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Abstract. Let i represent the analytic self-mapping within the unit disk ID. We define the composition operator Cy,
as Cyf = f oy for every f belonging to the space of harmonic functions (D). The essential norm of composition
operators within specific harmonic mapping spaces is investigated in this research. Explicitly, we outline the essential
norm of composition operators on the harmonic Zygmund spaces Z*! and the derivative of harmonic Zygmund spaces
V*H. Notably, these results extend and build upon results that were established previously for the analytic settings.

1. INTRODUCTION

Given () to be a simply connected region in the complex plane. A harmonic mapping is a

complex function & defined on () satisfying the Laplace equation such that:

9*h
Ahi=4=—os = 0.

A harmonic mapping h always admits a representation in the form f 4 g, where f and g are

analytic functions. This representation achieves uniqueness when a fixed point wo within () is

specified, and g is chosen such that g(wp) = 0. Let’s denote ID as the open unit disk within C and

Aut(ID) as the group of disk automorphisms. The class of analytic functions on ID is represented
by H(ID), while H(ID) symbolizes the class of harmonic mappings on ID. For the scope of our
study, we will focus on the harmonic mappings with the domain ID and will use wy = 0 as the base
point. Thus, the typical representation of a mapping h € H(ID) is h = f + g, where f,g € H(D)
and g(0) = 0.
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The Bloch space B is characterized as the Banach space consisting of the functions f € H(ID)
such that

sup(1 - |wP)|f' (w)] < 0.
weD

The norm of f € B is defined as
Iflls = [£(0)] + sup(1 — [wP)|f (w)].
welD

The point-evaluation estimate, given by

If ()] < log %WHfH(B,

is a well-established property of functions f in 8.
The closed subspace By of B, comprising of the functions f satisfying

lim (1 - wP)|f" (@)l = 0,

lwl—=1
is commonly referred as the little Bloch space. In a study by [5], it was demonstrated that By is the
closure in 8 of the polynomial functions, thereby establishing its separability.
In complex function theory, extensive research has been conducted on the classical Zygmund
space Z. This space defined as the set of analytic functions f on ID with extensions to the unit

circle obtained through means of the radial limits. Formally, a function f € Z if

F(E0) + FOD) - 2f(e?)
Y

where the supremum is taken over all 6 € R and y > 0.

| -

lIfll: := sup

7

Suppose C(ID) denotes the space of continuous complex-valued functions on the closed unit
disk D. It is well-established that the Zygmund space Z is subset of the disk algebra H(ID) N C(ID).

According to Theorem 5.3 in [11], an analytic function f on ID is in the Zygmund space Z if and
only if

Iflliz := sup(1 — |wP)|f" ()] < oo,
weD

Moreover, ||fllsz = IIf]l..
The Zygmund space Z is a Banach space with the respect of the norm

Ifllz := 1f(O)1+1f"(0)] +sup(1 ~ )| ()] < oo.

weD

Moreover, the functions in the Z satisfy the point-evaluation estimate

If ()l <lIfllz

The closed subspace Zy of Z, consisting of the functions f satisfying the condition

|C101|r31(1 —wP)|f” ()| = 0.
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The space V consists of analytic functions f on unit disk ID such that their first derivative belong

to Z, and they satisfy

Ifllsv == sup(1 = wPlf"” (@) < oo.
weD

The space V becomes a Banach space under the norm
1flly = 1£(0)1+1f"(0)] + sup(1 — ) f" (w)] < eo.
w€lD

It is well known that the space V is properly contained in Z . Moreover, for f € V

Ifllz < lIfliz <1 fllv.

For more details see [10], where the authors studied weighted composition operators on iterated
weighted type Banach space of analytic functions.

Colonna, in reference [9], introduced the concept of the harmonic Bloch spaces BH as the set of
harmonic mappings on D that act as Lipschitz functions when considered as maps between the
hyperbolic disk and C equipped with the Euclidean metric. An additional characteristic of such
harmonic mappings h is the condition

Il g = sup(1 = wl®)[Jhe(@)] + Iz ()] < oo,
weD
where 1, and hg are the first complex partial derivatives of .

