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Abstract. This manuscript presents the concept of S, metric space for Mann’s iteration scheme, which extends the
notion of b-metric, G;-metric and S-metric spaces, respectively. We begin by introducing some improved and interesting
properties, specifically regarding the concepts of symmetric and nonsymmetric within the context of Sy-metric space
provided by examples. Additionally, we expand the notation of convex S,-metric space through a convex Mann’s
iteration algorithm. Furthermore, we display numerous outcomes of this new type of notion in the literature, with a
particular focus on rational-Khan contractions and Wardowski-type contractions. The aim is to establish fixed-point
results, accompanied by examples that clarify our findings. Finally, we provide applications to mixed Volterra-Fredholm

integral and polynomial equations to support our theorems.

1. INTRODUCTION

Fixed-point theorems (FPT) represent a significant branch of function analysis with extensive
applications, playing a crucial role in nonlinear analysis. Initially, Banach [1] established a highly
consequential theorem in 1922 regarding the existence and uniqueness of an FPT in complete metric
spaces, for a comprehensive concept termed the “Banach contractive principle”. This marked the
inception of efforts to expand his theorem, through either generalisations of metric spaces (MS)
or improvements of contractions. We also demonstrate an iterative scheme to find the fixed point
of a mapping, employing various contractions to provide the existence of solutions for technical
model applications. Significant generalisations of MS include b-MS introduced by Alogaily [2],
Bakhtin [3] and Czerwik [4]. Mustafa et al. [5] present an extension of the defined MS, referred to
as a G-MS. Then, Aghajani et al. [6] presented the G,-MS, which is an extension of G-MS and b-MS.
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On the other side, Nizar et al. [7] named S;-metric space (5,-MS), whereas S,-MS most generalises
the previous notions. A lot of FPT were focused in S;-MS (see, [18,19,21,36]).

Recently, Chen et al. [8] introduced the idea of convex b-MS and confirmed some fixed-point (FP)
results along with it; also, Gehad M. et al. studied this [9] with different types of Khan contractions.
Subsequently, several generalisations of convex b-MS were presented, such as convex G,-MS, due
to Dong Ji et al. [10], convex G,-MS with §-contraction, which were initiated by Amna Naz et
al. [11]. Before that, since iterative schemes play an important role in finding solutions to FPT
problems, Mann [12] presented the Mann iterative scheme for approximating FP mapping, which
novelly replaced the Picard iterative scheme of BCP. In 2022, Yildirim [13] redefined the concept of
Mann'’s iterative scheme for FP results. Ji et al. [10] extended Mann's iterative scheme to the new
space convex G,-MS. Later on, Naz et al. employed [11] Mann’s iterative scheme via §-contraction.
A lot of results have focused on the concepts of convexity in Mann's iterative scheme, Karahan et
al. [14], also see [15-17].

In the current paper, we modified the S;-MS by providing some properties endowed with
the notation of symmetric and nonsymmetric, generalising all previous to CS,-MS by using
Wardowski-contraction equipped with Mann'’s iterative scheme. Some results are obtained us-
ing Khan rational-contraction as a special case. The main goal is to manifest an FPT involving a
Khan type of F-contraction of Mann’s iterative scheme, focusing on the results of CS5,-MS with
examples. It also provides special relationships for convergence sequences. Finally, the paper
introduces applications of mixed Volterra-Fredholm integral equations and the mth polynomial

equation, which support our FPT on these new spaces.

2. PRELIMINARIES

This section provides definitions of some basic concepts of S;,-MS.

Definition 2.1. [3,4] Let © be a nonempty set and y > 1. The mapping dj : D X D — [0, o) is said to be
a b-metric on D if for all a, b, c € D are satisfied:

(1) dy(a,b) =0ifand only ifa = b,

(2) dy(a,b) = dy(b,a),

(3) dy(a,b) < uldy(a,c)+dy(c,b)].
The pair (D, dy,) is called a b-metric space (bMS).

Definition 2.2. [6] Let © be a nonempty set and ® : D X DX D — [0, o) be a mapping, which satisfies
the following properties for all a,b,c € D:
(1) ®(a,b,c) =0ifa=b=c,
(2) ®(a,a,b) >0, foreacha,b € Danda # b,
(3) ®(a,a,b) < G(a,b,c), foreacha bce Dandb # c,
(4) ®(a,b,c) = G(a,c,b) =---,
(5) G(a,b,c) < u[®(a,t, t) ®(t,b,c)], foreacha,b,c,t € Dand p > 1.
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The pair (D, ®) is called a Gy-metric space (GbMS). Clearly, GAMS and bMS are equivalent topologically.

