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Abstract. Let ψ represent the analytic self-mapping within the unit disk D. We define the composition operator Cψ
as Cψ f = f ◦ ψ for every f belonging to the space of harmonic functions H(D). The essential norm of composition

operators within specific harmonic mapping spaces is investigated in this research. Explicitly, we outline the essential

norm of composition operators on the harmonic Zygmund spacesZH and the derivative of harmonic Zygmund spaces

V
H . Notably, these results extend and build upon results that were established previously for the analytic settings.

1. Introduction

Given Ω to be a simply connected region in the complex plane. A harmonic mapping is a

complex function h defined on Ω satisfying the Laplace equation such that:

∆h := 4
∂2h
∂ω∂ω

≡ 0.

A harmonic mapping h always admits a representation in the form f + g, where f and g are

analytic functions. This representation achieves uniqueness when a fixed point ω0 within Ω is

specified, and g is chosen such that g(ω0) = 0. Let’s denote D as the open unit disk within C and

Aut(D) as the group of disk automorphisms. The class of analytic functions on D is represented

by H(D), while H(D) symbolizes the class of harmonic mappings on D. For the scope of our

study, we will focus on the harmonic mappings with the domain D and will useω0 = 0 as the base

point. Thus, the typical representation of a mapping h ∈ H(D) is h = f + g, where f , g ∈ H(D)

and g(0) = 0.
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The Bloch space B is characterized as the Banach space consisting of the functions f ∈ H(D)

such that

sup
ω∈D

(1− |ω|2)| f ′(ω)| < ∞.

The norm of f ∈ B is defined as

‖ f ‖B = | f (0)|+ sup
ω∈D

(1− |ω|2)| f ′(ω)|.

The point-evaluation estimate, given by

| f (ω)| ≤ log
e

1− |ω|2
‖ f ‖B,

is a well-established property of functions f in B.

The closed subspace B0 of B, comprising of the functions f satisfying

lim
|ω|→1

(1− |ω|2)| f ′(ω)| = 0,

is commonly referred as the little Bloch space. In a study by [5], it was demonstrated that B0 is the

closure in B of the polynomial functions, thereby establishing its separability.

In complex function theory, extensive research has been conducted on the classical Zygmund

space Z. This space defined as the set of analytic functions f on D with extensions to the unit

circle obtained through means of the radial limits. Formally, a function f ∈ Z if

‖ f ‖∗ := sup
| f (ei(θ+γ)) + f (ei(θ−γ)) − 2 f (eiθ)|

γ
< ∞,

where the supremum is taken over all θ ∈ R and γ > 0.

Suppose C(D) denotes the space of continuous complex-valued functions on the closed unit

disk D. It is well-established that the Zygmund spaceZ is subset of the disk algebra H(D)∩C(D).

According to Theorem 5.3 in [11], an analytic function f on D is in the Zygmund spaceZ if and

only if

‖ f ‖sZ := sup
ω∈D

(1− |ω|2)| f ′′(ω)| < ∞.

Moreover, ‖ f ‖sZ � ‖ f ‖∗.
The Zygmund spaceZ is a Banach space with the respect of the norm

‖ f ‖Z := | f (0)|+ | f ′(0)|+ sup
ω∈D

(1− |ω|2)| f ′′(ω)| < ∞.

Moreover, the functions in theZ satisfy the point-evaluation estimate

| f (ω)| ≤ ‖ f ‖Z

The closed subspaceZ0 ofZ, consisting of the functions f satisfying the condition

lim
|ω|→1

(1− |ω|2)| f ′′(ω)| = 0.
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The spaceV consists of analytic functions f on unit disk D such that their first derivative belong

toZ, and they satisfy

‖ f ‖sV := sup
ω∈D

(1− |ω|2| f ′′′(ω)| < ∞.

The spaceV becomes a Banach space under the norm

‖ f ‖V := | f (0)|+ | f ′(0)|+ sup
ω∈D

(1− |ω|2)| f ′′′(ω)| < ∞.

It is well known that the spaceV is properly contained inZ . Moreover, for f ∈ V

‖ f ‖B ≤ ‖ f ‖Z ≤ ‖ f ‖V.

For more details see [10], where the authors studied weighted composition operators on iterated

weighted type Banach space of analytic functions.

Colonna, in reference [9], introduced the concept of the harmonic Bloch spaces BH as the set of

harmonic mappings on D that act as Lipschitz functions when considered as maps between the

hyperbolic disk and C equipped with the Euclidean metric. An additional characteristic of such

harmonic mappings h is the condition

‖h‖sBH := sup
ω∈D

(1− |ω|2)
[
|hω(ω)|+ |hω(ω)|

]
< ∞,

where hω and hω are the first complex partial derivatives of h.

Subsequently, the authors, as detailed in [1] studied the harmonic Bloch spaces. In particular, it

was shown that the BH is a Banach space under the norm

‖h‖
BH

:= |h(0)|+ sup
ω∈D

(1− |ω|2)
(
|hω(ω)|+ |hω(ω)|

)
.

The spaceBH can be regraded as the collection of harmonic mappings h ∈ H(D) such that hω+ hω
lies in the harmonic growth spaceAH . The latter is defined as the set of h ∈ H(D) such that

‖h‖
AH

:= sup
ω∈D

(1− |ω|2)|h(ω)| < ∞.

The functions in BH satisfy the growth condition:

|h(ω)| ≤ log
e

1− |ω|2
‖h‖
BH

. (1.1)

The harmonic Zygmund spaceZH comprises all harmonic mappings h ∈ C(D) such that

‖h‖ := sup
|h(ei(θ+γ)) + h(ei(θ−γ)) − 2h(eiθ)|

γ
< ∞,

where the supremum is taken over all θ ∈ R and γ > 0. According to Theorem 3.4 of [2], h ∈ ZH

if and only if the following holds

‖h‖sZH := sup
ω∈D

(1− |ω|2)
(
|hωω(ω)|+ |hωω(ω)|

)
< ∞,

where hωω, hωω represent the second complex partial derivatives of h.
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Z
H is a Banach space under the given norm

|h‖
ZH

= |h(0)|+ |hω(0)|+ |hω(0)|+ sup
ω∈D

(1− |ω|2)
(
|hωω(ω)|+ |hωω(ω)|

)
.