Subsequently, the authors, as detailed in [1] studied the harmonic Bloch spaces. In particular, it

was shown that the B is a Banach space under the norm

||h||gH = |h(0)| + Su}g(l - |w|2)(|hw(a))| + |I’la(w)|)

The space 87! can be regraded as the collection of harmonic mappings h € H (ID) such that i, + hz
lies in the harmonic growth space A*. The latter is defined as the set of i € (ID) such that

1]l e == sup(1 ~ ) (w)] < co.
weD

The functions in 8% satisfy the growth condition:
e
|h(w)| < log 1_—|a)|2||h||gf!~ (1.1)
The harmonic Zygmund space Z?! comprises all harmonic mappings & € C(ID) such that

Ih(e/OF7)) + h(e/07)) = 2h(0))|
k]| :== sup y < oo,

where the supremum is taken over all 0 € R and y > 0. According to Theorem 3.4 of [2], h € M

if and only if the following holds

Il 2= sup(1 = |wP)(Jaw (@)] + lzg(@)]) < oo,
weD

where hy,,, hge represent the second complex partial derivatives of h.
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Z™ is a Banach space under the given norm

Ihll 71 = 1h(0)] + Ihe, (0)] + Ihz(0)] + su]g(l = 10P) (I (@)] + Iz ()])-

The functions in Z% satisfy
(@)l < (Il 7. (1.2)

The little harmonic Zygmund space Zg{ is the collection of all harmonic mapping h such that

lim (1= 1) (o (@)] + iz ()]) = 0.

Expanding on the concept of the first derivative Zygmund space V, [4] the first author introudced

| <

Wl := 11(0)] + lhe (0)] + g (0)] + eww (0)] + 1z (0)] + [hllygn
= 1fO)l+1Ifo + fallzn.

The space V* forms a Banach space with respect to the norm described above.
In [4] the first author proves that the space VYH is contained in C (ﬁ) Moreover, for h € VH,

the space V¥ as set of all harmonic mappings h such that

2 hw)

_|_
dw°

o3
. 2
llgym = CSU‘:HI;(l = |wl%) Hﬂh(w)

Furthermore,

llco < 210g 21Allq - (1.3)

The composition operator Cy, induced by an analytic or a conjugate analytic self-map ¢ of ID, is

defined as
Cyh=hoy,
representing a linear transformation over C that acts on the class of harmonic mappings on ID.

Extensive research has been conducted on operator theory in spaces of analytic functions defined
within the unit disk, resulting in numerous research papers across various settings. Nevertheless,
the exploration of similar research in the context of harmonic settings remains relatively limited.

In recent years, there has been a growing interest in the study of harmonic mappings. Notably,
work presented in [1] has been complemented by efforts to characterize Bloch-type spaces for
harmonic mappings. In [3], the same authors have undertaken a comprehensive examination of
the compactness and boundedness of mappings in Cy, into weighted Banach spaces of harmonic
mappings.

For a more in-depth understanding of the field of harmonic mappings, we encourage further
exploration of additional references. Colonna studied the Bloch constant of bounded harmonic
mappings in [9], and [6] for Harmonic Function Theory. In [14], the authors characterized the
Bloch spaces and Besov spaces of pluriharmonic mappings. A characterization of the harmonic

Bloch space and the harmonic Besov spaces by an oscillation has been studied in [18]. The authors
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in [8] discussed the harmonic Bloch spaces in the unit ball of C". The Q-Type Spaces of Harmonic
Mappings and Harmonic Bergman spaces was studied in [15] and [16], respectively. Finally, in [13]
the author studied the harmonic mapping in the plane and [7] discussed Landau’s theorem and

Marden constant for harmonic v-Bloch mappings.

Let X and Y be Banach spaces and || - ||y_,y denotes the operator norm. The essential norm of a
bounded linear operator S : X — Y is its distance to the set of compact operators L mapping X to
Y, that is

ISIle x—y = inf{||S — L||x_y : L is compact operator}.

If X = Y, we denote the essential norm of bounded linear operator by [|S||, x-

It is well known that ||S]|, x_,y = 0if and only if S : X — VY is compact.

One of the primary aims in this work is to provide estimates the essential norm of a composition
operator acting on Z* and V7.

In this work we shall use the notation A < B to mean that for some c > 0, A < ¢B, whereas A < B
means A < Band B < A.

]
2. ESSENTIAL NORM ON HARMONIC ZYGMUND SPACE Z H

In this section, we focus on discussing the essential norm of composition operators on Z*. We
begin with a useful lemmas to prove the main result of this section.

The following lemma is an extension of Lemma 3.7 in [17], and the proof is straightforward.

Lemma 2.1. ([17], Lemma 3.7) Let X, Y be Banach spaces whose elements are harmonic functions on D,

and T : X — Y a bounded linear operator. Assume

(i) the point evaluation functionals on X are continuous;
(ii) the closed unit ball of X is a compact subset of X in the topology of uniform convergence on compact
sets;
(iif) T : X — Y is continuous when X and Y are given the topology of uniform convergence on compact
sets.

Then T is a compact operator if and only if given a bounded sequence { f,,} in X such that f, — 0 uniformly

on compact sets, the sequence {T f,} converges to zero in the norm of Y.

Lemma 2.2. If {hy} is a sequence in Zg{ converging uniformly to 0 on compact subsets of ID, then {hy}

converges to 0 weakly.