Next, Souayah et al. [7] initiated several generalisations of bMS below, and differentiating it
from GbMS, named it a S;,-MS.

Definition 2.3. [7] Let © be a nonempty set and u > 1 be a given real number. A mapping Sy, :
DXDXD — [0,00) is said to be a Sy-metric if for all a, b, c € D, it satisfied the following:

(S1) Sp(a,b,c) =0ifand onlyifa =b =,

(S2) Syp(a,b,c) < [Sp(a,a,t) + Sy(b,b,t) + Sp(c,c,t)], for eacha,b,c,t € D.
The pair (D, Sy) is called an Sy-metric space (Sp-MS). Also, we say that (D, Sy) is an S-MS with u = 1.
For more, see Refs. [18-20].

Example 2.1. Let (D, d;) be a bMS and define S : DX DX D — [0, 00) by
(1) Sp(a,b,c) =dy(a,b) +dy(b,c) +dy(a,c),
(2) Sp(a,b,c) =dy(a,c) +dp(b,c),
(3) Sy(a,b,c) = [S1(a,b, )] ,p =1,

forany a,b,c € D. Then it can be easily seen that Sy, is an S,-MS on D.

Remark 2.1. Inspired by [18], the Sy-MS Sy, is termed as symmetric if “Sy(a,a,c) = Sp(c,c,a)” for any
a,c € D. In addition, from Example 2.1, we note that all cases are symmetric.

Example 2.2. [21] Let D = R and the mapping Sp : DX D X D — [0, 00) be defined by

55(0,0,1) =2,5,(1,1,0) = 4,

Sp(a,b,c) =0ifa="b=c, Sy(a,b,c) = 1otherwise, for all a,b,c € D. Then the mapping Sy is an S,-MS
with p > 2, which is not symmetric.

In the following example, we show that if we assume that d}, is a quasi-MS, we obtain a non-
symmetric case.

Example 2.3. Let (D,d) be a quasi-MS, © = IN U {co} and define S, : DXDXD — [0,00) by
Sp(a,b,c) = (d(a,c) +d(b,c))’,p =1, where

0 ifalla =c
d( ) 0 ifaefD,C:oo
a,c) =
1 ifceD,a=o00
1 otherwise,

for any a,b,c € . Then it is not difficult that we see Sy, is an S,-MS on D with u = 22~ but this is not
symmetric as dy(a,c) # dy(c,a).

Lemma 2.1. [22] Let (D, P) be a partial MS. Assume P(a,b) = P(a,b) — (nP(a,a) + CP(b, b)), where
0<n+C<1landn+C=1. Then the following statements always hold:

(1) P is a quasi-metric,
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(2) Pisametricifand onlyifn+C =1,
(3) g is a metric, where § = max{P(a,b),P(b,a)}.
Remark 2.2. Note that we can take any approach of MS to generate the S,-MS as well as 3 items above in

Lemma 2.1, the space being symmetric or non-symmetric.

In the following lemma, Sedghi et al. [23] provided some properties of 5,-MS. We show with

modified cases or generalisations.
Lemma 2.2. [23] In an S,-MS, where Sy, is non-symmetric, we deduce whether Sy(a,a,c) < uSy(c,c,a)
or (not and) Sy(c,c,a) < uSy(a,a,c). See Example 2.3, in which S,(0,0,1) = 2 <2(S,(1,1,0) = 4), but
the reverse is not always true.
Lemma 2.3. [23] Let (D, Sy) be an Sy-MS. Then

(1) If Sy is symmetric, then Sy(a,a,c) < 2uSy(a,a,b) + uSy(b,b,c),

(2) If Sy is non-symmetric, then Sy(a,a,c) < 2uSy(a,a,b) + u>Sy(b, b, c).

The notion of convergence and Cauchy sequences is introduced as in the case of S;-MS.