The functions inZH satisfy

|h(ω)| ≤ ‖h‖
ZH

. (1.2)

The little harmonic Zygmund spaceZH0 is the collection of all harmonic mapping h such that

lim
|ω|→1

(1− |ω|2)
(
|hωω(ω)|+ |hωω(ω)|

)
= 0.

Expanding on the concept of the first derivative Zygmund spaceV, [4] the first author introudced

the spaceVH as set of all harmonic mappings h such that

|h‖sVH := sup
ω∈D

(1− |ω|2)
[∣∣∣∣∣∣ ∂3

∂ω3 h(ω)

∣∣∣∣∣∣+
∣∣∣∣∣∣ ∂3

∂ω3 h(ω)

∣∣∣∣∣∣
]
< ∞.

Furthermore,

‖h‖
VH

:= |h(0)|+ |hω(0)|+ |hω(0)|+ |hωω(0)|+ |hωω(0)|+ ‖h‖sVH

= | f (0)|+ ‖ fω + fω‖ZH .

The spaceVH forms a Banach space with respect to the norm described above.

In [4] the first author proves that the spaceVH is contained in C(D). Moreover, for h ∈ VH ,

‖h‖∞ ≤ 2 log 2‖h‖
VH

. (1.3)

The composition operator Cψ induced by an analytic or a conjugate analytic self-map ψ of D, is

defined as

Cψh = h ◦ψ,

representing a linear transformation over C that acts on the class of harmonic mappings on D.

Extensive research has been conducted on operator theory in spaces of analytic functions defined

within the unit disk, resulting in numerous research papers across various settings. Nevertheless,

the exploration of similar research in the context of harmonic settings remains relatively limited.

In recent years, there has been a growing interest in the study of harmonic mappings. Notably,

work presented in [1] has been complemented by efforts to characterize Bloch-type spaces for

harmonic mappings. In [3], the same authors have undertaken a comprehensive examination of

the compactness and boundedness of mappings in Cψ into weighted Banach spaces of harmonic

mappings.

For a more in-depth understanding of the field of harmonic mappings, we encourage further

exploration of additional references. Colonna studied the Bloch constant of bounded harmonic

mappings in [9], and [6] for Harmonic Function Theory. In [14], the authors characterized the

Bloch spaces and Besov spaces of pluriharmonic mappings. A characterization of the harmonic

Bloch space and the harmonic Besov spaces by an oscillation has been studied in [18]. The authors
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in [8] discussed the harmonic Bloch spaces in the unit ball of Cn. The Q-Type Spaces of Harmonic

Mappings and Harmonic Bergman spaces was studied in [15] and [16], respectively. Finally, in [13]

the author studied the harmonic mapping in the plane and [7] discussed Landau’s theorem and

Marden constant for harmonic ν-Bloch mappings.

Let X andY be Banach spaces and ‖ · ‖X→Y denotes the operator norm. The essential norm of a

bounded linear operator S : X → Y is its distance to the set of compact operators L mapping X to

Y, that is

‖S‖e,X→Y = inf{‖S − L‖X→Y : L is compact operator}.

If X = Y, we denote the essential norm of bounded linear operator by ‖S‖e,X.

It is well known that ‖S‖e,X→Y = 0 if and only if S : X → Y is compact.

One of the primary aims in this work is to provide estimates the essential norm of a composition

operator acting onZH andVH .

In this work we shall use the notation A � B to mean that for some c > 0, A ≤ c B, whereas A � B
means A � B and B � A.

2. Essential norm on harmonic Zygmund spaceZH

In this section, we focus on discussing the essential norm of composition operators onZH . We

begin with a useful lemmas to prove the main result of this section.

The following lemma is an extension of Lemma 3.7 in [17], and the proof is straightforward.

Lemma 2.1. ( [17], Lemma 3.7) Let X, Y be Banach spaces whose elements are harmonic functions on D,
and T : X→ Y a bounded linear operator. Assume

(i) the point evaluation functionals on X are continuous;
(ii) the closed unit ball of X is a compact subset of X in the topology of uniform convergence on compact

sets;
(iii) T : X→ Y is continuous when X and Y are given the topology of uniform convergence on compact

sets.

Then T is a compact operator if and only if given a bounded sequence { fn} in X such that fn → 0 uniformly
on compact sets, the sequence {T fn} converges to zero in the norm of Y.

Lemma 2.2. If {hk} is a sequence in ZH0 converging uniformly to 0 on compact subsets of D, then {hk}

converges to 0 weakly.

Proof. Let {hk} be as in the statement. Let Λ be a bounded linear functional on ZH . We wish to

show that {Λhk} converges to 0. Since hk ∈ Z
H

0 for each k, given ε > 0 there exists δ > 0 such that

for δ < |ω| < 1

(1− |ω|2)|(hk)ωω(ω)|+ |(hk)ωω(ω)| < ε.
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Then

|Λhk| ≤ ‖Λ‖‖hk‖ZH

= ‖Λ‖

|hk(0)|+ |(hk)ω(0)|+ |(hk)ω(0)|+ sup
ω∈D

(1− |ω|2)[|(hk)ωω(ω)|+ |(hk)ωω(ω)|


≤ ‖Λ‖

|hk(0)|+ |(hk)ω(0)|+ |(hk)ω(0)|+ sup
|ω|≤δ

(1− |ω|2)[|(hk)ωω(ω)|+ |(hk)ωω(ω)|]

+ sup
δ<|ω|<1

(1− |ω|2)[|(hk)ωω(ω)|+ |(hk)ωω(ω)|]


< ‖Λ‖

|hk(0)|+ |(hk)ω(0)|+ |(hk)ω(0)|+ sup
|ω|≤δ

(1− |ω|2)[|(hk)ωω(ω)|+ |(hk)ωω(ω)|+ ε

.
Since {hk} converges to 0 uniformly on compact subsets of D, it follows that limk→∞ |Λ fk| ≤ ‖Λ‖ε,

hence Λhk → 0 as k→∞. �

Lemma 2.3. For 0 < ρ < 1, Tρ be the linear operator mapping a harmonic function h inZH to its dilation
hρ(ω) = h(ρω), ω in D. Then the following statements hold.
(a) For ρ ∈ (0, 1), Tρ is bounded operator onZH . Moreover

‖Tρ‖ZH = 1.

