchet [8] in 1905, laying the foundation for

subsequent advancements in the field. Over the past several decades, numerous researchers have

explored generalizations of MSs by modifying the traditional triangle inequality. Notable examples

include b-MSs by Czerwik [9], rectangular MSs by Branciari [10], andθ-MSs by Khojasteh et al. [11].

Building upon these developments, Jleli et al. [12] proposed a comprehensive extension known as

F -MSs. Al-Mezel [13] established some fixed point theorems for generalized (αβ-ψ)-contractions

in the background of F -MSs. Later on, Hussain et al. [14] enlarged the concept of F -MSs by

establishing some new fixed point results and solving a differential equation as application. For

further exploration of this topic, we recommend consulting the bibliography, specifically references

[15-22].

This paper introduces the novel concept of multivalued graphic contractions and multival-

ued GF-contractions within the foundation of F -MSs and establishes corresponding fixed point

theorems. To illustrate the applicability of our results, we offer an illustrative example.

2. Preliminaries

The Banach Contraction Principle asserts that any self-mapping J defined on a CMS (O, d)
satisfying the condition

d(Jw,Jh) ≤ λd(w, h)

for all w, h ∈ O, where λ ∈ [0, 1) has a unique fixed point.

We will present graph-theoretic concepts based on the work of Jachymski [5]. Let (O, d) be a

MS and let ∆ denotes the diagonal of O×O. Consider a directed graph G composed of a vertex

set V(G) identical to O and an edge set E(G) encompassing all loops (∆ ⊆ E(G)) . Importantly, G
contains no multiple edges.

Jachymski [5] introduced the following definition of G-contraction:

Definition 2.1. ( [5]) Let (O, d) be a MS and J : O → O. A mapping J is termed a Banach graphic
contraction if

(a) ∀ w, h ∈ O with (w, h) ∈ E(G), we have (J(w),J(h)) ∈ E(G),

(b) there exists λ ∈ (0, 1) such that, ∀ w, h ∈ O with (w, h) ∈ E(G), we have

d(J(w),J(h)) ≤ λd(w, h). (2.1)

G−1 is the converse graph of G that is the edge set of G−1 is established by reversing the direction

of edges of G, that is

E
(
G−1

)
=

{
(w, h) ∈ O×O : (h,w) ∈ E (G)

}
.

Given two vertices,w and h in a graph G, a path connectingw to h of length N (a natural number) is

a sequence {wi}
N
i=0 of N + 1 vertices such thatw0 = w,wN = h and (wi−1,wi) ∈ E(G), ∀ i = 1, · · · , N.

A graph G is connected if any two distinct vertices within the graph can be joined by a path. If
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G̃ =
(
O, E(G̃)

)
represents symmetric graph established by putting the vertices of both G and G−1

that is

E(G̃) = E(G)∪ E(G−1).

then the graph G is said to be weakly connected if G̃ is connected.

Let Ω = {G : G is a directed graph with V(G) = O and ∆ ⊆ E(G)}. If J : O → O, then we

represent set of all fixed points of J by OJ and let OJ := {w ∈ O : (w,J(w)) ∈ E(G)}.

In 2008, Jachymski [5] gave the following property which is also required in the proof of our

result.

(P) for {wn} ⊆ O, if wn → w as n → ∞ and (wn,wn+1) ∈ E(G), then there exists a subsequence

{wnk
} such that (wnk ,w) ∈ E(G), ∀ n ∈N.

Definition 2.2. ( [15]) Consider the MS (O, d) and a mapping J : O → O.The mapping J is termed a
Picard operator if it possesses a unique fixed point denoted by w∗ and Jnw→ w∗, as n→∞, for all w ∈ O.

Definition 2.3. ( [5]) Given a MS (O, d) and a mapping J : O → O. Then J is classified as a weakly
Picard operator if for any w ∈ O, limn→∞ J

nw exists and its limit is a fixed point of J.

Wardowski [6] introduced the following new notion of F-contraction in 2012.

