

Essential Norm of Composition Operators on Harmonic Zygmund Spaces and Their Derivative Spaces

Munirah Aljuaid*

Dept. of Mathematics, Northern Border University, Arar 73222, Saudi Arabia

*Corresponding author: moneera.mutlak@nbu.edu.sa

Abstract. Let ψ represent the analytic self-mapping within the unit disk \mathbb{D} . We define the composition operator C_ψ as $C_\psi f = f \circ \psi$ for every f belonging to the space of harmonic functions $\mathcal{H}(\mathbb{D})$. The essential norm of composition operators within specific harmonic mapping spaces is investigated in this research. Explicitly, we outline the essential norm of composition operators on the harmonic Zygmund spaces \mathcal{Z}^H and the derivative of harmonic Zygmund spaces \mathcal{V}^H . Notably, these results extend and build upon results that were established previously for the analytic settings.

1. INTRODUCTION

Given Ω to be a simply connected region in the complex plane. A harmonic mapping is a complex function h defined on Ω satisfying the Laplace equation such that:

$$\Delta h := 4 \frac{\partial^2 h}{\partial \omega \partial \bar{\omega}} \equiv 0.$$

A harmonic mapping h always admits a representation in the form $f + \bar{g}$, where f and g are analytic functions. This representation achieves uniqueness when a fixed point ω_0 within Ω is specified, and g is chosen such that $g(\omega_0) = 0$. Let's denote \mathbb{D} as the open unit disk within \mathbb{C} and

$\text{Aut}(\mathbb{D})$ as the group of disk automorphisms. The class of analytic functions on \mathbb{D} is represented by $H(\mathbb{D})$, while $\mathcal{H}(\mathbb{D})$ symbolizes the class of harmonic mappings on \mathbb{D} . For the scope of our study, we will focus on the harmonic mappings with the domain \mathbb{D} and will use $\omega_0 = 0$ as the base point. Thus, the typical representation of a mapping $h \in \mathcal{H}(\mathbb{D})$ is $h = f + \bar{g}$, where $f, g \in H(\mathbb{D})$ and $g(0) = 0$.

Received: Sep. 17, 2025.

2020 Mathematics Subject Classification. 30H30, 31A05.

Key words and phrases. harmonic mapping; essential norm; the harmonic Zygmund spaces \mathcal{Z}^H ; the space \mathcal{V}^H ; composition operator.

The Bloch space \mathcal{B} is characterized as the Banach space consisting of the functions $f \in H(\mathbb{D})$ such that

$$\sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |f'(\omega)| < \infty.$$

The norm of $f \in \mathcal{B}$ is defined as

$$\|f\|_{\mathcal{B}} = |f(0)| + \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |f'(\omega)|.$$

The point-evaluation estimate, given by

$$|f(\omega)| \leq \log \frac{e}{1 - |\omega|^2} \|f\|_{\mathcal{B}},$$

is a well-established property of functions f in \mathcal{B} .

The closed subspace \mathcal{B}_0 of \mathcal{B} , comprising of the functions f satisfying

$$\lim_{|\omega| \rightarrow 1} (1 - |\omega|^2) |f'(\omega)| = 0,$$

is commonly referred as the little Bloch space. In a study by [5], it was demonstrated that \mathcal{B}_0 is the closure in \mathcal{B} of the polynomial functions, thereby establishing its separability.

In complex function theory, extensive research has been conducted on the classical Zygmund space \mathcal{Z} . This space defined as the set of analytic functions f on \mathbb{D} with extensions to the unit circle obtained through means of the radial limits. Formally, a function $f \in \mathcal{Z}$ if

$$\|f\|_* := \sup_{\gamma} \frac{|f(e^{i(\theta+\gamma)}) + f(e^{i(\theta-\gamma)}) - 2f(e^{i\theta})|}{\gamma} < \infty,$$

where the supremum is taken over all $\theta \in \mathbb{R}$ and $\gamma > 0$.

Suppose $C(\overline{\mathbb{D}})$ denotes the space of continuous complex-valued functions on the closed unit disk $\overline{\mathbb{D}}$. It is well-established that the Zygmund space \mathcal{Z} is subset of the disk algebra $H(\mathbb{D}) \cap C(\overline{\mathbb{D}})$.

According to Theorem 5.3 in [11], an analytic function f on \mathbb{D} is in the Zygmund space \mathcal{Z} if and only if

$$\|f\|_{s\mathcal{Z}} := \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |f''(\omega)| < \infty.$$

Moreover, $\|f\|_{s\mathcal{Z}} \asymp \|f\|_*$.

The Zygmund space \mathcal{Z} is a Banach space with the respect of the norm

$$\|f\|_{\mathcal{Z}} := |f(0)| + |f'(0)| + \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |f''(\omega)| < \infty.$$

Moreover, the functions in the \mathcal{Z} satisfy the point-evaluation estimate

$$|f(\omega)| \leq \|f\|_{\mathcal{Z}}$$

The closed subspace \mathcal{Z}_0 of \mathcal{Z} , consisting of the functions f satisfying the condition

$$\lim_{|\omega| \rightarrow 1} (1 - |\omega|^2) |f''(\omega)| = 0.$$

The space \mathcal{V} consists of analytic functions f on unit disk \mathbb{D} such that their first derivative belong to \mathcal{Z} , and they satisfy

$$\|f\|_{s\mathcal{V}} := \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |f'''(\omega)| < \infty.$$

The space \mathcal{V} becomes a Banach space under the norm

$$\|f\|_{\mathcal{V}} := |f(0)| + |f'(0)| + \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |f'''(\omega)| < \infty.$$

It is well known that the space \mathcal{V} is properly contained in \mathcal{Z} . Moreover, for $f \in \mathcal{V}$

$$\|f\|_{\mathcal{B}} \leq \|f\|_{\mathcal{Z}} \leq \|f\|_{\mathcal{V}}.$$

For more details see [10], where the authors studied weighted composition operators on iterated weighted type Banach space of analytic functions.

Colonna, in reference [9], introduced the concept of the harmonic Bloch spaces $\mathcal{B}^{\mathcal{H}}$ as the set of harmonic mappings on \mathbb{D} that act as Lipschitz functions when considered as maps between the hyperbolic disk and \mathbb{C} equipped with the Euclidean metric. An additional characteristic of such harmonic mappings h is the condition

$$\|h\|_{s\mathcal{B}^{\mathcal{H}}} := \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) [h_{\omega}(\omega) + |h_{\bar{\omega}}(\omega)|] < \infty,$$

where h_{ω} and $h_{\bar{\omega}}$ are the first complex partial derivatives of h .

Subsequently, the authors, as detailed in [1] studied the harmonic Bloch spaces. In particular, it was shown that the $\mathcal{B}^{\mathcal{H}}$ is a Banach space under the norm

$$\|h\|_{\mathcal{B}^{\mathcal{H}}} := |h(0)| + \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) (|h_{\omega}(\omega)| + |h_{\bar{\omega}}(\omega)|).$$

The space $\mathcal{B}^{\mathcal{H}}$ can be regraded as the collection of harmonic mappings $h \in \mathcal{H}(\mathbb{D})$ such that $h_{\omega} + h_{\bar{\omega}}$ lies in the harmonic growth space $\mathcal{A}^{\mathcal{H}}$. The latter is defined as the set of $h \in \mathcal{H}(\mathbb{D})$ such that

$$\|h\|_{\mathcal{A}^{\mathcal{H}}} := \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |h(\omega)| < \infty.$$

The functions in $\mathcal{B}^{\mathcal{H}}$ satisfy the growth condition:

$$|h(\omega)| \leq \log \frac{e}{1 - |\omega|^2} \|h\|_{\mathcal{B}^{\mathcal{H}}}. \quad (1.1)$$

The harmonic Zygmund space $\mathcal{Z}^{\mathcal{H}}$ comprises all harmonic mappings $h \in C(\overline{\mathbb{D}})$ such that

$$\|h\| := \sup \frac{|h(e^{i(\theta+\gamma)}) + h(e^{i(\theta-\gamma)}) - 2h(e^{i\theta})|}{\gamma} < \infty,$$

where the supremum is taken over all $\theta \in \mathbb{R}$ and $\gamma > 0$. According to Theorem 3.4 of [2], $h \in \mathcal{Z}^{\mathcal{H}}$ if and only if the following holds

$$\|h\|_{s\mathcal{Z}^{\mathcal{H}}} := \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) (|h_{\omega\omega}(\omega)| + |h_{\bar{\omega}\bar{\omega}}(\omega)|) < \infty,$$

where $h_{\omega\omega}, h_{\bar{\omega}\bar{\omega}}$ represent the second complex partial derivatives of h .

\mathcal{Z}^H is a Banach space under the given norm

$$\|h\|_{\mathcal{Z}^H} = |h(0)| + |h_\omega(0)| + |h_{\bar{\omega}}(0)| + \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) (|h_{\omega\omega}(\omega)| + |h_{\bar{\omega}\bar{\omega}}(\omega)|).$$

The functions in \mathcal{Z}^H satisfy

$$|h(\omega)| \leq \|h\|_{\mathcal{Z}^H}. \quad (1.2)$$

The little harmonic Zygmund space \mathcal{Z}_0^H is the collection of all harmonic mapping h such that

$$\lim_{|\omega| \rightarrow 1} (1 - |\omega|^2) (|h_{\omega\omega}(\omega)| + |h_{\bar{\omega}\bar{\omega}}(\omega)|) = 0.$$

Expanding on the concept of the first derivative Zygmund space \mathcal{V} , [4] the first author introduced the space \mathcal{V}^H as set of all harmonic mappings h such that

$$\|h\|_{s\mathcal{V}^H} := \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) \left[\left| \frac{\partial^3}{\partial \omega^3} h(\omega) \right| + \left| \frac{\partial^3}{\partial \bar{\omega}^3} h(\omega) \right| \right] < \infty.$$

Furthermore,

$$\begin{aligned} \|h\|_{\mathcal{V}^H} &:= |h(0)| + |h_\omega(0)| + |h_{\bar{\omega}}(0)| + |h_{\omega\omega}(0)| + |h_{\bar{\omega}\bar{\omega}}(0)| + \|h\|_{s\mathcal{V}^H} \\ &= |f(0)| + \|f_\omega + f_{\bar{\omega}}\|_{\mathcal{Z}^H}. \end{aligned}$$

The space \mathcal{V}^H forms a Banach space with respect to the norm described above.