(b)Let δ ∈ (0, 1) and ε > 0, then there exists ρ ∈ (0, 1) so that

sup
‖h|
ZH
≤1

sup
ω∈D
|((I − Tρ)h)(ω)| < ε, sup

‖h‖
ZH
≤1

sup
|ω|≤δ
|((I − Tρ)h)ω(ω)|+ |((I − Tρ)h)ω(ω)| < ε,

sup
‖h‖
ZH
≤1

sup
|ω|≤δ
|((I − Tρ)h)ωω(ω)|+ |((I − Tρ)h)ωω(ω)| < ε.

(c) Tρ is compact onZH .

Proof. (a) Let ρ ∈ (0, 1) and h inZH . Then

‖Tρh‖
ZH

= |h(0)|+ ρ|hω(0)|+ ρ|hω(0)|+ ρ2 sup
ω∈D

(1− |ω|2)[|hωω(ρω)|+ |hωω(ρω)|]

= |h(0)|+ ρ|hω(0)|+ ρ|hω(0)|+ sup
|z|<ρ

(ρ2
− |z|2)[|hωω(z)|+ |hωω(z)|]

≤ |h(0)|+ |hω(0)|+ |hω(0)|+ sup
|z|<1

(1− |z|2)[|hωω(z)|+ |hωω(z)|]

= ‖h‖
ZH

. (2.1)

Thus Tρ is bounded and observing that

1 = ‖Tρ1‖
ZH
≤ ‖Tρ‖ZH→ZH ‖1‖ZH = ‖Tρ‖ZH→ZH , (2.2)

combining (2.1) and (2.2), we obtain ‖Tρ‖ZH→ZH = 1.
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(b) Let h ∈ ZH with ‖h‖
ZH
≤ 1. Let δ ∈ (0, 1) and assume that {ρn} is a sequence in (0, 1)

converging to 1 as n→∞. By the continuity of h on the closed unit disk, for each ω ∈ D,

lim
n→∞

((I − Tρn)h)(ω) = lim
n→∞

(h(ω) − h(ρnω)) = 0,

and by linearity and part (a)

‖(I − Tρn)h‖ZH ≤ ‖h‖ZH + ‖Tρnh‖
ZH
≤ 2‖h‖

ZH
≤ 2.

Thus 1
2 (I − Tρn)h is in unit ball of ZH . By (1.2), ZH satisfies the hypothesis (ii) in Lemma 2.1,

therefore the sequence {(I − Tρn)h} has subsequence {(I − Tρnj
)h} converging uniformly to 0 on

every compact subset of D. Since every sequence in ZH converging uniformly on compact

subsets of D converges uniformly on D, the subsequence {(I−Tρnj
)h} converges uniformly to 0 on

D. Therefore for every ε > 0 there are ρ ∈ (0, 1) such that

sup
ω∈D
|((I − Tρ)h)(ω)| < ε.

By Montel’s theorem, the functions ((I − Tρn)h)ω, ((I − Tρn)h)ω, ((I − Tρn)h)ωω, ((I − Tρn)h)ωω
converge uniformly to 0 on every compact subset of D. Thus

sup
|ω|≤δ

((I − Tρn)h)ω|+ |((I − Tρn)h)ω| < ε, sup
|ω|≤δ

((I − Tρn)h)ωω|+ |((I − Tρn)h)ωω| < ε.

The conclusion follows after taking the supremum over all functions in the unit ball ofZH .

(c) Fix 0 < ρ < 1. To show that Tρ is compact onZH , by Lemma 2.1, it suffices to show that

lim
k→∞
‖Tρ fk‖ZH = 0

for each bounded sequence {hk} onZH converging uniformly on every compact subset of D.

Let {hk} bounded sequence onZH converges uniformly to 0 on every compact subset of D and

hk = fk + gk with gk(0) = 0. It is clear that fk, gk ∈ Z. Then we have

‖Tρhk‖sZH = sup
ω∈D

((1− |z|2)|(Tρ fk)′′(ω)|+ |(Tρgk)
′′(ω))|

= ρ2 sup
ω∈D

(1− |ω|2)| fk
′′(ρω)|+ |g′′k (ρω)|

= sup
|z|<ρ

(ρ2
− |z|2)| f ′′k (z)|+ |g′′k (z)|

≤ sup
|z|<ρ
| f ′′k (z)|+ |g′′k (z)|.

Since { fk} and {gk} converge uniformly to zero on the disk with radius ρ, then ‖Tρhk‖δZH → 0 as

k→∞. Since {0} is compact, (Tρhk)(0), and ((Tρhk)ω+ (Tρhk)ω)(0) converge to 0, so ‖Tρhk‖ZH → 0

as k→∞. Thus Tρ is compact onZH . �
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Before we characterize the main theorem for this section, we shall recall the result in [3] that the

composition operator Cψ is bounded onZH if and only if

sup
ω∈D

(1− |ω|2)|ψ′′(ω)| log
e

1− |ψ(ω)|2
, sup

ω∈D
(1− |ω|2)

[
|ψ′(ω)|2

(1− |ψ(ω)|2

]
are finite.

We are now ready to prove the main result for this section.

Theorem 2.1. Assume ψ be a self map on D such that Cψ is bounded onZH . Then

‖Cψ‖e,ZH � max

lim sup
|ψ(ω)|→1

(1− |ω|2)|ψ′′(ω)| log
e

1− |ψ(ω)|2
, lim sup
|ψ(ω)|→1

(1− |ω|2)
[
|ψ′(ω)2

|

1− |ψ(ω)|2

] .

Proof. Set N1 := supω∈D(1− |ω|2)|ψ′′(ω)| log e
1−|ψ(ω)|2 , N2 := supω∈D(1− |ω|2)

[
|ψ′(ω)|2

(1−|ψ(ω)|2

]
.

Let δ ∈ (0, 1) and ε > 0. So, by Lemma 2.3, there is ρ ∈ (0, 1) so that

sup
‖h‖
ZH
≤1

sup
ω∈D
|((I − Tρ)h)(ω)| < ε, sup

‖h‖
ZH
≤1

sup
|ω|≤δ
|((I − Tρ)h)ω(ω)|+ |((I − Tρ)h)ω(ω)| < ε,

sup
‖h‖
ZH
≤1

sup
|ω|≤δ
|((I − Tρ)h)ωω(ω)|+ |((I − Tρ)h)ωω(ω)| < ε.