Definition 2.4. Let (O, d) be a metric space and J : O → O. Then J is said to be a F-contraction if there
exists λ > 0 such that for w, h ∈ O;

d(Jw,Jh) > 0 =⇒ λ+ F
(
d(Jw,Jh)

)
≤ F

(
d(w, h)

)
where, F : R+

→ R is a mapping satisfying

(F1) 0 < w1 < w2 ⇒ ξ(w1) ≤ ξ(w2).

(F2) ∀{wn} ⊆ R+, limn→∞ wn = 0 ⇐⇒ limn→∞ F(wn) = −∞.

(F3) ∃ 0 < r < 1 such that limw→0+ w
rF(w) = 0.

We represnts z, the set of the functions I : R+
→ R satisfying (F1)-(F3).

Jleli et al. [12] initiated a novel extension of MSs, termed F -MSs, by considering a specific set of

functions ξ mapping the positive real numbers to the real numbers satisfying only (F1) and (F2).

Definition 2.5. ( [12] )Let O be nonempty set, and let d : O×O → [0,+∞). Let (ξ,α) be an element of

the Cartesian product F and the non-negative real numbers such that

(D1) (w, h) ∈ O×O, d(w, h) = 0 iff w = h,

(D2) d(w, h) = d(h,w), for all w, h ∈ O.

(D3) for all (w, h) ∈ O×O, and (wi)
N
i=1 ⊂ O, with (w1,wN) = (w, h), we have

d(w, h) > 0⇒ ξ(d(w, h)) ≤ ξ(
N−1∑
i=1

d(wi,wi+1)) + α.

∀N ≥ 2. Consequently, the pair (O, d) is classified as an F -MS.
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Example 2.1. ( [12]) Let O be the set of natural numbers. Then d : O×O → [0,+∞) defined by

d(w, h) =

 (w− h)2 if (w, h) ∈ [0, 3] × [0, 3]

|w− h| if (w, h) < [0, 3] × [0, 3]

with ξ(t) = ln(t) and α = ln(3) is an F -metric.

Definition 2.6. ( [12]) Let (O, d) be a F -MS.

(i) A sequence {wn} inO is termedF -convergent tow ∈ O if {wn} is convergent tow if it converges

to w under the F -metric d.

(ii) A sequence {wn} is considered F -Cauchy, if

lim
n,m→∞

d(wn,wm) = 0.

(iii) (O, d) is said to beF -complete, if eachF -Cauchy sequence inO isF -convergent to a certain

point in O.

Lemma 2.1. ( [2]) If A, B ∈ CB(O) and a ∈ A then for each positive number γ there exists a number b ∈ B
such that

d(a, b) ≤ HF (A, B) + γ.

Lemma 2.2. ( [2]) Let {An} be a sequence of sets in CB(O) and limn→∞HF (An, A) = 0 for A ∈ CB(O).
Moreover, if wn ∈ An and

lim
n→∞

d(wn,w) = 0,

then w ∈ A.

3. Main Results

In the whole section, we suppose that O is a F -MS with a F -metric d and G = {G : G is a

directed graph with V(G) = O and ∆ ⊆ E(G)}. We proceed to define the concept of a multivalued

G-contraction as follows.

Definition 3.1. Let (O, d) be a F -MS equipped with a graph G. A mapping J : O → CB(O) is termed a
multivalued graphic contraction (multivalued G-contraction) if there exists some λ ∈ (0, 1) such that

HF (Jw,Jh) ≤ λd(w, h), for all w, h ∈ O with (w, h) ∈ E(G), (3.1)

and if u ∈ Jw and v ∈ Jh are such that

d(u, v) ≤ λd(w, h) + γ, for each γ > 0, (3.2)

then (u, v) ∈ E(G).

Proposition 3.1. Let (O, d) be a F -MS and J : O → CB(O) be a multivalued G contraction. Then
J : O → CB(O) is multivalued graphic contraction for both G−1 and G̃, it means (3.1) and (3.2) holds for
G−1 and G̃.
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Proof. As F -metric is symmetric, so J : O → CB(O) is also multivalued graphic contraction for

both G−1 and G̃. �

Theorem 3.1. Let (O, d) be a F -complete F -MS and suppose that the triple (O, d, G) has the Property P.
Suppose that the mapping J : O → CB(O) is multivalued G-contraction and the set

OJ =
{
w ∈ O: (w, u) ∈ E(G), for some u ∈ J(w)

}
is nonempty. Then the following statements hold:

(i) for any w ∈ OJ, J|[w]G̃ has a fixed point,

(ii) if G is weakly connected and OJ , ∅, then J has a fixed point in O,

(iii) if O
′

= ∪
{
[w]G̃ : w ∈ OJ

}
, then the restriction J|w′ has a fixed point,

(iv) if J⊆E(G), consequently, J has a fixed point.