Definition 2.4. [23] Let (D, Sy) be an Sy-MS. Let {z,},50 be a sequence in ©. Then,

(1) {zn} is said to be convergent with zo in D, if for all € > 0, there exists a positive integer, N such that
Su(zn,2n,20) < € 0r Sp(20,20,2n) < € for each n > N, that is; nh_r)r(}o Zn = 20.
(2) {zn} is said to be Cauchy if for all € > 0, there exists N € IN such that Sy(zu,zn,zm) < € for each
n,m> N.
(3) The space (D, Sp) is said to be complete if for each Cauchy in D is convergence in D.
Definition 2.5. [23] Let (D, S;) and (',5,) be S,-MS, and let g : © — D' be a function. Then g is
called continuous at a point zog € D if and only if for every sequence z, in ®©, Sy(zn,zn,2z0) — 0 implies

S, (8(zu),8(zn), 8(20)) = 0. A function g is continuous at ® if and only if it is continuous at all zg € D,

In the following lemma, provided by several researchers, [21,23,24,30-36], we attempt to modify

it with another proof and focus in case the S;,-MS is symmetric or not.

Lemma2.4. Let (D, Sy) beasymmetric Sy-MS, and assume that {z,} and {c,} converge to zy, ¢y, respectively.
Then, we have the following:
1) 21751, (z0,20,¢0) < nh_r)xgo inf Sy (zy, 2y, cn) < ;qll—I>I<>1<> sup S (zn, zn, cn) < 242Sy (20,20, c0),
) #Sb(zo,zo, o) < r}l_{go inf Sy (24, Zn, cu) < r}l_rgo sup Sy(zn, zn, cn) < U2Sp(z0,20,co)-
In particular, if zo = co, then nh_r){}o Sp(zn, 2, cn) = 0. Moreover, for each b € D we deduce
(3) 52256(20,20,b) < lim inf Sy (zy, 2y, b) < lim sup Sy(zn, 2, b) < 34*Sy(20, 20, b)-
Proof. Through (S2) in S,-MS, where S;, is symmetric, and by Lemma 2.3 (1), we obtain
Sb(zn, Zn, €n) < 21Sp(2n, 20, 20) + pSp(Cn, Cn,20) (2.1)
< 2uSp(zn, zn,20) + 1[2uSp(cn, cu, co) + 1Sp(zo, 20, co)]
= 2uSy(zn, zn,20) + ZyZSb(cn,cn,co) + y25b(zo,zo,co) (2.2)
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Moreover, by (2.1), by the same process, where Sy (¢y, cn,20) = Sp(z0, 20, ¢n) We have
Sb(2n, Zn, €n) < 2uSp(2n, 20, 20) + 217Sp(20, 20, €0) + 1> Sp(Cns €, C0).- (2.3)
Also,
Su(Cn, Cn,zn) < 2uSp(cn, cn, o) + ptSp(zn, zn, €o) (2.4)
< 2uSp(cn, cn,c0) + p[21Sp(zn, 20, 20) + 1Sp(co, €0, 20)]
< 2uSp(cn, cn, o) + 212Sp(2zn, zn, 20) + 12Sp(20, 20, o). (2.5)
Further, by (2.4), we take Sy(zy, zn, c0) = Sp(co, co,zn) We have
Sb(CnsCnrzn) < 20Sp(Cn, s 0) + 217 Sy (20, 20, €0) + 1*Sp(2n, 20, 20)- (2.6)

Take the supremum and tend 7 to infinite, hence some cases are as follows:

Case 1: from (2.2) and (2.5), nh_r)r.}o sup Sp(zn, zn, cn) < P2Sp(z0, 20, o),

Case 2: from (2.3) and (2.6), nh_r}r(}o sup Sy (zn, zn, cn) < 2142Sy (20, 20, co),

Case 3: from additive (2.2) and (2.6) (or (2.3) and (2.5)), nh_r}x(}o sup Sp(zn, zn, cn) < 3u2Sp(20, 20, o).

By the same way, where instead of z, to zg and c, to ¢y with vice versa, we conclude

1
ESb(ZO’ 20,¢p) < r}l_f){}o inf Sy(2zn, 2n, Cn), (2.7)
and
1 .
Esb(zozzo, co) < nh_{{}o inf Sy (2, Zu, Cn) (2.8)
also
2 o
3—}1251, (20,20,¢0) < nh_{?o inf Sy(zy, 2, Cn). (2.9)
Therefore, the result holds for several cases, leading to various inequalities (weak-inequality) as
follows:
1
Z_‘UZSb (20,20,¢0) < lim inf Sy (20, 20, Cx) < lim sup Sp(2, Zn, €) < 214*Sy (20, 20, o).