In [4] the first author proves that the space \mathcal{V}^H is contained in $C(\overline{\mathbb{D}})$. Moreover, for $h \in \mathcal{V}^H$,

$$\|h\|_\infty \leq 2 \log 2 \|h\|_{\mathcal{V}^H}. \quad (1.3)$$

The composition operator C_ψ induced by an analytic or a conjugate analytic self-map ψ of \mathbb{D} , is defined as

$$C_\psi h = h \circ \psi,$$

representing a linear transformation over \mathbb{C} that acts on the class of harmonic mappings on \mathbb{D} .

Extensive research has been conducted on operator theory in spaces of analytic functions defined within the unit disk, resulting in numerous research papers across various settings. Nevertheless, the exploration of similar research in the context of harmonic settings remains relatively limited.

In recent years, there has been a growing interest in the study of harmonic mappings. Notably, work presented in [1] has been complemented by efforts to characterize Bloch-type spaces for harmonic mappings. In [3], the same authors have undertaken a comprehensive examination of the compactness and boundedness of mappings in C_ψ into weighted Banach spaces of harmonic mappings.

For a more in-depth understanding of the field of harmonic mappings, we encourage further exploration of additional references. Colonna studied the Bloch constant of bounded harmonic mappings in [9], and [6] for Harmonic Function Theory. In [14], the authors characterized the Bloch spaces and Besov spaces of pluriharmonic mappings. A characterization of the harmonic Bloch space and the harmonic Besov spaces by an oscillation has been studied in [18]. The authors

in [8] discussed the harmonic Bloch spaces in the unit ball of \mathbb{C}^n . The Q-Type Spaces of Harmonic Mappings and Harmonic Bergman spaces was studied in [15] and [16], respectively. Finally, in [13] the author studied the harmonic mapping in the plane and [7] discussed Landau's theorem and Marden constant for harmonic v -Bloch mappings.

Let \mathcal{X} and \mathcal{Y} be Banach spaces and $\|\cdot\|_{\mathcal{X} \rightarrow \mathcal{Y}}$ denotes the operator norm. The essential norm of a bounded linear operator $\mathcal{S} : \mathcal{X} \rightarrow \mathcal{Y}$ is its distance to the set of compact operators L mapping \mathcal{X} to \mathcal{Y} , that is

$$\|\mathcal{S}\|_{e,\mathcal{X} \rightarrow \mathcal{Y}} = \inf\{\|\mathcal{S} - L\|_{\mathcal{X} \rightarrow \mathcal{Y}} : L \text{ is compact operator}\}.$$

If $\mathcal{X} = \mathcal{Y}$, we denote the essential norm of bounded linear operator by $\|\mathcal{S}\|_{e,\mathcal{X}}$.

It is well known that $\|\mathcal{S}\|_{e,\mathcal{X} \rightarrow \mathcal{Y}} = 0$ if and only if $\mathcal{S} : \mathcal{X} \rightarrow \mathcal{Y}$ is compact.

One of the primary aims in this work is to provide estimates the essential norm of a composition operator acting on $\mathcal{Z}^{\mathcal{H}}$ and $\mathcal{V}^{\mathcal{H}}$.

In this work we shall use the notation $A \preceq B$ to mean that for some $c > 0$, $A \leq cB$, whereas $A \asymp B$ means $A \preceq B$ and $B \preceq A$.

2. ESSENTIAL NORM ON HARMONIC ZYGMUND SPACE $\mathcal{Z}^{\mathcal{H}}$

In this section, we focus on discussing the essential norm of composition operators on $\mathcal{Z}^{\mathcal{H}}$. We begin with a useful lemmas to prove the main result of this section.

The following lemma is an extension of Lemma 3.7 in [17], and the proof is straightforward.

Lemma 2.1. ([17], Lemma 3.7) *Let X, Y be Banach spaces whose elements are harmonic functions on \mathbb{D} , and $T : X \rightarrow Y$ a bounded linear operator. Assume*

- (i) *the point evaluation functionals on X are continuous;*
- (ii) *the closed unit ball of X is a compact subset of X in the topology of uniform convergence on compact sets;*
- (iii) *$T : X \rightarrow Y$ is continuous when X and Y are given the topology of uniform convergence on compact sets.*

Then T is a compact operator if and only if given a bounded sequence $\{f_n\}$ in X such that $f_n \rightarrow 0$ uniformly on compact sets, the sequence $\{Tf_n\}$ converges to zero in the norm of Y .

Lemma 2.2. *If $\{h_k\}$ is a sequence in $\mathcal{Z}_0^{\mathcal{H}}$ converging uniformly to 0 on compact subsets of \mathbb{D} , then $\{h_k\}$ converges to 0 weakly.*

Proof. Let $\{h_k\}$ be as in the statement. Let Λ be a bounded linear functional on $\mathcal{Z}^{\mathcal{H}}$. We wish to show that $\{\Lambda h_k\}$ converges to 0. Since $h_k \in \mathcal{Z}_0^{\mathcal{H}}$ for each k , given $\varepsilon > 0$ there exists $\delta > 0$ such that for $\delta < |\omega| < 1$

$$(1 - |\omega|^2)|(\Lambda h_k)_{\omega\omega}(\omega)| + |(\Lambda h_k)_{\overline{\omega}\overline{\omega}}(\omega)| < \varepsilon.$$

Then

$$\begin{aligned}
|\Lambda h_k| &\leq \|\Lambda\| \|h_k\|_{\mathcal{Z}^H} \\
&= \|\Lambda\| \left[|h_k(0)| + |(h_k)_\omega(0)| + |(h_k)_{\bar{\omega}}(0)| + \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) [|(h_k)_{\omega\omega}(\omega)| + |(h_k)_{\bar{\omega}\bar{\omega}}(\omega)|] \right] \\
&\leq \|\Lambda\| \left[|h_k(0)| + |(h_k)_\omega(0)| + |(h_k)_{\bar{\omega}}(0)| + \sup_{|\omega| \leq \delta} (1 - |\omega|^2) [|(h_k)_{\omega\omega}(\omega)| + |(h_k)_{\bar{\omega}\bar{\omega}}(\omega)|] \right. \\
&\quad \left. + \sup_{\delta < |\omega| < 1} (1 - |\omega|^2) [|(h_k)_{\omega\omega}(\omega)| + |(h_k)_{\bar{\omega}\bar{\omega}}(\omega)|] \right] \\
&< \|\Lambda\| \left[|h_k(0)| + |(h_k)_\omega(0)| + |(h_k)_{\bar{\omega}}(0)| + \sup_{|\omega| \leq \delta} (1 - |\omega|^2) [|(h_k)_{\omega\omega}(\omega)| + |(h_k)_{\bar{\omega}\bar{\omega}}(\omega)|] + \epsilon \right].
\end{aligned}$$

Since $\{h_k\}$ converges to 0 uniformly on compact subsets of \mathbb{D} , it follows that $\lim_{k \rightarrow \infty} |\Lambda f_k| \leq \|\Lambda\| \epsilon$, hence $\Lambda h_k \rightarrow 0$ as $k \rightarrow \infty$. \square

Lemma 2.3. For $0 < \rho < 1$, T_ρ be the linear operator mapping a harmonic function h in \mathcal{Z}^H to its dilation $h_\rho(\omega) = h(\rho\omega)$, ω in \mathbb{D} . Then the following statements hold.

(a) For $\rho \in (0, 1)$, T_ρ is bounded operator on \mathcal{Z}^H . Moreover

$$\|T_\rho\|_{\mathcal{Z}^H} = 1.$$

(b) Let $\delta \in (0, 1)$ and $\epsilon > 0$, then there exists $\rho \in (0, 1)$ so that

$$\begin{aligned}
\sup_{\|h\|_{\mathcal{Z}^H} \leq 1} \sup_{\omega \in \mathbb{D}} |((I - T_\rho)h)(\omega)| &< \epsilon, \quad \sup_{\|h\|_{\mathcal{Z}^H} \leq 1} \sup_{|\omega| \leq \delta} |((I - T_\rho)h)_\omega(\omega)| + |((I - T_\rho)h)_{\bar{\omega}}(\omega)| < \epsilon, \\
\sup_{\|h\|_{\mathcal{Z}^H} \leq 1} \sup_{|\omega| \leq \delta} |((I - T_\rho)h)_{\omega\omega}(\omega)| + |((I - T_\rho)h)_{\bar{\omega}\bar{\omega}}(\omega)| &< \epsilon.
\end{aligned}$$

(c) T_ρ is compact on \mathcal{Z}^H .

Proof. (a) Let $\rho \in (0, 1)$ and h in \mathcal{Z}^H . Then

$$\begin{aligned}
\|T_\rho h\|_{\mathcal{Z}^H} &= |h(0)| + \rho|h_\omega(0)| + \rho|h_{\bar{\omega}}(0)| + \rho^2 \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) [|h_{\omega\omega}(\rho\omega)| + |h_{\bar{\omega}\bar{\omega}}(\rho\omega)|] \\
&= |h(0)| + \rho|h_\omega(0)| + \rho|h_{\bar{\omega}}(0)| + \sup_{|z| < \rho} (\rho^2 - |z|^2) [|h_{\omega\omega}(z)| + |h_{\bar{\omega}\bar{\omega}}(z)|] \\
&\leq |h(0)| + |h_\omega(0)| + |h_{\bar{\omega}}(0)| + \sup_{|z| < 1} (1 - |z|^2) [|h_{\omega\omega}(z)| + |h_{\bar{\omega}\bar{\omega}}(z)|] \\
&= \|h\|_{\mathcal{Z}^H}. \tag{2.1}
\end{aligned}$$

Thus T_ρ is bounded and observing that

$$1 = \|T_\rho 1\|_{\mathcal{Z}^H} \leq \|T_\rho\|_{\mathcal{Z}^H \rightarrow \mathcal{Z}^H} \|1\|_{\mathcal{Z}^H} = \|T_\rho\|_{\mathcal{Z}^H \rightarrow \mathcal{Z}^H}, \tag{2.2}$$

combining (2.1) and (2.2), we obtain $\|T_\rho\|_{\mathcal{Z}^H \rightarrow \mathcal{Z}^H} = 1$.