It follows that

|(Cψ(I − Tρ)h)(0)|+ |(Cψ(I − Tρ)h)ω(0)|+ |(Cψ(I − Tρ)h)ω(0)|

≤ |((I − Tρ)h)(ψ(0))|+ |ψ′(0)|
[
((I − Tρ)h)ω(ψ(0)|+ |((I − Tρ)h)ω(ψ(0))|

]
≤ (1 + |ψ′(0)|)ε.

So

A1 : = sup
‖h‖
ZH
≤1

[
|(Cψ(I − Tρ)h)(0)|+ |(Cψ(I − Tρ)h)ω(0)|+ |(Cψ(I − Tρ)h)ω(0)| ≤

(
1 + |ψ′(0)|

)
ε,

A2 : = sup
‖h‖
ZH
≤1

sup
|ω|≤δ

(1− |ω|2)|ψ′′(ω)|
[
|((I − Tρ)h)ω(ψ(ω))|+ |((I − Tρ)h)ω(ψ(ω))|

]
≤ N1ε,

A3 : = sup
‖h‖
ZH
≤1

sup
|ω|≤δ

(1− |ω|2)|ψ′(ω)|2
[
|((I − Tρ)h)ωω(ψ(ω))|+ |((I − Tρ)h)ωω(ψ(ω))|

]
≤ N2ε.

Since Tρ is compact onZH by part (c) in Lemma 2.3, we have

‖Cψ‖e,ZH ≤ ‖Cψ(I − Tρ)‖ZH→ZH

= sup
‖h‖
ZH
≤1
‖Cψ(I − Tρ)h‖ZH

= sup
‖h‖
ZH
≤1

|(Cψ(I − Tρ)h)(0)|+ |(Cψ(I − Tρ)h)ω(0)|+ |(Cψ((I − Tρ)h)ω(0)|

+ sup
ω∈D

(1− |ω|2)
[
|(Cψ(I − Tρ)h)ωω(ω)|+ |(Cψ(I − Tρ)h)ωω(ω)|

]
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≤ A1 + sup
‖h‖
ZH
≤1

sup
ω∈D

(1− |ω|2)
[
|(Cψ(I − Tρ)h)ωω(ω)|+ |(Cψ(I − Tρ)h)ωω(ω)|

]
≤ A1 + sup

‖h‖
ZH
≤1

sup
ω∈D

(1− |ω|2)|ψ′′(ω)|
[
|((I − Tρ)h)ω(ψ(ω))|+ |((I − Tρ)h)ω(ψ(ω))|

]
+ sup
‖h‖
ZH
≤1

sup
ω∈D

(1− |ω|2)|ψ′(ω)|2
[
|((I − Tρ)h)ωω(ψ(ω))|+ |((I − Tρ)h)ωω(ψ(ω))|

]
≤ A1 + A2 + A3

+ sup
‖h‖
ZH
≤1

sup
|ψ(ω)|>δ

(1− |ω|2)|ψ′′(ω)| log
e

1− |ψ(ω)|2
|((I − Tρ)h)ω(ψ(ω))|+ |((I − Tρ)h)ω(ψ(ω))|

log e
1−|ψ(ω)|2

+ sup
‖h‖
ZH
≤1

sup
|ψ(ω)|>δ

(1− |ω|2)
[
|ψ′(ω)2

|

1− |ψ(ω)|2

]
(1− |ψ(ω)|2)

[
|((I − Tρ)h)ωω(ψ(ω))|+ |((I − Tρ)h)ωω(ψ(ω))|

]
≤

(
1 + |ψ′(0)|

)
ε+ N1ε+ N2ε

+ sup
‖h‖
ZH
≤1

sup
|ψ(ω)|>δ

(1− |ω|2)|ψ′′(ω)| log
e

1− |ψ(ω)|2
|((I − Tρ)h)ω(ψ(ω))|+ |(I − Tρ)h)ω(ψ(z))|

log e
1−|ψ(ω)|2

+ sup
‖h‖
ZH
≤1

sup
|ψ(ω)|>δ

(1− |ω|2)|ψ′(ω)2
|

1− |ψ(ω)|2
(1− |ψ(ω)|2)

[
|((I − Tρ)h)ωω(ω)|+ |((I − Tρ)h)ωω(ω)|

]
.

(2.3)

Let h ∈ ZH such that ‖h‖
ZH
≤ 1. Then, by part (a) of Lemma 2.3,

‖(I − Tρ)h‖ZH ≤ ‖h‖ZH + ‖Tρh‖
ZH
≤ ‖h‖

ZH
+ ‖h‖

ZH
≤ 2.

Therefore

(1− |ψ(ω)|2)|((I − Tρ)h)ωω(ψ(ω))|+ |((I − Tρ)h)ωω(ψ(ω))| ≤ ‖(I − Tρ)h‖ZH ≤ 2. (2.4)

Let ω ∈ D, and since the function ((I − Tρ)h)ω + ((I − Tρ)h)ω in BH , we have by (1.1)

|((I − Tρ)h)ω(ω)|+ |((I − Tρ)h)ω(ω)| ≤ log
e

1− |ψ(ω)|2
‖((I − Tρ)h)ω + ((I − Tρ)h)ω‖BH

≤ 2
[

log
e

1− |ψ(ω)|2

]
. (2.5)

Thus, by using (2.5), and (2.4) in (2.3), we have

‖Cψ‖e,ZH ≤

(
1 + |ψ′(0)|+ M1 + M2 + M3

)
ε

+ 2 sup
|ψ(ω)|>δ

(1− |ω|2)|ψ′′)(ω)| log
e

1− |ψ(ω)|2
+ 2 sup

|ψ(ω)|>δ

(1− |ω|2)|ψ′(ω)2
|

1− |ψ(ω)|2
,

where ε is arbitrary. Let δ→ 1, we obtain

‖Cψ‖e,ZH ≤ 2 lim
s→1

(
sup
|ψ(ω)|>δ

(1− |ω|2)|ψ′′(ω)| log
e

1− |ψ(ω)|2
+ sup
|ψ(ω)|>δ

(1− |ω|2)|ψ′(ω)2
|

1− |ψ(ω)|2

)
(2.6)

which proves the upper bound.
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For b ∈ C such that |b| > 1/2, consider the analytic one-parameter family { fb} defined on D by

fb(ω) =
(1− |b|2)

(
log(1− bω) + 1−|b|2

1−bω

)
b

2 . (2.7)

Staightforward calculation shows that

‖ fb‖sZH = sup
ω∈D

(1− |ω|2)(1− |b|2)
∣∣∣∣− 1

(1− bω)2
+

(1− |b|2)2

(1− bω)3

∣∣∣∣
≤ 4 sup

ω∈D
(1− |ω|)(1− |b|)

| − (1− bω) + (1− |b|2)2|

|1− bω|3

≤ 4 sup
ω∈D

∣∣∣∣1− bω+ b2(ω− b)

1− bω

∣∣∣∣
≤ 12.

