Exploring \(\mathfrak{F}\)-Khan-Contraction with Mann's Iterative Scheme in Convex \(S_b\)-Metric Spaces
Main Article Content
Abstract
This manuscript presents the concept of Sb metric space for Mann’s iteration scheme, which extends the notion of b-metric, Gb-metric and S-metric spaces, respectively. We begin by introducing some improved and interesting properties, specifically regarding the concepts of symmetric and nonsymmetric within the context of Sb-metric space provided by examples. Additionally, we expand the notation of convex Sb-metric space through a convex Mann’s iteration algorithm. Furthermore, we display numerous outcomes of this new type of notion in the literature, with a particular focus on rational-Khan contractions and Wardowski-type contractions. The aim is to establish fixed-point results, accompanied by examples that clarify our findings. Finally, we provide applications to mixed Volterra-Fredholm integral and polynomial equations to support our theorems.
Article Details
References
- S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application aux Équations Intégrales, Fundam. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
- A. Aloqaily, Systems of Linear Equations in Generalized b-Metric Spaces, Int. J. Anal. Appl. 22 (2024), 227. https://doi.org/10.28924/2291-8639-22-2024-227.
- I.A. Bakhtin, The Contraction Mapping Principle in Almost Metric Spaces, Funct. Anal., Gos. Ped. Inst. Unianowsk 30 (1989), 26–37.
- S. Czerwik, Contraction Mappings in $b$-Metric Spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5–11. https://eudml.org/doc/23748.
- Z. Mustafa, B. Sims, A New Approach to Generalized Metric Spaces, J. Nonlinear Convex Anal. 7 (2006), 289–297.
- A. Aghajani, M. Abbas, J. Roshan, Common Fixed Point of Generalized Weak Contractive Mappings in Partially Ordered $G_b$-Metric Spaces, Filomat 28 (2014), 1087–1101. https://doi.org/10.2298/fil1406087a.
- N. Souayaha, N. Mlaikib, A Fixed Point Theorem in $S_b$-Metric Spaces, J. Math. Comput. Sci. 16 (2016), 131–139. https://doi.org/10.22436/jmcs.016.02.01.
- L. Chen, C. Li, R. Kaczmarek, Y. Zhao, Several Fixed Point Theorems in Convex b-Metric Spaces and Applications, Mathematics 8 (2020), 242. https://doi.org/10.3390/math8020242.
- G.M. Abd-Elhamed, A.A. Azzam, Applications of Different Types of Khan Contractions in Convex b-Metric Spaces, J. Math. Comput. Sci. 38 (2025), 417–429. https://doi.org/10.22436/jmcs.038.04.01.
- D. Ji, C. Li, Y. Cui, Fixed Point Theorems for Mann’s Iteration Scheme in Convex $G_b$-Metric Spaces with an Application, Axioms 12 (2023), 108. https://doi.org/10.3390/axioms12020108.
- A. Naz, S. Batul, D. Sagheer, I. Ayoob, N. Mlaiki, $F$-Contractions Endowed with Mann’s Iterative Scheme in Convex $G_b$-Metric Spaces, Axioms 12 (2023), 937. https://doi.org/10.3390/axioms12100937.
- W.R. Mann, Mean Value Methods in Iteration, Proc. Am. Math. Soc. 4 (1953), 506–510. https://doi.org/10.1090/s0002-9939-1953-0054846-3.
- I. Yildirim, Fixed Point Results for $F$-Hardy-Rogers Contractions via Mann’s Iteration Process in Complete Convex $b$-Metric Spaces, Sahand Commun. Math. Anal. 19 (2022), 15–32. https://doi.org/10.22130/scma.2022.528127.929.
- I. Karahan, M. Ozdemir, A General Iterative Method for Approximation of Fixed Points and Their Applications, Adv. Fixed Point Theory, 3 (2013), 510–526.
- W. Phuengrattana, S. Suantai, On the Rate of Convergence of Mann, Ishikawa, Noor and $SP$-Iterations for Continuous Functions on an Arbitrary Interval, J. Comput. Appl. Math. 235 (2011), 3006–3014. https://doi.org/10.1016/j.cam.2010.12.022.
- S. Ishikawa, Fixed Points by a New Iteration Method, Proc. Am. Math. Soc. 44 (1974), 147–150. https://doi.org/10.2307/2039245.
- A. Naz, S. Batul, S. Aljohani, N. Mlaiki, Results for Cyclic Contractive Mappings of Kannan and Chatterjea Type Equipped with Mann’s Iterative Scheme, Partial. Differ. Equ. Appl. Math. 13 (2025), 101145. https://doi.org/10.1016/j.padiff.2025.101145.