(b) Let $h \in \mathcal{Z}^{\mathcal{H}}$ with $\|h\|_{\mathcal{Z}^{\mathcal{H}}} \leq 1$. Let $\delta \in (0, 1)$ and assume that $\{\rho_n\}$ is a sequence in $(0, 1)$ converging to 1 as $n \rightarrow \infty$. By the continuity of h on the closed unit disk, for each $\omega \in \mathbb{D}$,

$$\lim_{n \rightarrow \infty} ((I - T_{\rho_n})h)(\omega) = \lim_{n \rightarrow \infty} (h(\omega) - h(\rho_n \omega)) = 0,$$

and by linearity and part (a)

$$\|(I - T_{\rho_n})h\|_{\mathcal{Z}^{\mathcal{H}}} \leq \|h\|_{\mathcal{Z}^{\mathcal{H}}} + \|T_{\rho_n}h\|_{\mathcal{Z}^{\mathcal{H}}} \leq 2\|h\|_{\mathcal{Z}^{\mathcal{H}}} \leq 2.$$

Thus $\frac{1}{2}(I - T_{\rho_n})h$ is in unit ball of $\mathcal{Z}^{\mathcal{H}}$. By (1.2), $\mathcal{Z}^{\mathcal{H}}$ satisfies the hypothesis (ii) in Lemma 2.1, therefore the sequence $\{(I - T_{\rho_n})h\}$ has subsequence $\{(I - T_{\rho_{n_j}})h\}$ converging uniformly to 0 on every compact subset of \mathbb{D} . Since every sequence in $\mathcal{Z}^{\mathcal{H}}$ converging uniformly on compact subsets of \mathbb{D} converges uniformly on $\overline{\mathbb{D}}$, the subsequence $\{(I - T_{\rho_{n_j}})h\}$ converges uniformly to 0 on $\overline{\mathbb{D}}$. Therefore for every $\varepsilon > 0$ there are $\rho \in (0, 1)$ such that

$$\sup_{\omega \in \mathbb{D}} |((I - T_{\rho})h)(\omega)| < \varepsilon.$$

By Montel's theorem, the functions $((I - T_{\rho_n})h)_{\omega}$, $((I - T_{\rho_n})h)_{\overline{\omega}}$, $((I - T_{\rho_n})h)_{\omega\omega}$, $((I - T_{\rho_n})h)_{\overline{\omega}\overline{\omega}}$ converge uniformly to 0 on every compact subset of \mathbb{D} . Thus

$$\sup_{|\omega| \leq \delta} |((I - T_{\rho_n})h)_{\omega}| + |((I - T_{\rho_n})h)_{\overline{\omega}}| < \varepsilon, \quad \sup_{|\omega| \leq \delta} |((I - T_{\rho_n})h)_{\omega\omega}| + |((I - T_{\rho_n})h)_{\overline{\omega}\overline{\omega}}| < \varepsilon.$$

The conclusion follows after taking the supremum over all functions in the unit ball of $\mathcal{Z}^{\mathcal{H}}$.

(c) Fix $0 < \rho < 1$. To show that T_{ρ} is compact on $\mathcal{Z}^{\mathcal{H}}$, by Lemma 2.1, it suffices to show that

$$\lim_{k \rightarrow \infty} \|T_{\rho}f_k\|_{\mathcal{Z}^{\mathcal{H}}} = 0$$

for each bounded sequence $\{h_k\}$ on $\mathcal{Z}^{\mathcal{H}}$ converging uniformly on every compact subset of \mathbb{D} .

Let $\{h_k\}$ bounded sequence on $\mathcal{Z}^{\mathcal{H}}$ converges uniformly to 0 on every compact subset of \mathbb{D} and $h_k = f_k + \overline{g}_k$ with $g_k(0) = 0$. It is clear that $f_k, g_k \in \mathcal{Z}$. Then we have

$$\begin{aligned} \|T_{\rho}h_k\|_{\mathcal{Z}^{\mathcal{H}}} &= \sup_{\omega \in \mathbb{D}} |((1 - |\omega|^2)(T_{\rho}f_k)''(\omega))| + |(T_{\rho}g_k)''(\omega)| \\ &= \rho^2 \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |f_k''(\rho\omega)| + |g_k''(\rho\omega)| \\ &= \sup_{|z| < \rho} (\rho^2 - |z|^2) |f_k''(z)| + |g_k''(z)| \\ &\leq \sup_{|z| < \rho} |f_k''(z)| + |g_k''(z)|. \end{aligned}$$

Since $\{f_k\}$ and $\{g_k\}$ converge uniformly to zero on the disk with radius ρ , then $\|T_{\rho}h_k\|_{\mathcal{Z}^{\mathcal{H}}} \rightarrow 0$ as $k \rightarrow \infty$. Since $\{0\}$ is compact, $(T_{\rho}h_k)(0)$, and $((T_{\rho}h_k)_{\omega} + (T_{\rho}h_k)_{\overline{\omega}})(0)$ converge to 0, so $\|T_{\rho}h_k\|_{\mathcal{Z}^{\mathcal{H}}} \rightarrow 0$ as $k \rightarrow \infty$. Thus T_{ρ} is compact on $\mathcal{Z}^{\mathcal{H}}$. \square

Before we characterize the main theorem for this section, we shall recall the result in [3] that the composition operator C_ψ is bounded on \mathcal{Z}^H if and only if

$$\sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |\psi''(\omega)| \log \frac{e}{1 - |\psi(\omega)|^2}, \quad \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) \left[\frac{|\psi'(\omega)|^2}{(1 - |\psi(\omega)|^2)^2} \right]$$

are finite.

We are now ready to prove the main result for this section.

Theorem 2.1. *Assume ψ be a self map on \mathbb{D} such that C_ψ is bounded on \mathcal{Z}^H . Then*

$$\|C_\psi\|_{e, \mathcal{Z}^H} \asymp \max \left\{ \limsup_{|\psi(\omega)| \rightarrow 1} (1 - |\omega|^2) |\psi''(\omega)| \log \frac{e}{1 - |\psi(\omega)|^2}, \limsup_{|\psi(\omega)| \rightarrow 1} (1 - |\omega|^2) \left[\frac{|\psi'(\omega)|^2}{1 - |\psi(\omega)|^2} \right] \right\}.$$

Proof. Set $N_1 := \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |\psi''(\omega)| \log \frac{e}{1 - |\psi(\omega)|^2}$, $N_2 := \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) \left[\frac{|\psi'(\omega)|^2}{(1 - |\psi(\omega)|^2)^2} \right]$.

Let $\delta \in (0, 1)$ and $\epsilon > 0$. So, by Lemma 2.3, there is $\rho \in (0, 1)$ so that

$$\begin{aligned} \sup_{\|h\|_{\mathcal{Z}^H} \leq 1} \sup_{\omega \in \mathbb{D}} |((I - T_\rho)h)(\omega)| &< \epsilon, \quad \sup_{\|h\|_{\mathcal{Z}^H} \leq 1} \sup_{|\omega| \leq \delta} |((I - T_\rho)h)_\omega(\omega)| + |((I - T_\rho)h)_{\bar{\omega}}(\omega)| < \epsilon, \\ \sup_{\|h\|_{\mathcal{Z}^H} \leq 1} \sup_{|\omega| \leq \delta} |((I - T_\rho)h)_{\omega\omega}(\omega)| + |((I - T_\rho)h)_{\bar{\omega}\bar{\omega}}(\omega)| &< \epsilon. \end{aligned}$$

It follows that

$$\begin{aligned} & |(C_\psi(I - T_\rho)h)(0)| + |(C_\psi(I - T_\rho)h)_\omega(0)| + |(C_\psi(I - T_\rho)h)_{\bar{\omega}}(0)| \\ & \leq |((I - T_\rho)h)(\psi(0))| + |\psi'(0)| \left[|((I - T_\rho)h)_\omega(\psi(0))| + |((I - T_\rho)h)_{\bar{\omega}}(\psi(0))| \right] \\ & \leq (1 + |\psi'(0)|) \epsilon. \end{aligned}$$

So

$$\begin{aligned} A_1 &:= \sup_{\|h\|_{\mathcal{Z}^H} \leq 1} \left[|(C_\psi(I - T_\rho)h)(0)| + |(C_\psi(I - T_\rho)h)_\omega(0)| + |(C_\psi(I - T_\rho)h)_{\bar{\omega}}(0)| \right] \leq (1 + |\psi'(0)|) \epsilon, \\ A_2 &:= \sup_{\|h\|_{\mathcal{Z}^H} \leq 1} \sup_{|\omega| \leq \delta} (1 - |\omega|^2) |\psi''(\omega)| \left[|((I - T_\rho)h)_\omega(\psi(\omega))| + |((I - T_\rho)h)_{\bar{\omega}}(\psi(\omega))| \right] \leq N_1 \epsilon, \\ A_3 &:= \sup_{\|h\|_{\mathcal{Z}^H} \leq 1} \sup_{|\omega| \leq \delta} (1 - |\omega|^2) |\psi'(\omega)|^2 \left[|((I - T_\rho)h)_{\omega\omega}(\psi(\omega))| + |((I - T_\rho)h)_{\bar{\omega}\bar{\omega}}(\psi(\omega))| \right] \leq N_2 \epsilon. \end{aligned}$$