But, for the smallest interval of inequality (strong-inequality), we have
1
ESb (20,20,¢0) < lim inf Sy (20, 20, Cx) < lim sup Sp (2, Zn, €) < 12Sy(z0, 20, o).

Towards item 3, if instead of ¢, to b in (2.1), (2.4) and additive, by assuming that the upper limit
tends to infinity, we obtain

lim sup Sy(2zn, 24, b) < gyzsb(zo,zo, b).

n—-oo

Similarly, about the left side, we obtain

2 ..
3_lqub(ZOI Zo, b) < r}l_r){}o inf Sy, (Zn,Zn, b)

Thus, the desired results follow. O
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Lemma 2.5. Let (D, Sy) be a non-symmetric Sy-MS, and let us assume that {z,} and {c,} converge to zy, co,

respectively. Then, we have
(1) #Sb(co, co,20) < lim inf Sy(zy, 2, ) and lim sup Sy(cn, cn,zn) < 13Sp(z0,20,¢0),
n—00 n—o0
() %Sb(co, co,20) < lim inf Sy (cy, cn, zn) < lim sup Sy(cn, cn,zn) < w2 (1 + 1)Sy(z0, 20, o).
n—o00 n—o0

In particular, if zog = co, then lim sup é;(cn, ¢n,zn) = 0. Moreover, for each w € D we deduce
n—oo

2u%+p
7 b

3) ﬁsb(co, co,w) < y}l_rgo inf Sy (w, w, c,) and y}l_r}go sup Sp(cn, Cp, w) < (w,w,cp),

4) ﬁsb(c'o, co,w) < lim inf Sy (Cy, Cu, W) < lim sup Sp(Cns cu, ) < 3uSy(w, w, co).

Proof. Through (S2) in S;-MS, where Sj, is not symmetric (assume Sy, (co, co,z0) < 1Sp(20, 20, o)), we

conclude
Sp(Cn, cn,zn) < 2uSp(cn, cn, o) + USp(zn, zn, €0)
< 2uSp(cn, cn,c0) + 112uSp(zn, 2n, 20) + 1Sp(co, co,z0)]
= 2uSy(cn, cn, o) + 2y25b (zn,2n,20) + yzsb(co, €0,20)-
By Lemma 2.2, we have
Sp(cn, Cn,zn) < 2uSp(cn, cn,co) + 2y25b(zn,zn,zo) + y3Sb(zo,zo, o). (2.10)
Now, taking SZ(cn, Cn,Zn) = Sp(2zn, zn, cn) and repeating the process (2.10), we deduce
S, (CnsCn,zn) = Sv(zn, zn, cn) < 2uSy(zn, 20, z0) + Zysz(cn,cn,co) + yZSb(zo,zo, o). (2.11)
Since Sy (cn, cn, zn) < 1Sp(2n, zn, ¢) for all n, with inequality (2.11), we obtain that
Sp(Cn, Cn,zn) < 21%Sp(2n, 20, 20) + 21 Sp(cn, cny c0) + 1Sy (20, 20, €0)- (2.12)
By additive (2.10) and (2.12), and assuming that the upper limit tends to infinite, we deduce
lim sup Sy (¢n, Cn, zn) < y35b(zo,ZO, o). (2.13)

n—oo

On the other hand, if instead of ¢, by cp and z, by zo with vice versa in (2.10), we conclude
Sy(co, co,z0) < 2uSp(co, co,cn) + Zyzsb(zo,zo,zn) + y3Sb (zn, Zn, Cn), (2.14)
also
Sp(co, co,z0) < 1Sp(20, 2o, o)
< 2u”Sy(z0,20,2n) + 2u>Sy(co, co, cn) + 4>Sy(zn, Zn, Cn ). (2.15)

By additive (2.14) and (2.15), and assuming that the lowest limit tends to infinite, we deduce

1
—35b(C0,Co,ZO) < lim inf Sy (zy, 2, c1)- (2.16)
0

n—00

Let SZ(Co, co,20) = Sp(20,20,¢0), we can get a symmetric form by

*

Sp(co, €0, 20) = max{Sy(co, co, 20), S} (co, €0, 20)} = Sp(z0, 20, €0)-
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From (2.10) and (2.11), we have
lim sup %(cn,cn,zn) < V}im sup max{2uSy(cn, cu, co) + 2‘1125;, (zn,2n, 20)
n—o00 —00