Proof. Let {h;} be as in the statement. Let A be a bounded linear functional on ZM. We wish to
show that {Ah} converges to 0. Since iy € Zg’ for each k, given ¢ > 0 there exists 6 > 0 such that
ford < |w|l <1

(1= 1P () oo ()] + | () (@)] < e.
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Then

| ARl < ANl 27

= [Nl (0)] + (B ) (0)] =+ (e )5 (0)| + Sug(l — ) | (i) o (@) + |(hk)m(w)|}
< AN (O)] + 1) (0)] + [ (i) 5 (0)] + sup (1 = |wl*) [|(7) ww (@) + | (i) ()]

lw]|<6

+ sup (1= 1w (7)) we (@)l + (i) ()]

o<|w|<1

< AN 0)] + 1) o (0)] + 1(Bie) 7(0)] + sup (1 = ) [| () wwo (@)] + | (hie) s ()| + €

lw|<0

Since {hx} converges to 0 uniformly on compact subsets of ID, it follows that limy_,« [A f¢| < [|Alle,

hence Al — 0ask — co. |

Lemma 2.3. For 0 < p < 1, T, be the linear operator mapping a harmonic function h in Z’ H to its dilation
hp(w) = h(pw), w in ID. Then the following statements hold.
(a) For p € (0,1), T, is bounded operator on Z*. Moreover

ITpllzn = 1.
(b)Let 6 € (0,1) and € > 0, then there exists p € (0,1) so that

sup sup|((I-Tp)h)(w)l <€, sup supl|((I-Tp)h)w(w)l+I((I-Ty)h)z(w)l <e,
il 3¢ <1 weD Wil <1 1015

sup sup |((I-Tp)h)ww(@)|+1((I-Tp)h)zgz(@)| <e.

all e <1 el <0

(c) T, is compact on M.
Proof. (a) Let p € (0,1) and k in Z*. Then

I Tphllz# = 1(0)] + plhe (0)] + pliz(0)] + p? sup(1 — ) [l (pw)] + Ihae (p@)]

weD
= Ih(0)l + plie(0)] + plhz(0)] + |s;lili(p2 = |2%) e (2)] + Iz (2)]]
< [1(0)] + e (0)] 4 hz(0)] + Elff(l —1212) (1w (2)] + Iz (2)1]
= Vil 7. @1)
Thus T, is bounded and observing that
1= Tp1ll g < NTpllzs_ zoell Ul g2 = ITpll o 7, (22)

combining (2.1) and (2.2), we obtain || T,|| zn_, zn = 1.
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(b) Let h € ZM with Illz# < 1. Let 6 € (0,1) and assume that {p,} is a sequence in (0,1)
converging to 1 as n — oco. By the continuity of & on the closed unit disk, for each w € D,

lim ((I—Tp,)h)(w) = lim (h(w) = h(puw)) = 0,

n—-oo n—oo

and by linearity and part (a)
(I = Tp, )Rl zs < Mhllzs + 1T, Bll 7 < 20l 70 < 2.

Thus %(I —Tp,)h is in unit ball of ZH. By (1.2), Z™ satisfies the hypothesis (ii) in Lemma 2.1,
therefore the sequence {(I —T,,)h} has subsequence {(I - Tpnj)h} converging uniformly to 0 on
every compact subset of ID. Since every sequence in Z’ converging uniformly on compact
subsets of ID converges uniformly on D, the subsequence {(I - Tpnj )h} converges uniformly to 0 on

D. Therefore for every ¢ > 0 there are p € (0,1) such that

sup |((1= T, ) ()| < &.
weD
By Montel’s theorem, the functions ((I—Tp,)h)o, ((I=Tp,)h)z ((I=Tp)M)ww, (I=Tp,)h)aw

converge uniformly to 0 on every compact subset of ID. Thus

|w|<6 |w|<6
The conclusion follows after taking the supremum over all functions in the unit ball of Z%/.
(c) Fix 0 < p < 1. To show that T, is compact on ZM, by Lemma 2.1, it suffices to show that

L [Ty fill zv = 0

for each bounded sequence {l} on Z™ converging uniformly on every compact subset of D.
Let {h} bounded sequence on zH converges uniformly to 0 on every compact subset of ID and
he = fi + g, with g¢(0) = 0. It is clear that f;, gx € Z. Then we have

ITphillsz0e = sgﬂg((l — 2P (Tpfie)” (@) + 1(Tpgx)” (@)l

= p? sug(l —lwP)If" (pw)l + 187 (pw)
wEe

= sup(p® — lzP)If (z)| + I8} ()]

lzl<p

<supl|ff’(z)| + gy (2)I-

lzl<p

Since {f} and {g;} converge uniformly to zero on the disk with radius p, then [[Tphl|sz# — 0 as
k — co. Since {0} is compact, (T,hi)(0), and ((Tphx)w + (Tphk)z) (0) converge to 0, so || Tphyll z# — 0
as k — oo. Thus T, is compact on z". m]
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Before we characterize the main theorem for this section, we shall recall the result in [3] that the

composition operator Cy, is bounded on Z" if and only if

sup(1—|w|2)[( ver ]

124 e
sup(1 - wf") " (@) log 7= (1-Tp(w)P

weD ¢(w)|2’ weD

are finite.