Since T_ρ is compact on \mathcal{Z}^H by part (c) in Lemma 2.3, we have

$$\begin{aligned} \|C_\psi\|_{e, \mathcal{Z}^H} &\leq \|C_\psi(I - T_\rho)\|_{\mathcal{Z}^H \rightarrow \mathcal{Z}^H} \\ &= \sup_{\|h\|_{\mathcal{Z}^H} \leq 1} \|C_\psi(I - T_\rho)h\|_{\mathcal{Z}^H} \\ &= \sup_{\|h\|_{\mathcal{Z}^H} \leq 1} \left(|(C_\psi(I - T_\rho)h)(0)| + |(C_\psi(I - T_\rho)h)_\omega(0)| + |(C_\psi(I - T_\rho)h)_{\bar{\omega}}(0)| \right. \\ &\quad \left. + \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) \left[|(C_\psi(I - T_\rho)h)_{\omega\omega}(\omega)| + |(C_\psi(I - T_\rho)h)_{\bar{\omega}\bar{\omega}}(\omega)| \right] \right) \end{aligned}$$

$$\begin{aligned}
&\leq A_1 + \sup_{\|h\|_{\mathcal{Z}^H} \leq 1} \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) \left[|(C_\psi(I - T_\rho)h)_{\omega\omega}(\omega)| + |(C_\psi(I - T_\rho)h)_{\overline{\omega}\overline{\omega}}(\omega)| \right] \\
&\leq A_1 + \sup_{\|h\|_{\mathcal{Z}^H} \leq 1} \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |\psi''(\omega)| \left[|((I - T_\rho)h)_{\omega}(\psi(\omega))| + |((I - T_\rho)h)_{\overline{\omega}}(\psi(\omega))| \right] \\
&\quad + \sup_{\|h\|_{\mathcal{Z}^H} \leq 1} \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |\psi'(\omega)|^2 \left[|((I - T_\rho)h)_{\omega\omega}(\psi(\omega))| + |((I - T_\rho)h)_{\overline{\omega}\overline{\omega}}(\psi(\omega))| \right] \\
&\leq A_1 + A_2 + A_3 \\
&\quad + \sup_{\|h\|_{\mathcal{Z}^H} \leq 1} \sup_{|\psi(\omega)| > \delta} (1 - |\omega|^2) |\psi''(\omega)| \log \frac{e}{1 - |\psi(\omega)|^2} \frac{|((I - T_\rho)h)_{\omega}(\psi(\omega))| + |((I - T_\rho)h)_{\overline{\omega}}(\psi(\omega))|}{\log \frac{e}{1 - |\psi(\omega)|^2}} \\
&\quad + \sup_{\|h\|_{\mathcal{Z}^H} \leq 1} \sup_{|\psi(\omega)| > \delta} (1 - |\omega|^2) \left[\frac{|\psi'(\omega)|^2}{1 - |\psi(\omega)|^2} \right] (1 - |\psi(\omega)|^2) \left[|((I - T_\rho)h)_{\omega\omega}(\psi(\omega))| + |((I - T_\rho)h)_{\overline{\omega}\overline{\omega}}(\psi(\omega))| \right] \\
&\leq \left(1 + |\psi'(0)| \right) \epsilon + N_1 \epsilon + N_2 \epsilon \\
&\quad + \sup_{\|h\|_{\mathcal{Z}^H} \leq 1} \sup_{|\psi(\omega)| > \delta} (1 - |\omega|^2) |\psi''(\omega)| \log \frac{e}{1 - |\psi(\omega)|^2} \frac{|((I - T_\rho)h)_{\omega}(\psi(\omega))| + |((I - T_\rho)h)_{\overline{\omega}}(\psi(\omega))|}{\log \frac{e}{1 - |\psi(\omega)|^2}} \\
&\quad + \sup_{\|h\|_{\mathcal{Z}^H} \leq 1} \sup_{|\psi(\omega)| > \delta} \frac{(1 - |\omega|^2) |\psi'(\omega)|^2}{1 - |\psi(\omega)|^2} (1 - |\psi(\omega)|^2) \left[|((I - T_\rho)h)_{\omega\omega}(\omega)| + |((I - T_\rho)h)_{\overline{\omega}\overline{\omega}}(\omega)| \right]. \tag{2.3}
\end{aligned}$$

Let $h \in \mathcal{Z}^H$ such that $\|h\|_{\mathcal{Z}^H} \leq 1$. Then, by part (a) of Lemma 2.3,

$$\|(I - T_\rho)h\|_{\mathcal{Z}^H} \leq \|h\|_{\mathcal{Z}^H} + \|T_\rho h\|_{\mathcal{Z}^H} \leq \|h\|_{\mathcal{Z}^H} + \|h\|_{\mathcal{Z}^H} \leq 2.$$

Therefore

$$(1 - |\psi(\omega)|^2) |((I - T_\rho)h)_{\omega\omega}(\psi(\omega))| + |((I - T_\rho)h)_{\overline{\omega}\overline{\omega}}(\psi(\omega))| \leq \|(I - T_\rho)h\|_{\mathcal{Z}^H} \leq 2. \tag{2.4}$$

Let $\omega \in \mathbb{D}$, and since the function $((I - T_\rho)h)_{\omega} + ((I - T_\rho)h)_{\overline{\omega}}$ in \mathcal{B}^H , we have by (1.1)

$$\begin{aligned}
|((I - T_\rho)h)_{\omega}(\omega)| + |((I - T_\rho)h)_{\overline{\omega}}(\omega)| &\leq \log \frac{e}{1 - |\psi(\omega)|^2} \left\| ((I - T_\rho)h)_{\omega} + ((I - T_\rho)h)_{\overline{\omega}} \right\|_{\mathcal{B}^H} \\
&\leq 2 \left[\log \frac{e}{1 - |\psi(\omega)|^2} \right]. \tag{2.5}
\end{aligned}$$

Thus, by using (2.5), and (2.4) in (2.3), we have

$$\begin{aligned}
\|C_\psi\|_{e, \mathcal{Z}^H} &\leq \left(1 + |\psi'(0)| + M_1 + M_2 + M_3 \right) \epsilon \\
&\quad + 2 \sup_{|\psi(\omega)| > \delta} (1 - |\omega|^2) |\psi''(\omega)| \log \frac{e}{1 - |\psi(\omega)|^2} + 2 \sup_{|\psi(\omega)| > \delta} \frac{(1 - |\omega|^2) |\psi'(\omega)|^2}{1 - |\psi(\omega)|^2},
\end{aligned}$$

where ϵ is arbitrary. Let $\delta \rightarrow 1$, we obtain

$$\|C_\psi\|_{e, \mathcal{Z}^H} \leq 2 \lim_{s \rightarrow 1} \left(\sup_{|\psi(\omega)| > \delta} (1 - |\omega|^2) |\psi''(\omega)| \log \frac{e}{1 - |\psi(\omega)|^2} + \sup_{|\psi(\omega)| > \delta} \frac{(1 - |\omega|^2) |\psi'(\omega)|^2}{1 - |\psi(\omega)|^2} \right) \tag{2.6}$$

which proves the upper bound.

For $b \in \mathbb{C}$ such that $|b| > 1/2$, consider the analytic one-parameter family $\{f_b\}$ defined on \mathbb{D} by

$$f_b(\omega) = \frac{(1 - |b|^2) \left(\log(1 - \bar{b}\omega) + \frac{1 - |b|^2}{1 - \bar{b}\omega} \right)}{\bar{b}^2}. \quad (2.7)$$

Straightforward calculation shows that

$$\begin{aligned} \|f_b\|_{s\mathcal{Z}^H} &= \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2)(1 - |b|^2) \left| -\frac{1}{(1 - \bar{b}\omega)^2} + \frac{(1 - |b|^2)2}{(1 - \bar{b}\omega)^3} \right| \\ &\leq 4 \sup_{\omega \in \mathbb{D}} (1 - |\omega|)(1 - |b|) \frac{|-(1 - \bar{b}\omega) + (1 - |b|^2)2|}{|1 - \bar{b}\omega|^3} \\ &\leq 4 \sup_{\omega \in \mathbb{D}} \left| \frac{1 - \bar{b}\omega + \bar{b}2(\omega - b)}{1 - \bar{b}\omega} \right| \\ &\leq 12. \end{aligned}$$

Therefore $f_b \in \mathcal{Z}^H$. Moreover $\sup_{|b| > 1/2} \|f_b\|_{\mathcal{Z}^H} < \infty$.

Now, let's consider $\{z_n\}_{n \in \mathbb{N}}$ as a sequence in the unit disk and $|\psi(z_n)| \rightarrow 1$ as $n \rightarrow \infty$. For $\omega \in \mathbb{D}$, define $f_n(\omega) = f_{\psi(z_n)}(\omega)$ as in (2.7), and let $K = \sup_{n \in \mathbb{N}} \|f_n\|_{\mathcal{Z}^H}$. Observing that f_n is bounded on \mathcal{Z}^H and converges uniformly to 0 on $\overline{\mathbb{D}}$. Moreover, we note that $\lim_{|\omega| \rightarrow 1} (1 - |\omega|^2)|f_n''(\omega)| = 0$. So, $f_n \in \mathcal{Z}_0^H$. Thus, by Lemma 2.2, f_n converges weakly to 0 in \mathcal{Z}^H . Let T be a compact operator on \mathcal{Z}^H . Then according to Lemma 2.1, we have

$$\lim_{n \rightarrow \infty} \|Tf_n\|_{\mathcal{Z}^H} = 0.$$

Thus

$$\begin{aligned} K\|C_\psi - T\|_{\mathcal{Z}^H} &\geq \limsup_{n \rightarrow \infty} \|(C_\psi - T)f_n\|_{\mathcal{Z}^H} \\ &\geq \limsup_{n \rightarrow \infty} \|C_\psi f_n\|_{\mathcal{Z}^H} - \limsup_{n \rightarrow \infty} \|Tf_n\|_{\mathcal{Z}^H} \\ &= \limsup_{n \rightarrow \infty} \|C_\psi f_n\|_{\mathcal{Z}^H}. \end{aligned}$$

Hence

$$K\|C_\psi\|_{e,\mathcal{Z}^H} \geq \limsup_{n \rightarrow \infty} \|C_\psi f_n\|_{\mathcal{Z}^H}. \quad (2.8)$$