+ 1Sy (20,20, €0), 214Sp (21, Zn, 20) + 214%Sp(Cn, €, o) + 12Su(20, 20, C0) )
< (1 +1)Sp(20, 20, co). (In fact, max{a, b} < a+b for all a,b > 0). (2.17)

Again, by (2.16), we get

1 .. .. ..
—Sp(co, 0, 20) < lim inf Sy(zy, 2y, ¢x) = lim inf S; (¢, €, 20) < Wm inf Sp(cy, i, 21)
“3 n—o00 n—0o0 n—oo

< lim sup Sy (cy, cn,zn) < 2 (1 +1)Sp (20, 20, o).

n—00

Moreover, for each w € D, we obtain by (52)
Sp(cn, cn,w) < 2uSp(cn, cn, co) + puSy(w, w, co) (2.18)
S, (Cn,cn,w) = Sp(w, w, cu) < 2uSy(w,w, co) + wSp(cn, cu, Co). (2.19)
By hypothesis Sy(cy, cu, w) < uSp(w, w, cy), for each w € © and n € N utilised (2.19), we have
Sp(cu, cn,w) < uSy(w, w, cy) < 2u>Sy(w, w, o) + P2Sp(cu, cn, o)- (2.20)
By additive (2.18) and (2.20), it leads to
2ut+u

7}1_I>n sup Sp(cp, cn, w) < 5 Sp(w,w, co).
On the other hand, we get
Sp(co, co, w) < 2uSp(co, co, cn) + uSp(w, w, cn), (2.21)
and
S, (co, co, w) = Sp(w,w, co) < 2uSy(w, w, cy) + uSy(co, co, Cn),
so that
S(co, co,w) < pSy(w,w,co) < 2p*Sy(w, w, cn) + Sy (co, o, Cn).- (2.22)
Additive (2.21) and (2.22) with the infimum, leads to
2‘uZZdl_ #Sb(CO,CQ, w) < nh_r& inf Sy(w,w, cy). (2.23)

Furthermore, SZ(cn, cn,w) = Sp(w,w, cy) for all n € N, so that

*

Sp(Cn, cn, w) = max{Sy(cn, cn, w), Sy (Cn, Cn, W)}
From Eq. (2.18) and (2.19), we undergo
lim sup va(cn,cn,w) < lim sup max{2uSy(cy, cn, co) + 1Sp(w, w, co),
n—o0 n—oo

2uSy(w, w, co) + 1Sp(cn, cn, o)}

< 3#55 (wz w, CO)'
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Thus,
lim sup S~b(cn, cn, W) < 3uSy(w, w, co).

n—oo

Also, from inequality (2.23) and the notation of S (c,, ¢,, w), we obtain

2T HSb(CO’ co,w) < nh_r){)lo Sp(cn, cn, ).

Therefore, the desired results follow. O

The following is a generalised revised version of the lemma in [25].

Lemma 2.6. Let (D,S,) be a symmetric S,-MS and let {c,} be a sequence in it such that
lim Sp(cp+1,Cnt1,¢n) = 0. If {ca} is not a Cauchy, then there exists € > 0 and a two-sequence {my}
n—oo

and {ny} where ny > my > k of positive integers such that Sy(cn,, Cn,, Cm,) = € and Sy(cp,_,, Cny_ys Cmy) < €.

Moreover

1 i 2
(1) fre < Hm_ sup Sy (cu, G ) < %€,

(2) HLZG S k1—i>r—‘y]-:100 Sup Sb(cﬂk,llcnk,llcmk) S !126,
(3) #e < kEToo sup Sp(Cuys Cnys Cmyy ) < p2€,

1 3 2
(@) e < lim supSy(c, GOy ) < 7€,

Remark 2.3. Note in Lemma 2.6 about (D, Sy,) being non-symmetric S,-MS. It leads to some difference

with respect to Lemma 2.5 in all cases.

Definition 2.6. Let D be a nonempty set and 0 < A < 1. Define the mapping S, : DX DX D — [0,00) asa
continuous function W : DX D x A — D. Then ‘W is the convex form on D if Sy(co, co, W(m, n2;B)) <
W (Sp(co,co,m), Sp(co, co,m2); B) holds for each cy € D and (11,2, B) € DX DX W. Let taking in adhear
paper W (Sy(co, co,m), Sp(co, o, m2); B) = BSy(co, o, m) + (1= B)Sy(co, co, m2)-

Definition 2.7. Let the function W : D X D XA — D be a convex form on a S,-MS (D, Sy,) with constant
p>=1and 0 <A< 1. Then (D,Sy, W) is termed a convex Sy-MS (short, CSy-MS).