We are now ready to prove the main result for this section.

Theorem 2.1. Assume v be a self map on D such that Cy, is bounded on ZH. Then

. 2 7 € . 2 W)I(w)zl
ICyll, z# < max{limsup(1 — |w|*)P" (w)|log ————=, limsup(1 — o) | T———=5 | -
I (@)l—1 1=1¢(@)P" (@)1

(
(w 2
Proof. Set Ny := sup,p(1 - |w?)|¢” (w)|log m, Ny :=sup, p(1- lez)[ llf (W)l ]

Letd € (0,1) and € > 0. So, by Lemma 2.3, there is p € (0,1) so that

sup sup|((I-Tp)h)(w)l <€, sup sup|((I-Tp)h)o(w)l+I((I-Tp)h)z(w)l <e,

il 3¢ <1 wED il ¢ <1 ]

sup sup |((I=Tp)h)ww(@)|+1((I=Tp)h)zgz(@)| <e.

Wil <1 ] <5

It follows that

(CoT= TP (O)] +1(Co (T~ Ty (O)] + (Cy T = Tp) M)z 0)
< (=T O]+ 19 O] (1= T, ) (WO + 11 = T, ))(p(0))
< (141" (0)])e.

Avi= sup [I(Coll=Tyh) O+ I(CylI = Ty)u(0)l + 1(Cy(T = Ty (0}l < (1-+ 1 O)1 e,

Il <1
Ay:Wﬁgﬁga—mﬂwww$w—nm»wwm+uudwmawmﬂswm
:%:=Wﬁgﬂﬂgﬂ—wﬂw%wWWU—ﬂMmmw&wﬂ+KU4%Wbﬂ¢WDﬂSNﬁ-

Since T, is compact on Z* by part (c) in Lemma 2.3, we have

ICyll, 77 < ICu (= Tp)ll g, 7
= sup [ICy(I=Tp)hlizn
Wil g <1

= ”hlalsup ) (|(C¢;(I —Tp)h)(0)] 4+ 1(Cy(I=Tp)h)ew(0)| + 1(Cy ((I = Tp)h)z(0)]
ZH=

+ 5p (1 = o) [(Cy 1 = Ty s ()] +1(Cy 1 - Tp>h>w<w>|]]
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<A+ sup sup(1=10P)|[(Coll = Tp)huu(@) + I(Cy 1= Ty )z

il 7 <1 weD
<Ay + sup sup(1 =P (@II((1= Tp)a (@) + 1= Tz ()]
lll <1 weD
+ sup sup(1 = o)y’ (@P[I( = Tp)h)aws (B @) + (1 = T (@))]]
Ill ¢ <1 weD
<A1 +Ay+ A3
(1= Ty ) ($(@)] + (= Ty ) (9(@))
su sup (1 - o)’ (w)lo P P
+|Ihllfflj£1|¢(w)I|)>b( Py S I-(w)P log e
+supsup (1=1f)[ S NI = T () + (= T ()
Wil g <1 14 ()16 1-(w)P P

< (1 + |¢'(0)|)e + Nle + Noe
e (I=Tp)h)w((w)l+I(I-Tp)h)z(¢(2))l
u up (1— )Y’ ()1 e
i thlsZESl |¢?w>}|9>a( g (w)llog 7 (@) log Ty @e

1- 2 ’ 2
+ sup sup (1~ |y’ ()]
<t p(@)>s 1~ (@)

(1= (@) I(I = Ty M) (@)1 + 1T = Ty )W)
2.3)
Let h € Z™ such that ||l z» < 1. Then, by part (a) of Lemma 2.3,
I(I="Tp)hllz,, <Ikllz,, +ITphllzs <Al zs + Il z# < 2.
Therefore
(1 =1 (@) = Tp)h)ww (P (@)l + (I = Tp)M)am( (@)l < NI =Tp)hllzn < 2. (2.4)
Let w € ID, and since the function ((I - T)h)e + ((I— Tp)h)z in BM, we have by (1.1)
(L= Tp)h)o (@)l +1((I-Tp)h)z(w)| < log mll((l = Tp)h)w + ((I = Ty)h)gllgn
|log — W o ] 2.5)
Thus, by using (2.5), and (2.4) in (2.3), we have