(v) FixJ, ∅ ⇐⇒ OJ , ∅.

Proof. (i). Let w0 ∈ OJ, then there exists a point w1 ∈ J(w0) such that (w0,w1) ∈ E(G). Since the

mapping J : O → CB(O) is multivalued G-contraction, so we have

HF (J(w0),J(w1)) ≤ λd(w0,w1).

By Lemma (2.1), there exists a point w2 ∈ J(w1) such that

d(w1,w2) ≤ HF (J(w0),J(w1)) + λ ≤ λd(w0,w1) + λ. (3.3)

Given that the mapping J is a multivalued G-contraction, so (w1,w2) ∈ E(G). Hence by (3.1), we

have

HF (J(w1),J(w2)) ≤ λd(w1,w2).

Again by Lemma (2.1), there exists a point w3 ∈ J(w2) such that

d(w2,w3) ≤ HF (J(w1),J(w2)) + λ2. (3.4)

Using inequality (3.3) in (3.4), we have

d(w2,w3) ≤ λ
2d(w0,w1) + 2λ2. (3.5)

Proceeding in this manner, we get wn+1 ∈ J(wn) such that (wn,wn+1) ∈ E(G) and

d(wn,wn+1) ≤ λ
nd(w0,w1) + nλn (3.6)

which yields
m−1∑
i=1

d(wi,wi+1) ≤
λn

1− λ
d(w0,w1) +

nλn

1− λ

for m > n. Since

lim
n→∞

(
λn

1− λ
d(w0,w1) +

nλn

1− λ

)
= 0

there exists some N ∈N such that

0 <
λn

1− λ
d(w0,w1) +

nλn

1− λ
< δ
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for n ≥ N. Now let (ξ,α) ∈ F × [0,+∞) be such that (D3) is satisfied and ε > 0 be fixed. From (F2),

there exists δ > 0 such that

0 < t < δ implies ξ(t) < ξ(ε) − α. (3.7)

Now since

0 <
λn

1− λ
d(w0,w1) +

nλn

1− λ
< δ,

for n ≥ N. Hence, by (3.7) and (F1), we get

ξ

m−1∑
i=1

d(wi,wi+1)

 ≤ ξ (
λn

1− λ
d(w0,w1) +

nλn

1− λ

)
< ξ (ε) − a (3.8)

for m > n ≥ N. Using (D3) and (3.8), we get

d(wn,wm) > 0, for m > n ≥ N

implies

ξ (d(wn,wm)) ≤ ξ

m−1∑
i=1

d(wi,wi+1)

+ a < ξ (ε)

which, from (F1), gives that

d(wn,wm) < ε

for m > n ≥ N. This proves that {wn} is Cauchy Sequence. Since (O, d) is an F -complete F -MS, so

{wn} converges to some point w∗ in O. We aim to establish that w∗ is a fixed point under the action

of J. Given Property P and the multivalued G-contractiveness of J, it follows that

HF (J(wn),J(w∗)) ≤ λd(wn,w∗).

Since wn+1 ∈ J(wn) and wn → w
∗, then by Lemma 2.2, we get that w∗ ∈ J(w∗). Next, as (wn,w∗) ∈

E(G), for n ∈N, we conclude that (w0,w1,w2, ...,wn,w∗) is a path in G and so w∗∈ [w0]G̃ . �

(ii) Since OJ , ∅, there exists a point w0 ∈ OJ and since G is weakly connected, then [w0]G̃ = O

and by the conclusion of (i), mapping J has a fixed point.

(iii) Condition (iii) is direct consequence of (i) and (ii).

(iv) letJ⊆E(G), implies that allw ∈ O are such that there exists some u ∈ J(w)with (w, u) ∈ E(G),

so OJ = O, and consequently by (ii) and (iii), J has a fixed point.