Therefore

$$K\|C_\psi\|_{e,\mathcal{Z}^H} \geq \limsup_{n \rightarrow \infty} (1 - |z_n|^2)|\psi'(z_n)|^2 \|f_n''(\psi(z_n))\| - \limsup_{n \rightarrow \infty} \left[(1 - |z_n|^2)|\psi''(z_n)| \|f_n'(\psi(z_n))\| \right].$$

Note that $f_n'(\psi(z_n)) = 0$ and $|f_n''(\psi(z_n))| = \frac{1}{1 - |\psi(z_n)|^2}$. Thus

$$\limsup_{n \rightarrow \infty} 1 - |z_n|^2 \left[\frac{|\psi'(z_n)|^2}{1 - |\psi(z_n)|^2} \right] \leq K\|C_\psi\|_{e,\mathcal{Z}^H}. \quad (2.9)$$

Again, let $b \in \mathbb{C}$ such that $|b| > 1/2$. Define an analytic one-parameter family $\{g_b\}$ on \mathbb{D} by

$$g_b(\omega) = \log \frac{e}{1-|b|^2} \left(\log \frac{e}{1-|b|^2} \right)^{-1} \frac{2|b|}{|1-\bar{b}\omega|} \left(5 - 4 \log(1-\bar{b}\omega) + \log^2(1-\bar{b}\omega) \right)$$

We have

$$\begin{aligned} \|g_b\|_{s\mathcal{Z}^H} &= \sup_{\omega \in \mathbb{D}} (1-|\omega|^2) \left(\log \frac{e}{1-|b|^2} \right)^{-1} \frac{2|b|}{|1-\bar{b}\omega|} \left| \log \frac{e}{1-\bar{b}\omega} \right| \\ &\leq 4 \left(\log \frac{e}{1-|b|^2} \right)^{-1} \left(\log \frac{e}{1-|b|} + \pi \right) \\ &= 4 \left(1 + \frac{\pi + \log 2}{\log \frac{e}{1-|b|^2}} \right) \\ &\leq 4(1 + \log 2 + \pi). \end{aligned}$$

Therefore $g_b \in \mathcal{Z}^H$. Moreover $\sup_{|b|>1/2} \|g_b\|_{\mathcal{Z}^H} < \infty$. Assume $\{z_n\}_{n \in \mathbb{N}}$ be in the unit disk and $|\psi(z_n)| \rightarrow 1$ as $n \rightarrow \infty$. Let $n \in \mathbb{N}$, $z \in \mathbb{D}$, and assume $g_n = g_{\psi(z_n)}$ as in (2.10), and let $L = \sup_{n \in \mathbb{N}} \|g_n\|_{\mathcal{Z}^H}$.

We know that the sequence g_n is a bounded on \mathcal{Z}^H and converges to 0 uniformly on $\overline{\mathbb{D}}$. Moreover $\lim_{|\omega| \rightarrow 1} (1-|\omega|^2) |g_n''(\omega)| = 0$. Therefore $g_n \in \mathcal{Z}_0^H$. Thus, by Lemma 2.2, g_n converges weakly to 0 in \mathcal{Z}^H . Let T be a compact operator on \mathcal{Z}^H . Therefore

$$\lim_{n \rightarrow \infty} \|Tg_n\|_{\mathcal{Z}^H} = 0.$$

It follows that

$$\begin{aligned} L\|C_\psi - T\|_{\mathcal{Z}^H \rightarrow \mathcal{Z}^H} &\geq \limsup_{k \rightarrow \infty} \|(C_\psi - T)g_n\|_{\mathcal{Z}^H} \\ &\geq \limsup_{n \rightarrow \infty} \|C_\psi g_n\|_{\mathcal{Z}^H} - \limsup_{n \rightarrow \infty} \|Tg_n\|_{\mathcal{Z}^H} \\ &\geq \limsup_{n \rightarrow \infty} \|C_\psi g_n\|_{\mathcal{Z}^H}. \end{aligned}$$

Hence

$$L\|C_\psi\|_{e,\mathcal{Z}^H} \geq \limsup_{n \rightarrow \infty} \|C_\psi g_n\|_{\mathcal{Z}^H}. \quad (2.10)$$

Therefore

$$L\|C_{\theta,\psi}\|_{e,\mathcal{Z}^H} \geq \limsup_{n \rightarrow \infty} (1-|z_n|^2) |\psi''(z_n)| \|g_n'(\psi(z_n))\| - \limsup_{n \rightarrow \infty} \left[(1-|z_n|^2) |\psi'(z_n)|^2 \|g_n''(\psi(z_n))\| \right].$$

Then after simple calculations, we get

$$\begin{aligned} \limsup_{n \rightarrow \infty} 3(1-|z_n|^2) |\psi''(z_n)| \log \frac{e}{1-|\psi(z_n)|^2} &\leq L\|C_\psi\|_{e,\mathcal{Z}^H} + \limsup_{n \rightarrow \infty} \frac{2(1-|z_n|^2) |\psi'(z_n)|^2}{1-|\psi(z_n)|^2} \\ &\leq \|C_\psi\|_{e,\mathcal{Z}^H}. \end{aligned} \quad (2.11)$$

As consequence, by (2.6), (2.9) and (2.11)

$$\|C_\psi\|_{e,\mathcal{Z}^H} \asymp \max \left\{ \limsup_{|\psi(\omega)| \rightarrow 1} (1-|\omega|^2) |\psi''(\omega)| \log \frac{e}{1-|\psi(\omega)|^2}, \limsup_{|\psi(\omega)| \rightarrow 1} (1-|\omega|^2) \left[\frac{|\psi'(\omega)|^2}{1-|\psi(\omega)|^2} \right] \right\}$$

which completes our proof. \square

3. ESSENTIAL NORM ON HARMONIC SPACE, $\mathcal{V}^{\mathcal{H}}$

In this section, we move our attention to characterize the essential norm of the composition operators acting on the space $\mathcal{V}^{\mathcal{H}}$.

This section begins with a result in [4], the composition operator C_{ψ} is bounded on $\mathcal{V}^{\mathcal{H}}$ if and only if $\psi \in \mathcal{V}^{\mathcal{H}}$ and

$$\sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |\psi'(\omega) \psi''(\omega)| \log \frac{e}{1 - |\psi(\omega)|^2} < \infty.$$

In order to characterize the main result, we recall the following lemmas.

Lemma 3.1. *Assume the sequence $\{h_k\} \in \mathcal{V}_0^{\mathcal{H}}$ and converges uniformly to 0 on compact subsets of \mathbb{D} , then $\{h_k\}$ converges to 0 weakly.*

The proof is similar to that used in the proof of Lemma 2.2

Lemma 3.2. *Let T_{ρ} be the linear operator mapping a harmonic function h in $\mathcal{V}^{\mathcal{H}}$ to its dilation $h_{\rho}(\omega) = h(\rho\omega)$, ω in \mathbb{D} and $0 < \rho < 1$. Then the following statements hold.*

(a) *For each $\rho \in (0, 1)$, T_{ρ} is bounded operator on $\mathcal{V}^{\mathcal{H}}$. Moreover*

$$\|T_{\rho}\|_{\mathcal{V}^{\mathcal{H}}} = 1.$$

(b) *For each $\delta \in (0, 1)$ and each $\epsilon > 0$, there exists $\rho \in (0, 1)$ such that*

$$\sup_{\|h\|_{\mathcal{V}^{\mathcal{H}}} \leq 1} \sup_{\omega \in \mathbb{D}} |((I - T_{\rho})h)(\omega)| < \epsilon,$$

$$\sup_{\|h\|_{\mathcal{V}^{\mathcal{H}}} \leq 1} \sup_{\omega \in \mathbb{D}} |((I - T_{\rho})h)_{\omega}(\omega)| + |((I - T_{\rho})h)_{\bar{\omega}}(\omega)| < \epsilon,$$

$$\sup_{\|h\|_{\mathcal{V}^{\mathcal{H}}} \leq 1} \sup_{|\omega| \leq \delta} |((I - T_{\rho})h)_{\omega\omega}(\omega)| + |((I - T_{\rho})h)_{\bar{\omega}\bar{\omega}}(\omega)| < \epsilon,$$

$$\sup_{\|h\|_{\mathcal{V}^{\mathcal{H}}} \leq 1} \sup_{|\omega| \leq \delta} |((I - T_{\rho})h)_{\omega\omega\omega}(\omega)| + |((I - T_{\rho})h)_{\bar{\omega}\bar{\omega}\bar{\omega}}(\omega)| < \epsilon.$$

(c) *T_{ρ} is compact on $\mathcal{V}^{\mathcal{H}}$.*

Proof. The argument is similar to that in the proof of Lemma 2.3. \square

We are now ready to present the main theorem of this section.

Theorem 3.1. *Let ψ be a self map on \mathbb{D} such that C_{ψ} is bounded on $\mathcal{V}^{\mathcal{H}}$. Then*

$$\|C_{\psi}\|_{e, \mathcal{V}^{\mathcal{H}}} \asymp \max \left\{ \limsup_{|\psi(\omega)| \rightarrow 1} (1 - |\omega|^2) |(\psi' \psi'')(\omega)| \log \frac{e}{1 - |\psi(\omega)|^2}, \limsup_{|\psi(\omega)| \rightarrow 1} \frac{(1 - |\omega|^2) |\psi'(\omega)|^3}{1 - |\psi(\omega)|^2} \right\}.$$

Proof. Let $M_1 := \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |\psi'''(\omega)|$, $M_2 := \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |\psi'(\omega) \psi''(\omega)| \log \frac{e}{1 - |\psi(\omega)|^2}$, $M_3 := \sup_{\omega \in \mathbb{D}} \frac{(1 - |\omega|^2) |\psi'(\omega)|^3}{(1 - |\psi(\omega)|^2)}$.

