Exploring \(\mathfrak{F}\)-Khan-Contraction with Mann's Iterative Scheme in Convex \(S_b\)-Metric Spaces

Main Article Content

Anas A. Hijab, Ahmad Aloqaily, Nabil Mlaiki

Abstract

This manuscript presents the concept of Sb metric space for Mann’s iteration scheme, which extends the notion of b-metric, Gb-metric and S-metric spaces, respectively. We begin by introducing some improved and interesting properties, specifically regarding the concepts of symmetric and nonsymmetric within the context of Sb-metric space provided by examples. Additionally, we expand the notation of convex Sb-metric space through a convex Mann’s iteration algorithm. Furthermore, we display numerous outcomes of this new type of notion in the literature, with a particular focus on rational-Khan contractions and Wardowski-type contractions. The aim is to establish fixed-point results, accompanied by examples that clarify our findings. Finally, we provide applications to mixed Volterra-Fredholm integral and polynomial equations to support our theorems.

Article Details

References

  1. S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application aux Équations Intégrales, Fundam. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
  2. A. Aloqaily, Systems of Linear Equations in Generalized b-Metric Spaces, Int. J. Anal. Appl. 22 (2024), 227. https://doi.org/10.28924/2291-8639-22-2024-227.
  3. I.A. Bakhtin, The Contraction Mapping Principle in Almost Metric Spaces, Funct. Anal., Gos. Ped. Inst. Unianowsk 30 (1989), 26–37.
  4. S. Czerwik, Contraction Mappings in $b$-Metric Spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5–11. https://eudml.org/doc/23748.
  5. Z. Mustafa, B. Sims, A New Approach to Generalized Metric Spaces, J. Nonlinear Convex Anal. 7 (2006), 289–297.
  6. A. Aghajani, M. Abbas, J. Roshan, Common Fixed Point of Generalized Weak Contractive Mappings in Partially Ordered $G_b$-Metric Spaces, Filomat 28 (2014), 1087–1101. https://doi.org/10.2298/fil1406087a.
  7. N. Souayaha, N. Mlaikib, A Fixed Point Theorem in $S_b$-Metric Spaces, J. Math. Comput. Sci. 16 (2016), 131–139. https://doi.org/10.22436/jmcs.016.02.01.
  8. L. Chen, C. Li, R. Kaczmarek, Y. Zhao, Several Fixed Point Theorems in Convex b-Metric Spaces and Applications, Mathematics 8 (2020), 242. https://doi.org/10.3390/math8020242.
  9. G.M. Abd-Elhamed, A.A. Azzam, Applications of Different Types of Khan Contractions in Convex b-Metric Spaces, J. Math. Comput. Sci. 38 (2025), 417–429. https://doi.org/10.22436/jmcs.038.04.01.
  10. D. Ji, C. Li, Y. Cui, Fixed Point Theorems for Mann’s Iteration Scheme in Convex $G_b$-Metric Spaces with an Application, Axioms 12 (2023), 108. https://doi.org/10.3390/axioms12020108.
  11. A. Naz, S. Batul, D. Sagheer, I. Ayoob, N. Mlaiki, $F$-Contractions Endowed with Mann’s Iterative Scheme in Convex $G_b$-Metric Spaces, Axioms 12 (2023), 937. https://doi.org/10.3390/axioms12100937.
  12. W.R. Mann, Mean Value Methods in Iteration, Proc. Am. Math. Soc. 4 (1953), 506–510. https://doi.org/10.1090/s0002-9939-1953-0054846-3.
  13. I. Yildirim, Fixed Point Results for $F$-Hardy-Rogers Contractions via Mann’s Iteration Process in Complete Convex $b$-Metric Spaces, Sahand Commun. Math. Anal. 19 (2022), 15–32. https://doi.org/10.22130/scma.2022.528127.929.
  14. I. Karahan, M. Ozdemir, A General Iterative Method for Approximation of Fixed Points and Their Applications, Adv. Fixed Point Theory, 3 (2013), 510–526.
  15. W. Phuengrattana, S. Suantai, On the Rate of Convergence of Mann, Ishikawa, Noor and $SP$-Iterations for Continuous Functions on an Arbitrary Interval, J. Comput. Appl. Math. 235 (2011), 3006–3014. https://doi.org/10.1016/j.cam.2010.12.022.
  16. S. Ishikawa, Fixed Points by a New Iteration Method, Proc. Am. Math. Soc. 44 (1974), 147–150. https://doi.org/10.2307/2039245.