(v) let FixJ, ∅, this implies that there exists a pointw ∈ FixJ such thatw ∈ J(w)̇. Then ∆ ⊆ E(G),

therefore (w ,w)∈ E(G) which

implies that w ∈ OJ. So OJ , ∅. Conversely if OJ , ∅, then it follows from (ii) and (iii) that

FixJ, ∅.
A straightforward consequence of Theorem 3.1 is the following result.

Corollary 3.1. Let (O, d) be a F -complete F -MS and suppose that the triple (O, d, G) has the Property P.
If G is weakly connected then every multivalued G-contraction J : O → CB(O) such that (w0,w1) ∈ E(G)

for some w1 ∈ J(w0) has a fixed point.
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Remark 3.1. Assuming G satisfies E(G) = O × O, G is necessarily connected. This, combined with
Theorem 3.1, yields Nadler’s theorem in the setting of F -MSs.

Remark 3.2. If G satisfies E(G) = O ×O, G is necessarily connected and furthermore, if J is a single-
valued function, then we obtain the main result of Jleli et al. [12] which is Banach contraction theorem in
the framework of F -MSs.

4. Fixed Point Results for GF-Contractions

Let G be a directed graph on an F -MS (O, d) and J : O → K(O). Define JG ={
(w, h) ∈ E(G) : HF (Jw,Jh) > 0

}
.

Definition 4.1. ( [25]) Let (O, d) be aF -MS equipped with a graph G and J : O → K(O) be a multivalued
mapping. J has the weakly graph-preserving property, whenever for each a ∈ O and b ∈ J(a) with
(a, b) ∈ E(G) implies (b, c) ∈ E(G) for all c ∈ J(b).

Definition 4.2. Let (O, d) be a F -MS equipped with a graph G. A mapping J : O → K(O) is termed a
multivalued GF- contraction if there exists a function F ∈ z and a constant λ > 0 such that

λ+ F (HF (J(w),J(h))) ≤ F (d(w, h)) , (4.1)

for all w, h ∈ Owith (w, h) ∈ JG.

Theorem 4.1. () Let (O, d) be a F -complete F -MS equipped with a directed graph G and J : O → K(O)
is a multivalued GF- contraction and satisfy weakly graph-preserving property . If the set

OJ =
{
w ∈ O: (w, h) ∈ E(G), for some h ∈ J(w)

}
is nonempty. If J is continuous or if {wn} is a sequence in O converging to w ∈ O as n → ∞ and
(wn,wn+1) ∈ E(G) for all n, there is a subsequence {wnk} of {wn} in O such that (wnk

,w) ∈ E(G) for all k,

then J has a fixed point.

Proof. Let w0 ∈ OJ, then there exists a point w1 ∈ J(w0) such that (w0,w1) ∈ E(G). Now if

w1 ∈ J(w1), then w1 is fixed point and we have nothing to prove. So we assume that w1 < J(w1),

so d(w1,J(w1)) > 0. Now, since

0 < d(w1,J(w1)) ≤ HF (J(w0),J(w1)). (4.2)

Thus (w0,w1) ∈ JG. Now by (F1), (4.1) and (4.2), we have

F (d(w1,J(w1))) ≤ F (HF (J(w0),J(w1))) ≤ F (d(w0,w1)) − λ. (4.3)

Due to the compactness of J(w1), there exists w2 ∈ J(w1) such that

d(w1,w2) = d(w1,J(w1)). (4.4)

Hence by (4.3) and (4.4), we have

F (d(w1,w2)) ≤ F (d(w0,w1)) − λ. (4.5)
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Now since (w0,w1) ∈ E(G), w1 ∈ J(w0) and w2 ∈ J(w1) by the weakly graph-preserving property,

one writes

(w1,w2) ∈ E(G).