Let $\delta \in (0, 1)$ and $\epsilon > 0$. So, by Lemma 3.2, there is $\rho \in (0, 1)$ such that

$$\begin{aligned} \sup_{\|h\|_{\mathcal{VH}} \leq 1} \sup_{\omega \in \mathbb{D}} |((I - T_\rho)h)(\omega)| &< \epsilon, \\ \sup_{\|h\|_{\mathcal{VH}} \leq 1} \sup_{\omega \in \mathbb{D}} |((I - T_\rho)h)_\omega(\omega)| + |((I - T_\rho)h)_{\bar{\omega}}(\omega)| &< \epsilon, \\ \sup_{\|h\|_{\mathcal{VH}} \leq 1} \sup_{|\omega| \leq \delta} |((I - T_\rho)h)_{\omega\omega}(\omega)| + |((I - T_\rho)h)_{\bar{\omega}\bar{\omega}}(\omega)| &< \epsilon, \\ \sup_{\|h\|_{\mathcal{VH}} \leq 1} \sup_{|\omega| \leq \delta} |((I - T_\rho)h)_{\omega\omega\omega}(\omega)| + |((I - T_\rho)h)_{\bar{\omega}\bar{\omega}\bar{\omega}}(\omega)| &< \epsilon. \end{aligned}$$

It follows that

$$\begin{aligned} & |(C_\psi(I - T_\rho)h)(0)| + |(C_\psi(I - T_\rho)h)_\omega(0)| + |(C_\psi(I - T_\rho)h)_{\bar{\omega}}(0)| + |(C_\psi(I - T_\rho)h)_{\omega\omega}(0)| \\ & + |(C_\psi(I - T_\rho)h)_{\bar{\omega}\bar{\omega}}(0)| \\ & \leq |((I - T_\rho)h)(\psi(0))| + |\psi'(0)| \left[|((I - T_\rho)h)_\omega(\psi(0))| + |((I - T_\rho)h)_{\bar{\omega}}(\psi(0))| \right] \\ & + |\psi''(0)| \left[|((I - T_\rho)h)_\omega(\psi(0))| + |((I - T_\rho)h)_{\bar{\omega}}(\psi(0))| \right] \\ & + |\psi'(0)|^2 \left[|((I - T_\rho)h)_{\omega\omega}(\psi(0))| + |((I - T_\rho)h)_{\bar{\omega}\bar{\omega}}(\psi(0))| \right] \\ & \leq (1 + |\psi'(0)| + |\psi''(0)| + |\psi'(0)|^2) \epsilon. \end{aligned}$$

So

$$\begin{aligned} B_1 &:= \sup_{\|h\|_{\mathcal{VH}} \leq 1} \left[|(C_\psi(I - T_\rho)h)(0)| + |(C_\psi(I - T_\rho)h)_\omega(0)| + |(C_\psi(I - T_\rho)h)_{\bar{\omega}}(0)| \right. \\ &\quad \left. + |(C_\psi(I - T_\rho)h)_{\omega\omega}(0)| + |(C_\psi(I - T_\rho)h)_{\bar{\omega}\bar{\omega}}(0)| \right] \\ &\leq (1 + |\psi'(0)| + |\psi''(0)| + |\psi'(0)|^2) \epsilon, \\ B_2 &:= \sup_{\|h\|_{\mathcal{VH}} \leq 1} \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |\psi'''(\omega)| \left[|((I - T_\rho)h)_\omega(\psi(\omega))| + |((I - T_\rho)h)_{\bar{\omega}}(\psi(\omega))| \right] \\ &\leq M_1 \epsilon, \\ B_3 &:= \sup_{\|h\|_{\mathcal{VH}} \leq 1} \sup_{|\omega| \leq \delta} (1 - |\omega|^2) |(\psi' \psi'')(\omega)| \left[|((I - T_\rho)h)_{\omega\omega}(\psi(\omega))| + |((I - T_\rho)h)_{\bar{\omega}\bar{\omega}}(\psi(\omega))| \right] \\ &\leq M_2 \epsilon, \\ B_4 &:= \sup_{\|h\|_{\mathcal{VH}} \leq 1} \sup_{|\omega| < \delta} (1 - |\omega|^2) |\psi'(\omega)|^3 \left[|((I - T_\rho)h)_{\omega\omega\omega}(\psi(\omega))| + |((I - T_\rho)h)_{\bar{\omega}\bar{\omega}\bar{\omega}}(\psi(\omega))| \right] \\ &\leq M_3 \epsilon. \end{aligned}$$

Since T_ρ is compact on \mathcal{V}^H by part (c) in Lemma 3.2, we have

$$\begin{aligned}
\|C_\psi\|_{e,\mathcal{V}^H} &\leq \|C_\psi(I - T_\rho)\|_{\mathcal{V}^H} \\
&= \sup_{\|h\|_{\mathcal{V}^H} \leq 1} \|C_\psi(I - T_\rho)h\|_{\mathcal{V}^H} \\
&= \sup_{\|h\|_{\mathcal{V}^H} \leq 1} \left(|(C_\psi(I - T_\rho)h)(0)| + |(C_\psi(I - T_\rho)h)_\omega(0)| + |(C_\psi(I - T_\rho)h)_{\bar{\omega}}(0)| \right. \\
&\quad \left. + |(C_\psi(I - T_\rho)h)_{\omega\omega}(0)| + |(C_\psi(I - T_\rho)h)_{\bar{\omega}\bar{\omega}}(0)| \right. \\
&\quad \left. + \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) \left[|(C_\psi(I - T_\rho)h)_{\omega\omega\omega}(\omega)| + |(C_\psi(I - T_\rho)h)_{\bar{\omega}\bar{\omega}\bar{\omega}}(\omega)| \right] \right) \\
&\leq B_1 + \sup_{\|h\|_{\mathcal{V}^H} \leq 1} \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) \left[|(C_\psi(I - T_\rho)h)_{\omega\omega\omega}(\omega)| + |(C_\psi(I - T_\rho)h)_{\bar{\omega}\bar{\omega}\bar{\omega}}(\omega)| \right] \\
&\leq B_1 + \sup_{\|h\|_{\mathcal{V}^H} \leq 1} \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |\psi'''(\omega)| \left[|((I - T_\rho)h)_\omega(\psi(\omega))| + |((I - T_\rho)h)_{\bar{\omega}}(\psi(\omega))| \right] \\
&\quad + \sup_{\|h\|_{\mathcal{V}^H} \leq 1} \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |(\psi'\psi'')(\omega)| \left[|((I - T_\rho)h)_{\omega\omega}(\psi(\omega))| + |((I - T_\rho)h)_{\bar{\omega}\bar{\omega}}(\psi(\omega))| \right] \\
&\quad + \sup_{\|h\|_{\mathcal{V}^H} \leq 1} \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |((I - T_\rho)h)_{\omega\omega\omega}(\psi(\omega))| + |((I - T_\rho)h)_{\bar{\omega}\bar{\omega}\bar{\omega}}(\psi(\omega))| \\
&\leq B_1 + B_2 + B_3 + B_4 \\
&\quad + \sup_{\|h\|_{\mathcal{V}^H} \leq 1} \sup_{|\psi(\omega)| > \delta} (1 - |\omega|^2) |(\psi'\psi'')(\omega)| \log \frac{e}{1 - |\psi(\omega)|^2} \frac{|((I - T_\rho)h)_{\omega\omega}(\psi(\omega))| + |((I - T_\rho)h)_{\bar{\omega}\bar{\omega}}(\psi(\omega))|}{\log \frac{e}{1 - |\psi(\omega)|^2}} \\
&\quad + \sup_{\|h\|_{\mathcal{V}^H} \leq 1} \sup_{|\psi(\omega)| > \delta} \frac{(1 - |\omega|^2) |\psi'(\omega)^3|}{1 - |\psi(\omega)|^2} (1 - |\psi(\omega)|^2) |\psi'(\omega)|^3 (|((I - T_\rho)h)_{\omega\omega\omega}(\psi(\omega))| + |((I - T_\rho)h)_{\bar{\omega}\bar{\omega}\bar{\omega}}(\psi(\omega))|) \\
&\leq \left(1 + |\psi'(0)| + |\psi''(0)| + |\psi'(0)^2| \right) \epsilon + M_1 \epsilon + M_2 \epsilon + M_3 \epsilon \\
&\quad + \sup_{\|h\|_{\mathcal{V}^H} \leq 1} \sup_{|\psi(\omega)| > \delta} (1 - |\omega|^2) |(\psi'\psi'')(\omega)| \log \frac{e}{1 - |\psi(\omega)|^2} \frac{|((I - T_\rho)h)_{\omega\omega}(\psi(\omega))| + |((I - T_\rho)h)_{\bar{\omega}\bar{\omega}}(\psi(\omega))|}{\log \frac{e}{1 - |\psi(\omega)|^2}} \\
&\quad + \sup_{\|h\|_{\mathcal{V}^H} \leq 1} \sup_{|\psi(\omega)| > \delta} \frac{(1 - |\omega|^2) |\psi'(\omega)^3|}{1 - |\psi(\omega)|^2} (1 - |\psi(\omega)|^2) |((I - T_\rho)h)_{\omega\omega\omega}(\omega)| + |((I - T_\rho)h)_{\bar{\omega}\bar{\omega}\bar{\omega}}(\omega)| \\
&\tag{3.1}
\end{aligned}$$

Let $h \in \mathcal{V}^H$ such that $\|h\|_{\mathcal{V}^H} \leq 1$. Then, by part (a) of Lemma 3.2,

$$\|(I - T_\rho)h\|_{\mathcal{V}^H} \leq \|h\|_{\mathcal{V}^H} + \|T_\rho h\|_{\mathcal{V}^H} \leq \|h\|_{\mathcal{V}^H} + \|h\|_{\mathcal{V}^H} \leq 2.$$

Therefore

$$(1 - |\psi(\omega)|^2) |((I - T_\rho)h)_{\omega\omega\omega}(\psi(\omega))| + |((I - T_\rho)h)_{\bar{\omega}\bar{\omega}\bar{\omega}}(\psi(\omega))| \leq \|(I - T_\rho)h\|_{\mathcal{V}^H} \leq 2. \tag{3.2}$$