Therefore fb ∈ ZH . Moreover sup
|b|>1/2 ‖ fb‖ZH < ∞.

Now, let’s consider {zn}n∈N as a sequence in the unit disk and |ψ(zn)| → 1 as n→∞. For ω ∈ D,

define fn(ω) = fψ(zn)(ω) as in (2.7), and let K = supn∈N ‖ fn‖ZH . Observing that fn is bounded on

Z
H and converges uniformly to 0 on D. Moreover, we note that lim

|ω|→1
(1 − |ω|2)| f ′′n (ω)| = 0. So,

fn ∈ ZH0 . Thus, by Lemma 2.2, fn converges weakly to 0 in ZH . Let T be a compact operator on

Z
H . Then according to Lemma 2.1, we have

lim
n→∞
‖T fn‖ZH = 0.

Thus

K‖Cψ − T‖
ZH
≥ lim sup

n→∞
‖(Cψ − T) fn‖ZH

≥ lim sup
n→∞

‖Cψ fn‖ZH − lim sup
n→∞

‖T fn‖ZH

= lim sup
n→∞

‖Cψ fn‖ZH .

Hence

K‖Cψ‖e,ZH ≥ lim sup
n→∞

‖Cψ fn‖ZH . (2.8)

Therefore

K‖Cψ‖e,ZH ≥ lim sup
n→∞

(1− |zn|
2)|ψ′(zn)

2)|| f ′′n (ψ(zn))| − lim sup
n→∞

[
(1− |zn|

2)|ψ′′(zn)|| f ′n(ψ(zn))|
]
.

Note that f ′n(ψ(zn)) = 0 and | f ′′n (ψ(zn))| =
1

1−|ψ(zn)|2
. Thus

lim sup
n→∞

1− |zn|
2
[
|ψ′(zn)2

|

1− |ψ(zn)|2

]
≤ K‖Cψ‖e,ZH . (2.9)

Again, let b ∈ C such that |b| > 1/2. Define an analytic one-parameter family {gb} on D by
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gb(ω) = log
e

1− |b|2
)−1−(1− bω)

b

(
5− 4 log(1− bω) + log2(1− bω)

)
We have

‖gb‖sZH = sup
ω∈D

(1− |ω|2)
(

log
e

1− |b|2
)−1 2|b|

|1− bω|

∣∣∣∣ log
e

1− bω

∣∣∣∣
≤ 4

(
log

e
1− |b|2

)−1
(

log
e

1− |b|
+ π

)
= 4

1 +
π+ log 2
log e

1−|b|2


≤ 4(1 + log 2 + π).

Therefore gb ∈ Z
H . Moreover sup

|b|>1/2
‖gb‖ZH < ∞. Assume {zn}n∈N be in the unit disk and

|ψ(zn)| → 1 as n→∞. Let n ∈N, z ∈ D, and assume gn = gψ(zn) as in (2.10), and let L = sup
n∈N
‖gn‖ZH .

We know that the sequence gn is a bounded onZH and converges to 0 uniformly on D. Moreover

lim|ω|→1(1− |ω|2)|g′′n (ω)| = 0. Therefore gn ∈ Z
H

0 . Thus, by Lemma 2.2, gn converges weakly to 0

inZH . Let T be a compact operator onZH . Therefore

lim
n→∞
‖Tgn‖ZH = 0.

It follows that

L‖Cψ − T‖
ZH→ZH

≥ lim sup
k→∞

‖(Cψ − T)gn‖ZH

≥ lim sup
n→∞

‖Cψgn‖ZH − lim sup
n→∞

‖Tgn‖ZH

≥ lim sup
n→∞

‖Cψgn‖ZH .

Hence

L‖Cψ‖e,ZH ≥ lim sup
n→∞

‖Cψgn‖ZH . (2.10)

Therefore

L‖Cθ,ψ‖e,ZH ≥ lim sup
n→∞

(1− |zn|
2)|ψ′′(zn)||g′n(ψ(zn))| − lim sup

n→∞

[
(1− |zn|

2)|ψ′(zn)
2
||g′′n (ψ(zn))|

]
.

Then after simple calculations, we get

lim sup
n→∞

3(1− |zn|
2)|ψ′′)(zn)| log

e
1− |ψ(zn)|2

≤ L‖Cψ‖e,ZH + lim sup
n→∞

2(1− |zn|
2)|ψ′(zn)2

|

1− |ψ(zn)|2

� ‖Cψ‖e,ZH . (2.11)

As consequence, by (2.6), (2.9) and (2.11)

‖Cψ‖e,ZH � max

lim sup
|ψ(ω)|→1

(1− |ω|2)|ψ′′(ω)| log
e

1− |ψ(ω)|2
, lim sup
|ψ(ω)|→1

(1− |ω|2)
[
|ψ′(ω)2

|

1− |ψ(ω)|2

]
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which completes our proof. �

3. Essential norm on harmonic space,VH

In this section, we move our attention to characterize the essential norm of the composition

operators acting on the spaceVH .

This section begins with a result in [4], the compostion operator Cψ is bounded on VH if and

only if ψ ∈ VH and

sup
ω∈D

(1− |ω|2)|ψ′(ω)ψ′′(ω)| log
e

1− |ψ(ω)|2
< ∞.

In order to characterize the main result, we recall the following lemmas.

Lemma 3.1. Assume the sequence {hk} ∈ V
H

0 and converges uniformly to 0 on compact subsets of D, then
{hk} converges to 0 weakly.

The proof is similar to that used in the proof of Lemma 2.2

Lemma 3.2. Let Tρ be the linear operator mapping a harmonic function h inVH to its dilation hρ(ω) =
h(ρω), ω in D and 0 < ρ < 1. Then the following statements hold.
(a) For each ρ ∈ (0, 1), Tρ is bounded operator onVH . Moreover

‖Tρ‖VH = 1.