Now if w2 ∈ J(w2), then w2 is fixed point of J. So we assume that w2 < J(w2), then

0 < d(w2,J(w2)) ≤ HF (J(w1),J(w2)). (4.6)

Thus (w1,w2) ∈ JG. Now by (F1), (4.1) and (4.6), we have

F (d(w2,J(w2))) ≤ F (HF (J(w1),J(w2))) ≤ F (d(w1,w2)) − λ. (4.7)

Again, the compactness of J(w2) implies that there exists a point w3 ∈ J(w2) such that

d(w2,w3) = d(w2,J(w2)), (4.8)

Hence by (4.7) and (4.8), we have

F (d(w2,w3)) ≤ F (d(w1,w2)) − λ

≤ F (d(w0,w1)) − 2λ.

In this way, we can construct a sequence {wn} in O such that wn+1 ∈ J(wn), (wn,wn+1) ∈ E(G) and

F (d(wn,wn+1)) ≤ F (d(wn−1,wn)) − λ

≤ F (d(wn−2,wn−1)) − 2λ

≤ ... ≤ F (d(w0,w1)) − nλ. (4.9)

Taking n→∞ in above inequality (4.9), we have

lim
n→∞

F (d(wn,wn+1)) ≤ lim
n→∞

F (d(w0,w1)) − nλ = −∞. (4.10)

Hence by (F2), we get

lim
n→∞

d(wn,wn+1) = 0.

From the condition (F3), there exists 0 < r < 1 such that

lim
n→∞

[d(wn,wn+1)]
rF (d(wn,wn+1)) = 0. (4.11)

From (4.9) and (4.11), we have

[d(wn,wn+1)]
rF (d(wn,wn+1)) − [d(wn,wn+1)]

rF (d(w0,w1))

≤ [d(wn,wn+1)]
r[F (d(w0,w1)) − nλ] − [d(wn,wn+1)]

rF (d(w0,w1))

≤ −nλ[d(wn,wn+1)]
r
≤ 0.

Taking n→∞, we have

lim
n→∞

nλ[d(wn,wn+1)]
r = 0.

So there exists n1 (a positive integer) such that

n[d(wn,wn+1)]
r < 1
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for all n ≥ n1, or

d(wn,wn+1) <
1

n
1
r

(4.12)

n1∑
i=1

d(wi,wi+1) ≤

n1∑
i=1

1

i
1
r

(4.13)

ffor all n ≥ n1. Now let (ξ,α) ∈ F × [0,+∞) be such that (D3) is satisfied and ε > 0 be fixed. From

(F2), there exists δ > 0 such that

0 < t < δ implies ξ(t) < ξ(ε) − α. (4.14)

Now since

0 <
n1∑

i=1

1

i
1
r

<
∞∑

i=1

1

i
1
r

< δ, (4.15)

for n > n1. Hence, by (F1), (4.13), (4.14) and (4.15), we get

ξ

 m∑
i=1

d(wi,wi+1)

 ≤ ξ
 ∞∑

i=1

1

i
1
r

 < ξ (ε) − a (4.16)

for m > n ≥ n1. Using (D3) and (3.8), we get

d(wn,wm) > 0, m > n > n1 =⇒ ξ (d(wn,wm)) ≤ ξ

 m∑
i=1

d(wi,wi+1)

+ a < ξ (ε)

which, from (F1), gives that

d(wn,wm) < ε

Thus d(wn,wm)→ 0 as n→∞ and hence {wn} is a Cauchy sequence. �

Case 1. If J is continuous.

Since wn+1 ∈ J(wn), so we have

lim
n→∞

d(wn+1,J(w)) ≤ lim
n→∞

HF (J(wn),J(w)) = 0.

This shows that w∈J(w), that is, w is a fixed point of J in O.

Case 2. If {wn} is a sequence in O converging to w ∈ O as n→∞ and (wn,wn+1) ∈ E(G) for all n,

there is a subsequence {wnk} of {wn} in O such that (wnk
,w) ∈ E(G) for all k. By the inequality (4.1),

we have

F
(
d(wnk+1,J(w))

)
= F (HF (J(wnk),J(w))) ≤ F (d(wnk ,w)) − λ

< F (d(wnk ,w))

which implies due to (F1) that

d(wnk+1,J(w)) ≤ d(wnk ,w). (4.17)

Taking the limit as k→∞, we have d(w,J(w)) = 0. Since J(w) is closed, so w ∈ J(w).
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Example 4.1. Let O = {0, 1, 2, 3, 4, 5, 6, 7, 8} and d : O×O → [0,+∞) be defined by

d(w, h) =

 0, if w = h,

ew+h, if w , h.