Since the function $(I - T_\rho)h_{\omega\omega} + (I - T_\rho)h_{\bar{\omega}\bar{\omega}}$ in \mathcal{B}_H , for $\omega \in \mathbb{D}$, we obtain

$$|((I - T_\rho)h)_{\omega\omega}(\omega)| + |((I - T_\rho)h)_{\bar{\omega}\bar{\omega}}(\omega)| \leq \log \frac{e}{1 - |\psi(\omega)|^2} \|((I - T_\rho)h)_{\omega\omega} + ((I - T_\rho)h)_{\bar{\omega}\bar{\omega}}\|_{\mathcal{B}_H}$$

$$\begin{aligned}
&\leq \log \frac{e}{1 - |\psi(\omega)|^2} \|(I - T_\rho)h\|_{\mathcal{V}^H} \\
&\leq 2 \log \frac{e}{1 - |\psi(\omega)|^2}.
\end{aligned} \tag{3.3}$$

Thus, by using (3.3), and (3.2) in (3.1), we have

$$\begin{aligned}
\|C_\psi\|_{e, \mathcal{V}^H} &\leq \left(1 + |\psi'(0)| + |\psi''(0)| + |\psi'(0)|^2 + M_1 + M_2 + M_3\right) \epsilon \\
&\quad + 2 \sup_{|\psi(\omega)| > \delta} (1 - |\omega|^2) |(\psi' \psi'')(\omega)| \log \frac{e}{1 - |\psi(\omega)|^2} + 2 \sup_{|\psi(\omega)| > \delta} \frac{(1 - |\omega|^2) |\psi'(\omega)|^3}{1 - |\psi(\omega)|^2}.
\end{aligned}$$

Since ϵ is arbitrary, and by letting $\delta \rightarrow 1$, we obtain

$$\|C_\psi\|_{e, \mathcal{V}^H} \leq 2 \lim_{\delta \rightarrow 1} \left(\sup_{|\psi(\omega)| > \delta} (1 - |\omega|^2) |(\psi' \psi'')(\omega)| \log \frac{e}{(1 - |\psi(\omega)|^2)} + \sup_{|\psi(\omega)| > \delta} \frac{(1 - |\omega|^2) |\psi'(\omega)|^3}{1 - |\psi(\omega)|^2} \right). \tag{3.4}$$

which proves the upper bound.

To prove the lower bound, fix $b \in \mathbb{D}$ such that $1/2 < |b| < 1$ and define the analytic one parameter family of test function F_b as follows. For $\omega \in \mathbb{D}$, let

$$F_b(\omega) = \frac{(1 - |b|^2)^2}{\bar{b}^3} \left(2 \log(1 - \bar{b}\omega) + \frac{1 - |b|^2}{1 - \bar{b}\omega} \right). \tag{3.5}$$

Noting f_b is analytic on \mathbb{D} , and a direct calculations show that

$$\begin{aligned}
F'_b(\omega) &= \frac{(1 - |b|^2)^2}{\bar{b}^2} \left(-\frac{2}{1 - \bar{b}\omega} + \frac{1 - |b|^2}{(1 - \bar{b}\omega)^2} \right), \\
F''_b(\omega) &= \frac{2(1 - |b|^2)^2}{\bar{b}} \left(-\frac{1}{(1 - \bar{b}\omega)^2} + \frac{1 - |b|^2}{(1 - \bar{b}\omega)^3} \right), \\
F'''_b(\omega) &= 2(1 - |b|^2)^2 \left(-\frac{2}{(1 - \bar{b}\omega)^3} + \frac{3(1 - |b|^2)}{(1 - \bar{b}\omega)^4} \right).
\end{aligned}$$

Then,

$$\begin{aligned}
(1 - |\omega|^2) |F'''_b(\omega)| &= 2(1 - |\omega|^2)(1 - |b|^2)^2 \left| -\frac{2}{1 - \bar{b}\omega} + \frac{3(1 - |b|^2)}{(1 - \bar{b}\omega)^4} \right| \\
&\leq 2(1 - |\omega|^2)(1 - |b|^2)^2 \left[\frac{2}{|1 - \bar{b}\omega|^3} + \frac{3(1 - |b|^2)}{|1 - \bar{b}\omega|^4} \right] \\
&\leq 2(1 - |\omega|^2)(1 - |b|^2)^2 \left[\frac{2}{(1 - |\omega|)(1 - |b|)^2} + \frac{3(1 - |b|^2)}{(1 - |\omega|)(1 - |b|)^3} \right] \\
&\leq 16(2 + 6) = 128.
\end{aligned}$$

Therefore,

$$\begin{aligned}
\|F_b\|_{\mathcal{V}^H} &= |F_b(0)| + |F'_b(0)| + |F''_b(0)| + \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |F'''_b(\omega)| \\
&= \frac{(1 - |b|^2)^3}{|b|^3} + \frac{(1 + |b|^2)(1 - |b|^2)^2}{|b|^2} + 2|b|(1 - |b|^2)^2 + \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |F'''_b(\omega)|
\end{aligned}$$

$$\begin{aligned} &\leq 9 + 128 \\ &= 137. \end{aligned}$$

Thus $F_b \in \mathcal{V}^H$. Moreover, $\sup_{\frac{1}{2} < |b| < 1} \|F_b\|_{\mathcal{V}^H} \leq 137$.

Let's consider a sequence $\{z_n\}_{n \in \mathbb{N}}$ within the unit disk such that $|\psi(z_n)| \rightarrow 1$ as $n \rightarrow \infty$. For $\omega \in \mathbb{D}$, let $F_n := F_{\psi(z_n)}$ be defined as in (3.5), and let $Q = \sup_{n \in \mathbb{N}} \|F_n\|_{\mathcal{V}^H}$. It is observed that F_n is bounded on \mathcal{V}^H and uniformly converges to 0 on $\overline{\mathbb{D}}$. Moreover, we note that $\lim_{|\omega| \rightarrow 1} (1 - |\omega|^2) |F_n''(\omega)| = 0$. So, $F_n \in \mathcal{V}_0^H$. Therefore, by Lemma 3.1, F_n converges weakly to 0 in \mathcal{V}^H . Let T be a compact operator on \mathcal{V}^H . Then, according to Lemma 2.1

$$\lim_{n \rightarrow \infty} \|TF_n\|_{\mathcal{V}^H} = 0.$$

Thus

$$\begin{aligned} Q\|C_\psi - T\|_{\mathcal{V}^H \rightarrow \mathcal{V}^H} &\geq \limsup_{n \rightarrow \infty} \|(C_\psi - T)F_n\|_{\mathcal{V}^H} \\ &\geq \limsup_{n \rightarrow \infty} \|C_\psi F_n\|_{\mathcal{V}^H} - \limsup_{n \rightarrow \infty} \|TF_n\|_{\mathcal{V}^H} \\ &= \limsup_{n \rightarrow \infty} \|C_\psi F_n\|_{\mathcal{V}^H}. \end{aligned}$$

Hence

$$Q\|C_\psi\|_{e, \mathcal{V}^H} \geq \limsup_{n \rightarrow \infty} \|C_\psi F_n\|_{\mathcal{V}^H}. \quad (3.6)$$

Therefore

$$\begin{aligned} Q\|C_\psi\|_{e, \mathcal{V}^H} &\geq \limsup_{n \rightarrow \infty} (1 - |z_n|^2) |\psi'(z_n)|^3 |F_n'''(\psi(z_n))| \\ &\quad - \limsup_{n \rightarrow \infty} \left[(1 - |z_n|^2) |\psi'''(z_n)| |F_n'(\psi(z_n))| + 3(1 - |z_n|^2) |(\psi' \psi'')'(z_n)| |F_n''(\psi(z_n))| \right]. \end{aligned}$$

Recalling the formulas for F'_n , F''_n , and F'''_n following (3.5), we see that

$$F''_n(\psi(z_n)) = 0 \text{ and } |F'''_n(\psi(z_n))| = \frac{2}{1 - |\psi(z_n)|^2}. \text{ Thus}$$

$$\limsup_{n \rightarrow \infty} \frac{2(1 - |z_n|^2) |\psi'(z_n)|^3}{1 - |\psi(z_n)|^2} \leq Q\|C_\psi\|_{e, \mathcal{V}^H} + \limsup_{n \rightarrow \infty} \left[(1 - |z_n|^2) |\psi'''(z_n)| |F_n'(\psi(z_n))| \right].$$

Since F'_n converge uniformly to 0 on $\overline{\mathbb{D}}$ and

$$(1 - |z_n|^2) |\psi'''(z_n)| \leq \sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |\psi'''(\omega)| < \infty, \quad (3.7)$$

then

$$\limsup_{n \rightarrow \infty} \frac{2(1 - |z_n|^2) |\psi'(z_n)|^3}{1 - |\psi(z_n)|^2} \leq Q\|C_\psi\|_{e, \mathcal{V}^H} \quad (3.8)$$

Again, fix $b \in \mathbb{D}$ such that $1/2 < |b| < 1$ and define the one parameter family of test function G_b as follows. For $\omega \in \mathbb{D}$, let

$$G_b(\omega) = \frac{(1 - \bar{b}\omega)^2 \left[15 - 10 \log(1 - \bar{b}\omega) + 2 \log^2(1 - \bar{b}\omega) \right]}{4\bar{b}^2 \log \frac{e}{1 - |b|^2}}. \quad (3.9)$$

We have G_b is analytic, and straightforward calculations show that

$$\begin{aligned} G'_b(\omega) &= \frac{(1 - \bar{b}\omega) \left[-5 + 4 \log(1 - \bar{b}\omega) - \log^2(1 - \bar{b}\omega) \right]}{\bar{b} \log \frac{e}{1 - |b|^2}}, \\ G''_b(\omega) &= \left(\log \frac{e}{1 - \bar{b}\omega} \right)^2 \left(\log \frac{e}{1 - |b|^2} \right)^{-1}, \\ G'''_b(\omega) &= \frac{2\bar{b}}{1 - \bar{b}\omega} \left(\log \frac{e}{1 - \bar{b}\omega} \right) \left(\log \frac{e}{1 - |b|^2} \right)^{-1}. \end{aligned}$$