ICyll, 7+ < (1 + [/ (0)] + My + M, +M3)e

_ 2 77 e (1 - |CU|2)|E[J'((U)2|
+2|¢?2)1|9>5(1 |lwl*)[") (w)llog T [0(@)R +2|¢?a1)1)1|)>6 TS (@E

where € is arbitrary. Let 5 — 1, we obtain

_ 2 ’ 2
”ClP”eZH<2hm( sup (1 —lez)lylf"(w)l10g%7L sup LD () |) (2.6)

1 [P(w)|>6 - |‘l’(w)| [P(w)|>6 1- |11[}(w)|2
which proves the upper bound.
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For b € C such that |b| > 1/2, consider the analytic one-parameter family {f;} defined on ID by

(1- |b|2)(1og(1 bw) + L':L)

) , 2.7)
fb( ) Ez

Staightforward calculation shows that

AV
il = suplt —kaf) (1~ - e+ ]

|- (1-bw) + (1-b)2]
<4sup(l-|wl|)(1-1bl) ( )_( )
weD EE
1-bw+b2(w—b
<4sup a)+_(a) )‘
weD 1—19(1)
<12.

Therefore f, € ZM. Moreover Sup s,z Ifpllzn < 0.

Now, let’s consider {z,},en as a sequence in the unit disk and |¢(z,)| = 1 as n — oo. For w € D,
define f,(w) = flP(Zn)(a)) as in (2.7), and let K = sup, || full z#. Observing that f;, is bounded on
Z™ and converges uniformly to 0 on ID. Moreover, we note that |2)i|r—r>11(1 —wP)If) (w)| = 0. So,

fn € .Zg{. Thus, by Lemma 2.2, f, converges weakly to 0 in Z*. Let T be a compact operator on
ZM. Then according to Lemma 2.1, we have

Tim [T fyll 7w = 0.

Thus
KICy =Tl zsn = lir?_)sotjp I(Cy = T) full 72

> hrnnj:fp ICy full z# — lir;l_)soljp IT full z

= lirr?_}s;}p ICy full 72
Hence

KlCylly, z# = hgl_il:p ICy full 72 (2.8)
Therefore
KIC 2 > limsup(1 = 2P )19’ (22 ()|~ limsup | (1= ) (2l (9 o))

Note that f;(¢(z,)) = 0 and | (Y (zn))| = = Itp( TwEIE Thus

lirnn_>5‘3p 1- Iznlz[%

Again, let b € C such that |[b] > 1/2. Define an analytic one-parameter family {g;} on ID by

] < KIICyll, z#- (2.9)
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e \-1—(1-bw) - 0 T
gp(w) =log - |b|2) 3 (5 —4log(1 - bw) +log”(1 - ba)))
We have
e -1 2|y e
llgsll ':su 1-lwf)(lo —|lo =
(log1 |b|2) (1 Wan)
log 2
_yfy mtlos2
logm

<4(1+log2+n).

Therefore g, € ZH". Moreover sup |Igpllz# < oo. Assume {z;},en be in the unit disk and
bj>1/2
[¢(zn)l = 1asn — oo.Letn € N,z € D, and assume g = gy(,,) asin (2.10), and let L = sup ||gull 7
nelN

We know that the sequence g, is abounded on Z’ and converges to 0 uniformly on ID. Moreover
limy,1 (1 = |wf?)|gy (w)| = 0. Therefore g, € Zg{ . Thus, by Lemma 2.2, g, converges weakly to 0
inZH. LetThea compact operator on ZH . Therefore

lim [[Tgullzn = 0.

It follows that
LICy = Tliz-,zn 2 lim sup 1(Cy = T)gull z

> lirr?joljp ICy&nll z = lirr?j;lp ITgnll z#

> hr;:s::p ICygnllz.
Hence

LIICyll, 7z = lir;l_)s;lp ICygnll 2. (2.10)
Therefore
Loyl 2 2 imsup(1 = 2 )Y (2n)lgh ()|~ imsup | (1= P9 (20 2l ()

Then after simple calculations, we get

. 1- |Zn|2)|¢l(zn)2|
limsup 3(1 = |z, (z,)| 1o ¢ < < L|ICyll, 7+ + limsu 2
n—>oop ( | | )M) )( )l gl_llp( )|2 wlezr n—>oop 1_|1P(Zn)|2

<Cyll, zn- (2.11)
As consequence, by (2.6), (2.9) and (2.11)

s o o[ @)
||c¢||e,zwmax{1hlpr2;3;;(1 W)l (@)llog T |¢< i limsup(l -l )[1—|¢(w)|2]}
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which completes our proof. m]

3. ESSENTIAL NORM ON HARMONIC SPACE, V7 H

In this section, we move our attention to characterize the essential norm of the composition
operators acting on the space VH.
This section begins with a result in [4], the compostion operator Cy, is bounded on VM if and

only if € V* and
e

_ 2 ’ ” 00
Zgg(l P’ (w)p (w)llog—l_w}(w)|2 <

In order to characterize the main result, we recall the following lemmas.