(b) For each δ ∈ (0, 1) and each ε > 0, there exists ρ ∈ (0, 1) such that

sup
‖h|
VH
≤1

sup
ω∈D
|((I − Tρ)h)(ω)| < ε,

sup
‖h‖
VH
≤1

sup
ω∈D
|((I − Tρ)h)ω(ω)|+ |((I − Tρ)h)ω(ω)| < ε,

sup
‖h‖
VH
≤1

sup
|ω|≤δ
|((I − Tρ)h)ωω(ω)|+ |((I − Tρ)h)ωω(ω)| < ε,

sup
‖h‖
VH
≤1

sup
|ω|≤δ
|((I − Tρ)h)ωωω(ω)|+ |((I − Tρ)h)ωωω(ω)| < ε.

(c) Tρ is compact onVH .

Proof. The argument is similar to that in the proof of Lemma 2.3. �

We are now ready to present the main theorem of this section.

Theorem 3.1. Let ψ be a self map on D such that Cψ is bounded onVH . Then

‖Cψ‖e,VH � max

lim sup
|ψ(ω)|→1

(1− |ω|2)|(ψ′ψ′′)(ω)| log
e

1− |ψ(ω)|2
, lim sup
|ψ(ω)|→1

(1− |ω|2)|ψ′(ω)3
|

1− |ψ(ω)|2

 .



Int. J. Anal. Appl. (2026), 24:3 13

Proof. Let M1 := sup
ω∈D

(1− |ω|2)|ψ′′′(ω)|, M2 := sup
ω∈D

(1− |ω|2)|ψ′(ω)ψ′′(ω)| log e
1−|ψ(ω)|2 ,

M3 := sup
ω∈D

(1−|ω|2)|ψ′(ω)3
|

(1−|ψ(ω)|2 .

Let δ ∈ (0, 1) and ε > 0. So, by Lemma 3.2, there is ρ ∈ (0, 1) such that

sup
‖h|
VH
≤1

sup
ω∈D
|((I − Tρ)h)(ω)| < ε,

sup
‖h‖
VH
≤1

sup
ω∈D
|((I − Tρ)h)ω(ω)|+ |((I − Tρ)h)ω(ω)| < ε,

sup
‖h‖
VH
≤1

sup
|ω|≤δ
|((I − Tρ)h)ωω(ω)|+ |((I − Tρ)h)ωω(ω)| < ε,

sup
‖h‖
VH
≤1

sup
|ω|≤δ
|((I − Tρ)h)ωωω(ω)|+ |((I − Tρ)h)ωωω(ω)| < ε.

It follows that

|(Cψ(I − Tρ)h)(0)|+ |(Cψ(I − Tρ)h)ω(0)|+ |(Cψ(I − Tρ)h)ω(0)|+ |(Cψ(I − Tρ)h)ωω(0)|

+ |(Cψ(I − Tρ)h)ωω(0)|

≤ |((I − Tρ)h)(ψ(0))|+ |ψ′(0)|
[
((I − Tρ)h)ω(ψ(0))|+ |((I − Tρ)h)ω(ψ(0))|

]
+ |ψ′′(0)|

[
|((I − Tρ)h)ω(ψ(0))|+ |((I − Tρ)h)ω(ψ(0))|

]
+ |ψ′(0)2

|

[
|((I − Tρ)h)ωω(ψ(0))|+ |((I − Tρ)h)ωω(ψ(0))|

]
≤ (1 + |ψ′(0)|+ |ψ′′(0)|) + |ψ′(0)2

|)ε.

So

B1 : = sup
‖h‖
VH≤1

[
|(Cψ(I − Tρ)h)(0)|+ |(Cψ(I − Tρ)h)ω(0)|+ |(Cψ(I − Tρ)h)ω(0)|

+ |(Cψ(I − Tρ)h)ωω(0)|+ |(Cψ(I − Tρ)h)ωω(0)|
]

≤

(
1 + |ψ′(0)|+ |ψ′′(0)|+ |ψ′(0)2

|

)
ε,

B2 : = sup
‖h‖
VH≤1

sup
ω∈D

(1− |ω|2)|ψ′′′(ω)|
[
|((I − Tρ)h)ω(ψ(ω))|+ |((I − Tρ)h)ω(ψ(ω))|

]
≤M1ε,

B3 : = sup
‖h‖
VH≤1

sup
|ω|≤δ

(1− |ω|2)|(ψ′ψ′′)(ω)|
[
|((I − Tρ)h)ωω(ψ(ω))|+ |((I − Tρ)h)ωω(ψ(ω))|

]
≤M2ε,

B4 : = sup
‖h‖
VH≤1

sup
|ω|<δ

(1− |ω|2)|ψ′(ω)3
|

[
|((I − Tρ)h)ωωω(ψ(ω))|+ |((I − Tρ)h)ωωω(ψ(ω))|

]
≤M3ε.
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Since Tρ is compact onVH by part (c) in Lemma 3.2, we have