Let G be a directed graph with V(G) = O and

E(G) =


(0, 0) , (0, 1) , (0, 4) , (0, 5) , (1, 0) , (1, 1) , (1, 2) , (1, 3) , (2, 2) ,

(2, 3) , (3, 2) , (3, 3) , (4, 4) , (4, 5) , (5, 4) , (5, 5) , (6, 6) ,

(6, 7) , (7, 1) , (7, 7) , (8, 7) , (8, 8) .


Then G is a directed graph and (O, d) is F -complete F -MS equipped with a directed graph. Define
J : O → K(O) by

J(w) =


{2, 3} if w ∈ {1, 2, 3}

{4, 5}, if w ∈ {0, 4, 5}

{1}, if w = 7

{7}, if w ∈ {6, 8}.

Let F(t) = ln t, for t > 0 and λ = ln(1.23). Given that the premises of Theorem 4.1 are met , we can
conclude that J has fixed points {2, 3, 4, 5} .

Corollary 4.1. ( [7]) Let (O, d) be a F -complete F -MS and J : O → K(O) be a continuous multivalued
mapping. If there exists a function F ∈ z and a constant λ > 0 such that

λ+ F (HF (J(w),J(h))) ≤ F (d(w, h)) ,

for all w, h ∈ O, then J has a fixed point.

Proof. Take E(G) = O×O in Theorem 4.1. �

Corollary 4.2. ( [19]) Let (O, d) be a F -complete F -MS equipped with a directed graph G and J : O → O

be a self mapping. f there exists a function F ∈ z and a constant λ > 0 such that

λ+ F (d(J(w),J(h))) ≤ F (d(w, h)) ,

for all (w, h) ∈ E(G) with d(Jw,Jh) > 0. If J is continuous or if {wn} is a sequence in O converging to
w ∈ O as n → ∞ and (wn,wn+1) ∈ E(G) for all n, there is a subsequence {wnk} of {wn} in O such that
(wnk

,w) ∈ E(G) for all k, then J has a fixed point.

Proof. Take J : O → O in Theorem 4.1. �

Corollary 4.3. ( [20]) Let (O, d) be a F -complete F -MS and J : O → O be a continuous self mapping. If
there exists a function F ∈ z and a constant λ > 0 such that

λ+ F (d(J(w),J(h))) ≤ F (d(w, h)) ,

for all w, h ∈ O, then J has a fixed point.

Proof. Take E(G) = O×O and the self mapping J : O → O in Theorem 4.1. �
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Remark 4.1. If we take ξ(t) = ln t and α = 0 in Definition (2.5), then the notion of F -MS reduces to
classical MS. Moreover if we take E(G) = O×O in Theorem 4.1, then we obtain the main result of Vetro et
al. [7].

Remark 4.2. If we take ξ(t) = ln t and α = 0 in Definition (2.5), then the notion of F -MS reduces to
classical MS. Moreover if we take the mapping J : O → O in Theorem 4.1, we get the leading result of Batra
et al. [21].

Remark 4.3. If we take ξ(t) = ln t and α = 0 in Definition (2.5), then the notion of F -MS reduces to
classical MS. Moreover if we take E(G) = O×O and the mapping J : O → O in Theorem 4.1, then we
obtain the main result of Wardowski et al. [6].

Remark 4.4. If we take J : O → O in Theorem 4.1, then we get the prime result of Faraji et al. [22].

Remark 4.5. If we take ξ(t) = ln t and α ≥ 1 in Definition (2.5), then the notion of F -MS reduces to
b-MS. Moreover if we take E(G) = O×O and the mapping J : O → O in Theorem 4.1, then we obtain the
main result of Cosentino et al. [23].

Conclusion

In this study, we successfully introduced the novel concept of multivalued graphic contractions

and multivalued GF-contractions within the framework ofF -MSs. By establishing new fixed point

theorems in this newly defined metric space, we have expanded the existing body of knowledge

in this area. The provided example serves as concrete evidence of the validity and applicability of

our obtained results. These findings contribute significantly to the ongoing research in fixed point

theory and its related fields.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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