- Y. Rohen, T. Dosenovic, S. Radenovic, A Note on the Paper "A Fixed Point Theorems in $S_b$-Metric Spaces", Filomat 31 (2017), 3335–3346. https://doi.org/10.2298/fil1711335r.
- N. Fetouci, S. Radenović, Some Remarks and Corrections of Recent Results From the Framework of $S$-Metric Spaces, J. Sib. Fed. Univ. Math. Phys. 18 (2025), 402–411.
- S. Sedghi, N. Shobe, A. Aliouche, A Generalization of Fixed Point Theorems in $S$-Metric Spaces, Mat. Vesnik 64 (2012), 258–266. https://eudml.org/doc/253803.
- N. Taş, N. Özgür, New Generalized Fixed Point Results on $S_b$-Metric Spaces, Konuralp J. Math. 9 (2021), 24–32.
- Y. Wu, A New Approach on Generalized Quasimetric Spaces Induced by Partial Metric Spaces, J. Inequal. Appl. 2022 (2022), 61. https://doi.org/10.1186/s13660-022-02800-5.
- S. Sedghi, A. Gholidahneh, T. Dosenovic, J. Esfahani, S. Radenovic, Common Fixed Point of Four Maps in $S_b$-Metric Spaces, J. Linear Topol. Algebr. 2 (2016), 93–104.
- N. Parkala, U.R. Gujjula, S.R. Bagathi, On Certain Coupled Fixed Point Theorems via $C$-Class Functions in $S_b$-Metric Spaces with Applications, Int. J. Nonlinear Anal. Appl. 15 (2024), 413–429. https://doi.org/10.22075/ijnaa.2023.29959.4302.
- S. Sedghi, M.M. Rezaee, T. Došenović, S. Radenović, Common Fixed Point Theorems for Contractive Mappings Satisfying $Phi$-Maps in $S$-Metric Spaces, Acta Univ. Sapientiae, Math. 8 (2016), 298–311. https://doi.org/10.1515/ausm-2016-0020.
- D. Wardowski, Fixed Points of a New Type of Contractive Mappings in Complete Metric Spaces, Fixed Point Theory Appl. 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94.
- J. Vujaković, S. Mitrović, S. Radenović, Z.D. Mitrović, On Wardowski Type Results in the Framework of $G$-Metric Spaces, in: Advanced Mathematical Analysis and its Applications, Chapman and Hall/CRC, Boca Raton, 2023: pp. 29–43. https://doi.org/10.1201/9781003388678-3.
- N. Fabiano, Z. Kadelburg, N. Mirkov, Vesna Šešum Čavić, S. Radenović, On $F$-Contractions: A Survey, Contemp. Math. 3 (2022), 327–342. https://doi.org/10.37256/cm.3320221517.
- H. Huang, Z.D. Mitrović, K. Zoto, S. Radenović, On Convex $F$-Contraction in $b$-Metric Spaces, Axioms 10 (2021), 71. https://doi.org/10.3390/axioms10020071.
- Z.D. Mitrović, S. Radenović, The Banach and Reich Contractions in $b_v(s)$-Metric Spaces, J. Fixed Point Theory Appl. 19 (2017), 3087–3095. https://doi.org/10.1007/s11784-017-0469-2.
- Z. Mitrovic, H. Işık, S. Radenovic, The New Results in Extended $b$-Metric Spaces and Applications, Int. J. Nonlinear Anal. Appl. 11 (2020), 473–482. https://doi.org/10.22075/ijnaa.2019.18239.1998.
- J.R.R. Roshan, V. Parvaneh, Z. Kadelburg, New Fixed Point Results in $b$-Rectangular Metric Spaces, Nonlinear Anal.: Model. Control. 21 (2016), 614–634. https://doi.org/10.15388/na.2016.5.4.
- T. Kamran, M. Samreen, Q. UL Ain, A Generalization of $b$-Metric Space and Some Fixed Point Theorems, Mathematics 5 (2017), 19. https://doi.org/10.3390/math5020019.
- A.A. Hijab, L.K. Shaakir, S. Aljohani, N. Mlaiki, Fredholm Integral Equation in Composed-Cone Metric Spaces, Bound. Value Probl. 2024 (2024), 64. https://doi.org/10.1186/s13661-024-01876-w.
- A.A. Hijab, L.K. Shaakir, S. Aljohani, N. Mlaiki, Results on Common Fixed Points in Strong-Composed-Cone Metric Spaces, Int. J. Anal. Appl. 23 (2025), 75. https://doi.org/10.28924/2291-8639-23-2025-75.
- N. Taş, I. Ayoob, N. Mlaiki, Some Common Fixed-Point and Fixed-Figure Results with a Function Family on $S_b$-Metric Spaces, AIMS Math. 8 (2023), 13050–13065. https://doi.org/10.3934/math.2023657.