‖Cψ‖e,VH ≤ ‖Cψ(I − Tρ)‖VH

= sup
‖h‖V≤1

‖Cψ(I − Tρ)h‖VH

= sup
‖h‖
VH≤1

|(Cψ(I − Tρ)h)(0)|+ |(Cψ(I − Tρ)h)ω(0)|+ |(Cψ(I − Tρ)h)ω(0)|

+ |(Cψ(I − Tρ)h)ωω(0)|+ |(Cψ(I − Tρ)h)ωω(0)|

+ sup
ω∈D

(1− |ω|2)
[
|(Cψ(I − Tρ)h)ωωω(ω)|+ |(Cψ(I − Tρ)h)ωωω(ω)|

]
≤ B1 + sup

‖h‖
VH≤1

sup
ω∈D

(1− |ω|2)
[
|(Cψ(I − Tρ)h)ωωω(ω)|+ |(Cψ(I − Tρ)h)ωωω(ω)|

]
≤ B1 + sup

‖h‖
VH≤1

sup
ω∈D

(1− |ω|2)|ψ′′′(ω)|
[
|((I − Tρ)h)ω(ψ(ω))|+ |((I − Tρ)h)ω(ψ(ω))|

]
+ sup
‖h‖
VH≤1

sup
ω∈D

(1− |ω|2)|(ψ′ψ′′)(ω)|
[
|((I − Tρ)h)ωω(ψ(ω))|+ |((I − Tρ)h)ωω(ψ(ω))|

]
+ sup
‖h‖
VH≤1

sup
ω∈D

(1− |ω|2)|((I − Tρ)h)ωωω(ψ(ω))|+ |((I − Tρ)h)ωωω(ψ(ω))|

≤ B1 + B2 + B3 + B4

+ sup
‖h‖
VH≤1

sup
|ψ(ω)|>δ

(1− |ω|2)|(ψ′ψ′′)(ω)| log
e

1− |ψ(ω)|2
|((I − Tρ)h)ωω(ψ(ω))|+ |((I − Tρ)h)ωω(ψ(ω))|

log e
1−|ψ(ω)|2

+ sup
‖h‖
VH≤1

sup
|ψ(ω)|>δ

(1− |ω|2)|ψ′(ω)3
|

1− |ψ(ω)|2
(1− |ψ(ω)|2)|ψ′(ω)|3(|((I − Tρ)h)ωωω(ψ(ω))|+ |((I − Tρ)h)ωωω(ψ(ω))|

≤

(
1 + |ψ′(0)|+ |ψ′′(0)|+ |ψ′(0)2

|

)
ε+ M1ε+ M2ε+ M3ε

+ sup
‖h‖
VH≤1

sup
|ψ(ω)|>δ

(1− |ω|2)|(ψ′ψ′′)(ω)| log
e

1− |ψ(ω)|2
|((I − Tρ)h)ωω(ψ(ω))|+ |(I − Tρ)h)ωω(ψ(ω))|

log e
1−|ψ(ω)|2

+ sup
‖h‖
VH≤1

sup
|ψ(ω)|>δ

(1− |ω|2)|ψ′(ω)3
|

1− |ψ(ω)|2
(1− |ψ(ω)|2)|((I − Tρ)h)ωωω(ω)|+ |((I − Tρ)h)ωωω(ω)|

(3.1)

Let h ∈ VH such that ‖h‖
VH
≤ 1. Then, by part (a) of Lemma 3.2,

‖(I − Tρ)h‖VH ≤ ‖h‖VH + ‖Tρh‖
VH
≤ ‖h‖

VH
+ ‖h‖

VH
≤ 2.

Therefore

(1− |ψ(ω)|2)|((I − Tρ)h)ωωω(ψ(ω))|+ |((I − Tρ)h)ωωω(ψ(ω))| ≤ ‖(I − Tρ)h‖VH ≤ 2. (3.2)

Since the function (I − Tρ)h)ωω + (I − Tρ)h)ωω in BH, for ω ∈ D, we obtain

|((I − Tρ)h)ωω(ω)|+ |((I − Tρ)h)ωω(ω)| ≤ log
e

1− |ψ(ω)|2
‖((I − Tρ)h)ωω + ((I − Tρ)h)ωω‖BH
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≤ log
e

1− |ψ(ω)|2
‖(I − Tρ)h‖VH

≤ 2 log
e

1− |ψ(ω)|2
. (3.3)

Thus, by using (3.3), and (3.2) in (3.1), we have

‖Cψ‖e,VH ≤

(
1 + |ψ′(0)|+ |ψ′′(0)|+ |ψ′(0)2

|+ M1 + M2 + M3

)
ε

+ 2 sup
|ψ(ω)|>δ

(1− |ω|2)|(ψ′ψ′′)(ω)| log
e

1− |ψ(ω)|2
+ 2 sup

|ψ(ω)|>δ

(1− |ω|2)|ψ′(ω)3
|

1− |ψ(ω)|2
.

Since ε is arbitrary, and by letting δ→ 1, we obtain

‖Cψ‖e,VH ≤ 2 lim
δ→1

(
sup
|ψ(ω)|>δ

(1− |ω|2)|(ψ′ψ′′)(ω)| log
e

(1− |ψ(ω)|2)
+ sup
|ψ(ω)|>δ

(1− |ω|2)|ψ′(ω)3
|

1− |ψ(ω)|2

)
. (3.4)

which proves the upper bound.

To prove the lowerr bound, fix b ∈ D such that 1/2 < |b| < 1 and define the analytic one

parameter family of test function Fb as follows. For ω ∈ D, let

Fb(ω) =
(1− |b|2)2

b
3

(
2 log(1− bω) +

1− |b|2

1− bω

)
. (3.5)

Noting fb is analytic on D, and a direct calculations show that

F′b(ω) =
(1− |b|2)2

b
2

(
−

2

1− bω
+

1− |b|2

(1− bω)2

)
,

F′′b (ω) =
2(1− |b|2)2

b

(
−

1

(1− bω)2
+

1− |b|2

(1− bω)3

)
,

F′′′b (ω) = 2(1− |b|2)2
(
−

2

(1− bω)3
+

3(1− |b|2)

(1− bω)4

)
.

Then,

(1− |ω|2)|F′′′b (ω)| = 2(1− |ω|2)(1− |b|2)2
∣∣∣∣− 2

1− bω)3
+

3(1− |b|2)

(1− bω)4

∣∣∣∣
≤ 2(1− |ω|2)(1− |b|2)2

 2

|1− bω|3
+

3(1− |b|2)

|1− bω|4


≤ 2(1− |ω|2)(1− |b|2)2

 2
(1− |ω|)(1− |b|)2 +

3(1− |b|2)
(1− |ω|)(1− |b|)3


≤ 16(2 + 6) = 128.

Therefore,

‖Fb‖VH = |Fb(0)|+ |F′b(0)|+ |F
′′

b (0)|+ sup
ω∈D

(1− |ω|2)|F′′′b (ω)|

=
(1− |b|2)3

|b|3
+

(1 + |b|2)(1− |b|2)2

|b|2
+ 2|b|(1− |b|2)2 + sup

ω∈D
(1− |ω|2)|F′′′(ω)|
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≤ 9 + 128

= 137.

Thus Fb ∈ V
H . Moreover, sup 1

2<|b|<1 ‖Fa‖VH ≤ 137.

Let’s consider a sequence {zn}n∈N within the unit disk such that |ψ(zn)| → 1 as n→∞. Forω ∈ D,

let Fn := Fψ(zn) be defined as in (3.5), and let Q = supn∈N ‖Fn‖VH . It is obsered that Fn is bounded

onVH and uniformly converges to 0 on D. Moreover, we note that lim|ω|→1(1− |ω|2)|F′′′n (ω)| = 0.