Lemma 3.1. Assume the sequence {hy} € (Vg{ and converges uniformly to 0 on compact subsets of D, then

{hy} converges to 0 weakly.
The proof is similar to that used in the proof of Lemma 2.2

Lemma 3.2. Let T, be the linear operator mapping a harmonic function h in VH to its dilation hp(w) =
h(pw), w inID and 0 < p < 1. Then the following statements hold.
(a) For each p € (0,1), T, is bounded operator on VH. Moreover

ITpllgr = 1.
(b) For each 6 € (0,1) and each € > 0, there exists p € (0,1) such that

sup sup|((I-Ty)h)(w)l <€,

Il <1 weD

sup sup|((I-Tp)h)o(@)l+ (I~ Tp)h)z(w)l <e,

Pl <1 w€D

sup sup |((I = Tp)h)wo (@) + (1= Tp)h)ga(w)| <,

Willyre <1 ol

sup sup [((I = Tp)h)wow (@)l + (I = Tp)h)gaa(@)| <e€.

il <1 015

(c) Tp is compact on YH,
Proof. The argument is similar to that in the proof of Lemma 2.3. m]
We are now ready to present the main theorem of this section.

Theorem 3.1. Let ¢ be a self map on D such that Cy is bounded on V" H._ Then

— P ()3
Cyplle qm xmax{limsup(l—|a)|2)|(1p’¢”)(w)|10g1_— I (1=l () |}.

e
, lim sup
W (w)l-1 ()P )1 1 p(@)P
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Proof. Let My := sup(1 — |w?)[y"" (w)|, Mz := sup(1 — |w?)[¢’ (w)¢" ()| log @R
weD weD

o (P (@)1
Ms = SIP Tw()P

Let 0 € (0,1) and € > 0. So, by Lemma 3.2, there is p € (0,1) such that

sup sup|((I-Tp)h)(w)l <e,
19 <1 weD

sup sup |[((I - Tp)h)o (@)l + (I - Tp)h)z(w)l <,

lIAll ¢ <1 w€D

sup sup [((I = Tp)h)ww (@) +1((I-Tp)h)zz(w)l <e,

il <1 w0]<5

sup sup |((I- Tp)h)www(a))| +1((I- Tp)h)m(wﬂ <e.
il e <1 el

It follows that

[(Cy(I=Tp)h)(0)] +1(Cy (I = Tp)h)w(0)l + [(Cy (I = Tp)h)z(0)] + 1(Cy (I = Tp)h)we (0)]

< (=T ) ($(O)) + /(0 >[((1—Tp>h>w<¢<o>>|+|<<1—Tp>h>a<¢<o>>|]
1 O (1 - DIERER SOECION

1y (031 - )|+ (1= Ty h)as((0))
< (L1 (0)1+ 17 (0 ))+|¢( )*))e.
So

B1::”h|s|.up [I(C¢(I—Tp) )(O)]+1(Cy (I = Tp)h)w(0)] + 1(Cy (I = Tp)h)z(0)]
VH<1

FUCHT = T (O] + 1(Cy (T = Ty )W) O)
< (11 )1+ 1" O + v’ (021,
Bai= sup sup(l =Py (@)[I((1= Tp)u (g (@)l + (1= Ty (@)

il ¢, @€D
< Mqe,
Bs: = ”hi;}; lswllg(l - Iw|2)l(¢’¢”)(w)l[l((l = Tp))aww (Y (@) +1((T = Tp)h)m(¢(w))l]
< Mpe,
Bs= sup sup(1-laf)ly'(w) 1= T g @)1+ 1= To ) ()

< Mgse.
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Since T, is compact on VH by part (c) in Lemma 3.2, we have

ICyll, a2 < NCy(I=Tp)llgm
= sup ||C¢(I_Tp)h||q/H

Illv<1

= sup [I(Clp(l = Tp)h)(0)] + [(Cy (I = Tp)h)w (0)| + 1(Cy (I = Tp) 1)z (0)]

Willyp oy

+1(Cy(I = Tp)h)ww (0)] + [(Cy (I = Tp ) 1)z (0)]

+5up (1) I(Cy 1~ T ) ()] +1(Co (1~ Tp>h>m<w>|]]

<Bi+ sup sup(l-— |w|2)[|(c¢(1— Ty)) o ()] + 1(Cy (I - Tp)h)m(a))l]

