Essential Norm of Composition Operators on Harmonic Zygmund Spaces and Their Derivative Spaces

Main Article Content

Munirah Aljuaid

Abstract

Let ψ represent the analytic self-mapping within the unit disk D. We define the composition operator Cψ as Cψf = f◦ψ for every f belonging to the space of harmonic functions H(D). The essential norm of composition operators within specific harmonic mapping spaces is investigated in this research. Explicitly, we outline the essential norm of composition operators on the harmonic Zygmund spaces ZH and the derivative of harmonic Zygmund spaces VH. Notably, these results extend and build upon results that were established previously for the analytic settings.

Article Details

References

  1. M. Aljuaid, F. Colonna, Characterizations of Bloch-Type Spaces of Harmonic Mappings, J. Funct. Spaces 2019 (2019), 5687343. https://doi.org/10.1155/2019/5687343.
  2. M. Aljuaid, F. Colonna, On the Harmonic Zygmund Spaces, Bull. Aust. Math. Soc. 101 (2020), 466–476. https://doi.org/10.1017/s0004972720000180.
  3. M. Aljuaid, F. Colonna, Composition Operators on Some Banach Spaces of Harmonic Mappings, J. Funct. Spaces 2020 (2020), 9034387. https://doi.org/10.1155/2020/9034387.
  4. M. Aljuaid, Composition Operators on the Space of Harmonic Mapping $mathcal V^ mathcal H$, J. Math. Anal. 14 (2023), 25–35. https://doi.org/10.54379/jma-2023-2-3.
  5. C. Pommerenke, J. Clunie, J. Anderson, On Bloch Functions and Normal Functions., J. Reine Angew. Math. 1974 (1974), 12–37. https://doi.org/10.1515/crll.1974.270.12.
  6. S. Axler, P. Bourdon, W. Ramey, Harmonic Function Theory, Springer New York, 2001. https://doi.org/10.1007/978-1-4757-8137-3.
  7. S. Chen, S. Ponnusamy, X. Wang, Landau's Theorem and Marden Constant for Harmonic $nu$-Bloch Mappings, Bull. Aust. Math. Soc. 84 (2011), 19–32. https://doi.org/10.1017/s0004972711002140.
  8. S. Chen, X. Wang, on Harmonic Bloch Spaces in the Unit Ball of $CC^n$, Bull. Aust. Math. Soc. 84 (2011), 67–78. https://doi.org/10.1017/s0004972711002164.
  9. F. Colonna, The Bloch Constant of Bounded Harmonic Mappings, Indiana Univ. Math. J. 38 (1989), 829–840. https://www.jstor.org/stable/24895370.
  10. F. Colonna, N. Hmidouch, Weighted Composition Operators on Iterated Weighted-Type Banach Spaces of Analytic Functions, Complex Anal. Oper. Theory 13 (2019), 1989–2016. https://doi.org/10.1007/s11785-019-00905-2.
  11. P.L. Duren, Theory of $H^p$ Spaces, Academic Press, New York, 1970.
  12. A.L. Shields, P.L. Duren, B.W. Romberg, Linear Functionals on $H^p$ Spaces with $0

    http://eudml.org/doc/183521.

  13. P.L Duren, Harmonic Mapping in the Plane, Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511546600.
  14. X. Fu, X. Liu, On Characterizations of Bloch Spaces and Besov Spaces of Pluriharmonic Mappings, J. Inequal. Appl. 2015 (2015), 360. https://doi.org/10.1186/s13660-015-0884-0.
  15. A. Kamal, Q‐Type Spaces of Harmonic Mappings, J. Math. 2022 (2022), 1342051. https://doi.org/10.1155/2022/1342051.
  16. K. Stroethoff, Harmonic Bergman Spaces, MSRI Publications, (1998).
  17. M. Tjani, Compact Composition Operators on Besov Spaces, Trans. Am. Math. Soc. 355 (2003), 4683–4698. https://doi.org/10.1090/s0002-9947-03-03354-3.
  18. R. Yoneda, A Characterization of the Harmonic Bloch Space and the Harmonic Besov Spaces by an Oscillation, Proc. Edinb. Math. Soc. 45 (2002), 229–239. https://doi.org/10.1017/s001309159900142x.