  17. A. Naz, S. Batul, S. Aljohani, N. Mlaiki, Results for Cyclic Contractive Mappings of Kannan and Chatterjea Type Equipped with Mann’s Iterative Scheme, Partial. Differ. Equ. Appl. Math. 13 (2025), 101145. https://doi.org/10.1016/j.padiff.2025.101145.
  18. Y. Rohen, T. Dosenovic, S. Radenovic, A Note on the Paper "A Fixed Point Theorems in $S_b$-Metric Spaces", Filomat 31 (2017), 3335–3346. https://doi.org/10.2298/fil1711335r.
  19. N. Fetouci, S. Radenović, Some Remarks and Corrections of Recent Results From the Framework of $S$-Metric Spaces, J. Sib. Fed. Univ. Math. Phys. 18 (2025), 402–411.
  20. S. Sedghi, N. Shobe, A. Aliouche, A Generalization of Fixed Point Theorems in $S$-Metric Spaces, Mat. Vesnik 64 (2012), 258–266. https://eudml.org/doc/253803.
  21. N. Taş, N. Özgür, New Generalized Fixed Point Results on $S_b$-Metric Spaces, Konuralp J. Math. 9 (2021), 24–32.
  22. Y. Wu, A New Approach on Generalized Quasimetric Spaces Induced by Partial Metric Spaces, J. Inequal. Appl. 2022 (2022), 61. https://doi.org/10.1186/s13660-022-02800-5.
  23. S. Sedghi, A. Gholidahneh, T. Dosenovic, J. Esfahani, S. Radenovic, Common Fixed Point of Four Maps in $S_b$-Metric Spaces, J. Linear Topol. Algebr. 2 (2016), 93–104.
  24. N. Parkala, U.R. Gujjula, S.R. Bagathi, On Certain Coupled Fixed Point Theorems via $C$-Class Functions in $S_b$-Metric Spaces with Applications, Int. J. Nonlinear Anal. Appl. 15 (2024), 413–429. https://doi.org/10.22075/ijnaa.2023.29959.4302.
  25. S. Sedghi, M.M. Rezaee, T. Došenović, S. Radenović, Common Fixed Point Theorems for Contractive Mappings Satisfying $Phi$-Maps in $S$-Metric Spaces, Acta Univ. Sapientiae, Math. 8 (2016), 298–311. https://doi.org/10.1515/ausm-2016-0020.
  26. D. Wardowski, Fixed Points of a New Type of Contractive Mappings in Complete Metric Spaces, Fixed Point Theory Appl. 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94.
  27. J. Vujaković, S. Mitrović, S. Radenović, Z.D. Mitrović, On Wardowski Type Results in the Framework of $G$-Metric Spaces, in: Advanced Mathematical Analysis and its Applications, Chapman and Hall/CRC, Boca Raton, 2023: pp. 29–43. https://doi.org/10.1201/9781003388678-3.
  28. N. Fabiano, Z. Kadelburg, N. Mirkov, Vesna Šešum Čavić, S. Radenović, On $F$-Contractions: A Survey, Contemp. Math. 3 (2022), 327–342. https://doi.org/10.37256/cm.3320221517.
  29. H. Huang, Z.D. Mitrović, K. Zoto, S. Radenović, On Convex $F$-Contraction in $b$-Metric Spaces, Axioms 10 (2021), 71. https://doi.org/10.3390/axioms10020071.
  30. Z.D. Mitrović, S. Radenović, The Banach and Reich Contractions in $b_v(s)$-Metric Spaces, J. Fixed Point Theory Appl. 19 (2017), 3087–3095. https://doi.org/10.1007/s11784-017-0469-2.
  31. Z. Mitrovic, H. Işık, S. Radenovic, The New Results in Extended $b$-Metric Spaces and Applications, Int. J. Nonlinear Anal. Appl. 11 (2020), 473–482. https://doi.org/10.22075/ijnaa.2019.18239.1998.
  32. J.R.R. Roshan, V. Parvaneh, Z. Kadelburg, New Fixed Point Results in $b$-Rectangular Metric Spaces, Nonlinear Anal.: Model. Control. 21 (2016), 614–634. https://doi.org/10.15388/na.2016.5.4.
  33. T. Kamran, M. Samreen, Q. UL Ain, A Generalization of $b$-Metric Space and Some Fixed Point Theorems, Mathematics 5 (2017), 19. https://doi.org/10.3390/math5020019.
  34. A.A. Hijab, L.K. Shaakir, S. Aljohani, N. Mlaiki, Fredholm Integral Equation in Composed-Cone Metric Spaces, Bound. Value Probl. 2024 (2024), 64. https://doi.org/10.1186/s13661-024-01876-w.
  35. A.A. Hijab, L.K. Shaakir, S. Aljohani, N. Mlaiki, Results on Common Fixed Points in Strong-Composed-Cone Metric Spaces, Int. J. Anal. Appl. 23 (2025), 75. https://doi.org/10.28924/2291-8639-23-2025-75.
  36. N. Taş, I. Ayoob, N. Mlaiki, Some Common Fixed-Point and Fixed-Figure Results with a Function Family on $S_b$-Metric Spaces, AIMS Math. 8 (2023), 13050–13065. https://doi.org/10.3934/math.2023657.