Py, €D

<Bi + sup sup(1-leP) (@II((1 = Ty (Y (@)l +1( = Ty (p(@))]

il 3, @€D

+ sup sup(l- lwIZ)I(IP'W')(w)I[I((I = Tp))we (P(@)) +1((T = Tp)h)m(lP(w))l]

Il 3¢ ., wED

+ sup sup(1 = |wP)I((I = Tp)h)wwe (§(@)) + (I = Tp)h)gzm (Y (@)

Il g ., €D

<Bi+By+ B3+ By

u u _ wZ 11,07 W I((I_Tp)h)ww(lP( ))|+|((I Tp)h)ww(lp(a)))l
+||hﬁwljsl |¢?w>1|9>a(1 DI y@Nos T35 G log e
(1- o)y’ (w)?|

u u - 2 www @ - Dow @
+|Ihﬁwlj<1lwfw)ﬁ)>6 =[P (1= (@)Y’ (@) P = Tp)wwo (@) + (T = Tp)h)gas (@)

s(1+|1/z( )+ 19" (0)] + |4’ (0)? )6+M1€+M26+M3e

sup  sup (1— o)1) (w)]lo e (UI=Tp)wo@ (@) + (1= Tp)h)aa(¥ (@)l
+”h”w5g |¢(w)}|)>6(1 P97 (@il 1) log Ty

+ sup sup (1—|w|2)|z//(w)
Wil Wp(@)zs 1= 1P(@)l

( = 1P(@)P)I((I = Tp)h)www (@) +1((I= Tp) ) zmm (@)
(3.1)
Let h € VH such that Iillq+ < 1. Then, by part (a) of Lemma 3.2,
(L= Tp)hlloyse < Nhllgre + T phllapre < Nhllyse + Al < 2.
Therefore

(1= 1 (@) = Tp)h)owe (Y (@) +1((I = Tp) W) aaz (Y (@)I < (= Tp)hllan < 2. (3.2)

Since the function (I — Ty)h)ww + (I = Tp)h)ge in By, for w € ID, we obtain

(= Ty o)1+ 1((1 = Ty ()] < 108 7 sl (1= T + (1= Tyl
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e

<log —  _(I=T,)Al
BT fp(ap ! T e
e
<2log ———. 3.3
Thus, by using (3.3), and (3.2) in (3.1), we have
ICyll, ym < (1 1 O)] + 17 (0)] + [/ (0)2 + My + My + Mg)e
e (1= lwP)lY’ (@)?)
+2 sup (1-|wP)I(¥'¢")(w)log ————— +2 sup .
(@)l I-P(@)P s 1-(@)P
Since € is arbitrary, and by letting 6 — 1, we obtain
. e (1= lwP) Y’ (w)*]
ICu Il < 211rn( sup (1 - oP)I(¢'¢")(@)]log ———— + su ) (3.4)
e = 2 oo VYN @B ine 1o W)

which proves the upper bound.
To prove the lowerr bound, fix b € ID such that 1/2 < || < 1 and define the analytic one
parameter family of test function F; as follows. For w € ID, let

(1-pR)? _ 1P
Fylw) = T(zlogu ~bo) + - —Ew)'

Noting f, is analytic on ID, and a direct calculations show that

(3.5)

o (A=pP)? 2 1—[bP
Fle) = i3 ( 1—Ea)+(1—Ew)2)'

gy 200=BP? 1 1P
Filw) = b ( (1—50))2+ (1—Ew)3)’

2 N 3(1- |b|2)).

F(w) = 2(1 - Iblz)z( - (1-bw)®  (1-Dbw)*

Then,
17 2 3(1 — |b|2)
(1 =PI (@)1 = 21 = o) (1 = 47 - - TP (1 —Ew)‘*‘
. ol 2 3(1—|bP)
<20l e |1—Ewl4]
—|w|? _ 22» 2 3(1_|b|2)
<2(1=lwl*)(1 = 1bI%) | (1= Jwl) (1~ [bl)? + (1-lwl)(1 —|b|)3}
<16(2+6) = 128.
Therefore,

IEpllqss = IFy(0)] + IF; (0)] + [F (0)] + sug(l — lw)IF}) (@)
we

1-bP)°? (142 (1-|bf2)? y
- ( |3 : + ( |)sz ) 4 2[b|(1 = [bI*)? + sup (1 — ) |F” (w)|
weD
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<9+128
= 137.

Thus Fj, € VH. Moreover, SUP 1 <1 IFallq < 137.

Let’s consider a sequence {z,},en within the unit disk such that [ (z,)| = 1asn — . Forw € D,
let F,, := Fyz) be defined as in (3.5), and let Q = sup, . |[Fullq#. It is obsered that F,, is bounded
on V* and uniformly converges to 0 on ID. Moreover, we note that limy,_1 (1 — |@*)|F} (w)| = 0.
So, F, € "Vg‘(. Therefore, by Lemma 3.1, F,, converges weakly to 0 in YH. Let T be a compact

operator on V*. Then, according to Lemma 2.1

Tim [ITF,llyn = 0.