So, Fn ∈ V
H

0 . Therefore, by Lemma 3.1, Fn converges weakly to 0 in VH . Let T be a compact

operator onVH . Then, according to Lemma 2.1

lim
n→∞
‖TFn‖VH = 0.

Thus

Q‖Cψ − T‖
VH→VH

≥ lim sup
n→∞

‖(Cψ − T)Fn‖VH

≥ lim sup
n→∞

‖CψFn‖VH − lim sup
n→∞

‖TFn‖VH

= lim sup
n→∞

‖CψFn‖VH .

Hence

Q‖Cψ‖e,VH ≥ lim sup
n→∞

‖CψFn‖VH . (3.6)

Therefore

Q‖Cψ‖e,V ≥ lim sup
n→∞

(1− |zn|
2)|ψ′(zn)

3)||F′′′n (ψ(zn))|

− lim sup
n→∞

[
(1− |zn|

2)|ψ′′′(zn)||F′n(ψ(zn))|+ 3(1− |zn|
2)|(ψ′ψ′′)(zn)||F′′n (ψ(zn))|

]
.

Recalling the formulas for F′n, F′′n , and F′′′n following (3.5), we see that

F′′n (ψ(zn)) = 0 and |F′′′n (ψ(zn))| =
2

1−|ψ(zn)|2
. Thus

lim sup
n→∞

2(1− |zn|
2)|ψ′(zn)3

|

1− |ψ(zn)|2
≤ Q‖Cψ‖e,VH + lim sup

n→∞

[
(1− |zn|

2)|ψ′′′(zn)||F′n(ψ(zn))|
]
.

Since F′n converge uniformly to 0 on D and

(1− |zn|
2)|ψ′′′(zn)| ≤ sup

ω∈D
(1− |ω|2)|ψ′′′(ω)| < ∞, (3.7)

then

lim sup
n→∞

2(1− |zn|
2)|ψ′(zn)3

|

1− |ψ(zn)|2
≤ Q‖Cψ‖e,VH (3.8)
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Again, fix b ∈ D such that 1/2 < |b| < 1 and define the one parameter family of test function Gb

as follows. For ω ∈ D, let

Gb(ω) =
(1− bω)2

[
15− 10 log(1− bω) + 2 log2(1− bω)

]
4b

2
log e

1−|b|2

. (3.9)

We have Gb is analytic, and straightforward calculations show that

G′b(ω) =
(1− bω)

[
− 5 + 4 log(1− bω) − log2(1− bω)

]
b log e

1−|b|2

,

G′′b (ω) =
(

log
e

1− bω

)2(
log

e
1− |b|2

)−1
,

G′′′b (ω) =
2b

1− bω

(
log

e

1− bω

)(
log

e
1− |b|2

)−1
.

Then

(1− |ω|2)|G′′′b (ω)| = (1− |ω|2)
2|b|

|1− bω|

∣∣∣∣ log
e

1− bω

∣∣∣∣( log
e

1− |b|2

)−1

≤
2(1− |ω|2)

1− |ω|

∣∣∣∣ log
e

1− bω

∣∣∣∣( log
e

1− |b|2

)−1

≤ 4
(

log
e

1− |b|2

)−1 √
log2 e

|1− bω|
+ π2

≤ 4
(

log
e

1− |b|2

)−1(
log

e

|1− bω|
+ π

)
≤ 4

(
log

e
1− |b|2

)−1(
log

e
1− |b|

+ π
)

≤ 4
(

log
e

1− |b|2

)−1(
log

2e
1− |b|2

+ π
)

= 4

1 +
log 2 + π

log e
1−|b|2


≤ 4(1 + log 2 + π).

Therefore,

sup
ω∈D

(1− |ω|2)|G′′′b (ω)| ≤ 4(1 + log 2 + π).

Thus, Gb ∈ V
H . Moreover,

sup
1/2<|b|<1

‖Gb‖VH < ∞.

Let {zn}n∈N be a sequence in the unit disk such that |ψ(zn)| → 1 as n→∞. For n ∈N, and ω ∈ D,

let Gn = Gψ(zn) as in (3.9), and let N = supn∈N ‖Gn‖VH .
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Observing that Gn is a bounded sequence onVH and uniformly converges to 0 on D, we note

additionally that lim|ω|→1(1 − |ω|2)|G′′′n (ω)| = 0. Thus, Gn ∈ V
H

0 . Moreover, by Lemma 3.1, Gn

converges weakly to 0 inVH . Assume the operator T be a compact onVH . Then

lim
n→∞
‖TGn‖VH = 0.

It follows that

N‖Cψ − T‖
VH→VH

≥ lim sup
k→∞

‖(Cψ − T)Gn‖VH

≥ lim sup
n→∞

‖CψGn‖VH − lim sup
n→∞

‖TGn‖VH

≥ lim sup
n→∞

‖CψGn‖VH .

Hence

N‖Cψ‖e,VH ≥ lim sup
n→∞

‖CψGn‖VH . (3.10)

Therefore

N‖Cθ,ψ‖e,VH ≥ lim sup
n→∞

3(1− |zn|
2)|(ψ′ψ′′)(zn)||G′′n (ψ(zn))|

− lim sup
n→∞

[
(1− |zn|

2)|ψ′′′(zn)||G′n(ψ(zn))|+ (1− |zn|
2)|ψ′(zn)

3
||G′′′n (ψ(zn))|

]
.

Note that |G′′n (ψ(zn))| = log e
1−|ψ(zn)|2

and |G′′′n (ψ(zn))| =
2|ψ(zn)|

1−|ψ(zn)|2
. Using the fact that G′n converges

uniformly to 0 on D, and by (3.7) and (3.8), we deduce that

lim sup
n→∞

3(1− |zn|
2)|(ψ′ψ′′)(zn)| log

e
1− |ψ(zn)|2

≤ N‖Cψ‖e,VH + lim sup
n→∞

2(1− |zn|
2)|ψ′(zn)3

|

1− |ψ(zn)|2

� ‖Cψ‖e,VH . (3.11)

As conclusion, by (3.4), (3.8) and (3.11), we obtain

‖Cψ‖e,VH � max

lim sup
|ψ(ω)|→1

(1− |ω|2)|(ψ′ψ′′)(ω)| log
e

1− |ψ(ω)|2
, lim sup
|ψ(ω)|→1

(1− |ω|2)|ψ′(ω)3
|

1− |ψ(ω)|2

 .

�
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