Then

$$\begin{aligned} (1 - |\omega|^2) |G'''_b(\omega)| &= (1 - |\omega|^2) \frac{2|b|}{|1 - \bar{b}\omega|} \left| \log \frac{e}{1 - \bar{b}\omega} \right| \left(\log \frac{e}{1 - |b|^2} \right)^{-1} \\ &\leq \frac{2(1 - |\omega|^2)}{1 - |\omega|} \left| \log \frac{e}{1 - \bar{b}\omega} \right| \left(\log \frac{e}{1 - |b|^2} \right)^{-1} \\ &\leq 4 \left(\log \frac{e}{1 - |b|^2} \right)^{-1} \sqrt{\log^2 \frac{e}{|1 - \bar{b}\omega|} + \pi^2} \\ &\leq 4 \left(\log \frac{e}{1 - |b|^2} \right)^{-1} \left(\log \frac{e}{|1 - \bar{b}\omega|} + \pi \right) \\ &\leq 4 \left(\log \frac{e}{1 - |b|^2} \right)^{-1} \left(\log \frac{e}{1 - |b|} + \pi \right) \\ &\leq 4 \left(\log \frac{e}{1 - |b|^2} \right)^{-1} \left(\log \frac{2e}{1 - |b|^2} + \pi \right) \\ &= 4 \left(1 + \frac{\log 2 + \pi}{\log \frac{e}{1 - |b|^2}} \right) \\ &\leq 4(1 + \log 2 + \pi). \end{aligned}$$

Therefore,

$$\sup_{\omega \in \mathbb{D}} (1 - |\omega|^2) |G'''_b(\omega)| \leq 4(1 + \log 2 + \pi).$$

Thus, $G_b \in \mathcal{V}^{\mathcal{H}}$. Moreover,

$$\sup_{1/2 < |b| < 1} \|G_b\|_{\mathcal{V}^{\mathcal{H}}} < \infty.$$

Let $\{z_n\}_{n \in \mathbb{N}}$ be a sequence in the unit disk such that $|\psi(z_n)| \rightarrow 1$ as $n \rightarrow \infty$. For $n \in \mathbb{N}$, and $\omega \in \mathbb{D}$, let $G_n = G_{\psi(z_n)}$ as in (3.9), and let $N = \sup_{n \in \mathbb{N}} \|G_n\|_{\mathcal{V}^{\mathcal{H}}}$.

Observing that G_n is a bounded sequence on \mathcal{V}^H and uniformly converges to 0 on $\overline{\mathbb{D}}$, we note additionally that $\lim_{|\omega| \rightarrow 1} (1 - |\omega|^2) |G_n'''(\omega)| = 0$. Thus, $G_n \in \mathcal{V}_0^H$. Moreover, by Lemma 3.1, G_n converges weakly to 0 in \mathcal{V}^H . Assume the operator T be a compact on \mathcal{V}^H . Then

$$\lim_{n \rightarrow \infty} \|TG_n\|_{\mathcal{V}^H} = 0.$$

It follows that

$$\begin{aligned} N\|C_\psi - T\|_{\mathcal{V}^H \rightarrow \mathcal{V}^H} &\geq \limsup_{k \rightarrow \infty} \|(C_\psi - T)G_n\|_{\mathcal{V}^H} \\ &\geq \limsup_{n \rightarrow \infty} \|C_\psi G_n\|_{\mathcal{V}^H} - \limsup_{n \rightarrow \infty} \|TG_n\|_{\mathcal{V}^H} \\ &\geq \limsup_{n \rightarrow \infty} \|C_\psi G_n\|_{\mathcal{V}^H}. \end{aligned}$$

Hence

$$N\|C_\psi\|_{e, \mathcal{V}^H} \geq \limsup_{n \rightarrow \infty} \|C_\psi G_n\|_{\mathcal{V}^H}. \quad (3.10)$$

Therefore

$$\begin{aligned} N\|C_{\theta, \psi}\|_{e, \mathcal{V}^H} &\geq \limsup_{n \rightarrow \infty} 3(1 - |z_n|^2) |(\psi' \psi'')(z_n)| \|G_n''(\psi(z_n))\| \\ &\quad - \limsup_{n \rightarrow \infty} \left[(1 - |z_n|^2) |G_n'''(z_n)| \|G_n'(\psi(z_n))\| + (1 - |z_n|^2) |\psi'(z_n)|^3 \|G_n'''(\psi(z_n))\| \right]. \end{aligned}$$

Note that $|G_n''(\psi(z_n))| = \log \frac{e}{1 - |\psi(z_n)|^2}$ and $|G_n'''(\psi(z_n))| = \frac{2|\psi(z_n)|}{1 - |\psi(z_n)|^2}$. Using the fact that G_n' converges uniformly to 0 on $\overline{\mathbb{D}}$, and by (3.7) and (3.8), we deduce that

$$\begin{aligned} \limsup_{n \rightarrow \infty} 3(1 - |z_n|^2) |(\psi' \psi'')(z_n)| \log \frac{e}{1 - |\psi(z_n)|^2} &\leq N\|C_\psi\|_{e, \mathcal{V}^H} + \limsup_{n \rightarrow \infty} \frac{2(1 - |z_n|^2) |\psi'(z_n)|^3}{1 - |\psi(z_n)|^2} \\ &\leq \|C_\psi\|_{e, \mathcal{V}^H}. \end{aligned} \quad (3.11)$$

As conclusion, by (3.4), (3.8) and (3.11), we obtain

$$\|C_\psi\|_{e, \mathcal{V}^H} \asymp \max \left\{ \limsup_{|\psi(\omega)| \rightarrow 1} (1 - |\omega|^2) |(\psi' \psi'')(\omega)| \log \frac{e}{1 - |\psi(\omega)|^2}, \limsup_{|\psi(\omega)| \rightarrow 1} \frac{(1 - |\omega|^2) |\psi'(\omega)|^3}{1 - |\psi(\omega)|^2} \right\}.$$

□

Conflicts of Interest: The author declares that there are no conflicts of interest regarding the publication of this paper.

REFERENCES

- [1] M. Aljuaid, F. Colonna, Characterizations of Bloch-Type Spaces of Harmonic Mappings, *J. Funct. Spaces* 2019 (2019), 5687343. <https://doi.org/10.1155/2019/5687343>.
- [2] M. Aljuaid, F. Colonna, On the Harmonic Zygmund Spaces, *Bull. Aust. Math. Soc.* 101 (2020), 466–476. <https://doi.org/10.1017/s0004972720000180>.
- [3] M. Aljuaid, F. Colonna, Composition Operators on Some Banach Spaces of Harmonic Mappings, *J. Funct. Spaces* 2020 (2020), 9034387. <https://doi.org/10.1155/2020/9034387>.

[4] M. Aljuaid, Composition Operators on the Space of Harmonic Mapping \mathcal{V}^H , *J. Math. Anal.* 14 (2023), 25–35. <https://doi.org/10.54379/jma-2023-2-3>.

[5] C. Pommerenke, J. Clunie, J. Anderson, On Bloch Functions and Normal Functions., *J. Reine Angew. Math.* 1974 (1974), 12–37. <https://doi.org/10.1515/crll.1974.270.12>.

[6] S. Axler, P. Bourdon, W. Ramey, *Harmonic Function Theory*, Springer New York, 2001. <https://doi.org/10.1007/978-1-4757-8137-3>.

[7] S. Chen, S. Ponnusamy, X. Wang, Landau’s Theorem and Marden Constant for Harmonic v -Bloch Mappings, *Bull. Aust. Math. Soc.* 84 (2011), 19–32. <https://doi.org/10.1017/s0004972711002140>.

[8] S. Chen, X. Wang, on Harmonic Bloch Spaces in the Unit Ball of C^n , *Bull. Aust. Math. Soc.* 84 (2011), 67–78. <https://doi.org/10.1017/s0004972711002164>.

[9] F. Colonna, The Bloch Constant of Bounded Harmonic Mappings, *Indiana Univ. Math. J.* 38 (1989), 829–840. <https://www.jstor.org/stable/24895370>.

[10] F. Colonna, N. Hmidouch, Weighted Composition Operators on Iterated Weighted-Type Banach Spaces of Analytic Functions, *Complex Anal. Oper. Theory* 13 (2019), 1989–2016. <https://doi.org/10.1007/s11785-019-00905-2>.

[11] P.L. Duren, *Theory of H^p Spaces*, Academic Press, New York, 1970.

[12] A.L. Shields, P.L. Duren, B.W. Romberg, Linear Functionals on H^p Spaces with $0 < p < 1$, *J. Reine Angew. Math.* 238 (1969), 32–60. <http://eudml.org/doc/183521>.

[13] P.L. Duren, *Harmonic Mapping in the Plane*, Cambridge University Press, 2004. <https://doi.org/10.1017/CBO9780511546600>.

[14] X. Fu, X. Liu, On Characterizations of Bloch Spaces and Besov Spaces of Pluriharmonic Mappings, *J. Inequal. Appl.* 2015 (2015), 360. <https://doi.org/10.1186/s13660-015-0884-0>.

[15] A. Kamal, Q-Type Spaces of Harmonic Mappings, *J. Math.* 2022 (2022), 1342051. <https://doi.org/10.1155/2022/1342051>.

[16] K. Stroethoff, *Harmonic Bergman Spaces*, MSRI Publications, (1998).

[17] M. Tjani, Compact Composition Operators on Besov Spaces, *Trans. Am. Math. Soc.* 355 (2003), 4683–4698. <https://doi.org/10.1090/s0002-9947-03-03354-3>.

[18] R. Yoneda, A Characterization of the Harmonic Bloch Space and the Harmonic Besov Spaces by an Oscillation, *Proc. Edinb. Math. Soc.* 45 (2002), 229–239. <https://doi.org/10.1017/s001309159900142x>.