Thus
QlCy = Tllqym_qpm = lirnn_)s::p I(Cy = T)Fully
> lim sup ||Cy Fyllqn — limsup [[TFylq»
n—sc0 n—00

= lirzlﬁsup ICy Fllq.

Hence
QlCyllyqm = hr,?_?:jp ICyFullqyn. (3.6)

Therefore

Q”Cd)”e,v > lim Sup(1 - Izn|2)|¢’(Zn)3)”F;1”<1;b<Zn)>|

n—oo

~timsup | (1= 2 P)ly" (20 IE, (9 (20)] + 3(1 = P9 9") o) IF; () |

n—oo

Recalling the formulas for F;, F;/, and F;/’ following (3.5), we see that

Fy(9(n)) = 0and [Fy/ (9 (an))| = e Thus
. 2(1 - |Zn|2)|¢’(zn)3| . " ,
hr’?_)sotolp = 10(zn)P < QlCyll, s + hr;l_:s;::p |(1 — lzul*) | (zn)||Fn(¢(zn))|].

Since F,, converge uniformly to 0 on D and

(1= lzal®)IY" (zu)l < Suﬂ};(l —lwP)p"” ()] < oo, 3.7)
then
lim su 2(1 - |Zn|2)|7yb’(zn)3|
n—)oop 1- |1,b(zn)|2

< QICylle,vy (3.8)
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Again, fix b € D such that 1/2 < |b| < 1 and define the one parameter family of test function G,
as follows. For w € D, let

(1 —Ew)2[15 ~101log(1 - bw) + 21og?(1 - Ew)]
Gb(a)) = ) . (3.9)
4b log =

We have Gy is analytic, and straightforward calculations show that

(1 —Ew)[ 54 4log(1 - bw) — log?(1 —Ew)]
Gy(w) = = ,

Then

-1
[log ) _egw |(1°g 1 —e|b|2)

(1-lwP)IG ()l = (1 - |wl?)
it

< 'log ‘< ’(log ¢ )_1
1= lwl 1-bw 1-1b?

e \! e
( |b|2) \/10gZ 1 - bo) e
e\l
4(1081—|b|2) (log
4( log ——— ¢ )_1(10g 4 n)
1-|b? 1—b]

2e
4(1 |b|2) (log T—bR ”)

log 2
gl 08T og2+m
log1 e

<4(1+log2+m).

<41
< 4| log 7
<

Therefore,

sup(1 —|w)IG) (©)| < 4(1 +log2 + ).
weD

Thus, G, € YyH . Moreover,

sup  [|Gpllqn < 0.
1/2<|bl<1

Let {z,}nen be a sequence in the unit disk such that |¢(z,)| = 1asn — co. Forn € N,and w € D,
let G, = Gy(z,) asin (3.9), and let N = sup,, . |Gpllqs.
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Observing that G, is a bounded sequence on V* and uniformly converges to 0 on ID, we note
additionally that limy,-1(1 - |w[*)|G}) (w)| = 0. Thus, G, € (Vg{. Moreover, by Lemma 3.1, G,
converges weakly to 0 in V*. Assume the operator T be a compact on V*. Then

Bim TGy lyn = 0.

It follows that
NIICy = Tllqyn _qm 2 111;1 sup [[(Cy — T)Gullqn
> liglﬁsoljp ICy Gl — 111;1 \sup ITGpllqs
> lim sup ||Cy Gyllqn.
oo
Hence
NICyllm 2 lim sup Iy Gullyn- (3.10)
Therefore
NIICo,plloqm = ﬁf;foljp 3(1 = LzalP)I (W'Y (2a)IGyy (¥ (20))]
~timsup | (1 = o)l ()IGH (Y (20))1 -+ (L= ) (z0) UG ()]

Note that |G/ (¢(zn))| = log 1 l[l( e and G (W(zn))| = 12||l5}(( ))IZ Using the fact that G;, converges

uniformly to 0 on D, and by (3.7) and (3.8), we deduce that

_ 2 ’ 3
im sup (1 )| (39") (2108 757 < NICyl e + limsup 5 |—Z|1|¢)g.|z¢)|(f =

< NCyllgqm- (3.11)

As conclusion, by (3.4), (3.8) and (3.11), we obtain

| (1-lwP)Y’ (w)?
Cyllyym = 1 1= lwP)I(¥'¢") (@)l log ———— 1 ’
ICyll, maX{hlpr(r;;ti};( I Y") (@)l log -— Ieb( o ;‘jfl’ 1—[(w)P }

O
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