Let (D, Sy, W) be a CS,-MS and a mapping I' : D — D. Generalisation of Mann's iteration
scheme into CSp-MS is as c¢,4+1 := W(cn, I'cn; Bn), where ¢, € Dand 0 < B, < 1,n € IN. The

sequence {c,} is called a Mann’s iteration sequence for I'.

Example 2.4. Let © = R™, and define a S,-MS as Sp : DX DX D — [0, 00) for each a,b,c € D by
m

Sp(a,b,c) = Z (|a]~ —cjl+laj+cj— ij|)
i=1

2
’

wherea = (ay,az,- -+ ,a,) € D,b = (b1,by,--+ ,by) € Dandc = (c1,¢2,-++ ,cm) € D and let the mapping
W :DxDx[0,1] - Das

W(a, b;
Then, (D, Sy, W) is a CSy-MS with u = 2.

1)_a+b
2) 27
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Example 2.5. Let D = R, and define a Sp-MS as Sy : DX D XD — [0, 00) for each a,b,c € D by

1 2
Sp(a,b,c) = |§(Ia —cl+1b- CI)] ,

and also, the mapping W : DX D x [0,1] = D as W(a, b;B) = pa+ (1 - B)b. It is not difficult to see

that (D, Sy, W) is a CSp-MS with p = 2.

We summarise the most important and very useful lemmas and results in the main section of

the paper.

Lemma 2.7. Let (D, S, W) be CSp-MS. If B € (0,1), then Sp-MS is symmetric.

Proof. Obviously, Sy(a,b,b) = Sy(b,a,a) is satisfied, where a = b. Assume thata # b. Since < 1, it

is not difficult to see thata # W (a,b; ) and b # W(a,b; B). Indeed, if a = ‘W (a, b; ), we undergo
Sp(a,b,b) = Sp(‘W(a,b;B),b,b) < BSy(a,b,b),

a contradiction. Therefore, a # W(a,b;p). Utilising similar arguments, we deduce that b #
W(a,b;B).
Now, consider
Sp(a,b,b) < Sy(a, W(a,b;B),b) < BSp(a,a,b)+ (1—-B)Sy(a,b,b).
This implies that
Sy(a,b,b) < Sy(a,a,b). (2.24)
In addition
Sp(a,a,b) < Sp(a, W(a,b;8),b) <BSp(a,a,b)+ (1—-p)Sy(a,b,b),
so that
Sp(a,a,b) < Sp(a,b,b). (2.25)

By induction, we get
Sy(a,a,b) = Sy(a,b,b). (2.26)
What remains is to show that Sy (a,b,b) = Sy(b,b,a) (or Sy(a,a,b) = Sy(b,a,a)).
Sp(a,b,b) < Sp(a,b,W(a,b;1-B)) = Sp(a,b,W(b,a;B))
< BSp(a,b,b) + (1-B)Sp(a,b,a).
This yields
Sp(a,b,b) < Sy(a,b,a). (2.27)
Also,
Sp(b,b,a) < Sp(W(b,a;y),b,a) = Sp(W(a,b;1—-7y),b,a), (where y =1 - )
< (1-y)Sy(a,b,a) + ySy(b,b,a).

So that,
Sp(b,b,a) < Sy(a,b,a). (2.28)
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On the other side, we conclude that

Sp(a,b,a) < Sp,(W(a,b;B),b,a) = Sp(W(b,a;1-P),b,a)
< (1-pB)Sy(b,b,a) + BSp(a,b,a),

hence
Sy(a,b,a) < Sy(b,b,a). (2.29)
Again,
Sp(a,b,a) < Sy(a,b,W(a,b;B)) <BSp(a,b,a)+ (1-PB)Sy(a,b,b),
implies that
Sy(a,b,a) < Sp(a,b,b). (2.30)
Therefore, from (2.27), (2.28), (2.29) and (2.30), we have S,(a,b,b) = Sy(a,b,a) = Sy(b,b,a). ]

3. MaiIn Resurts

This section deals with some FP results in the framework of CS,-MS. Our first theorem will be
analogous to the contraction of Khan type by Mann’s iteration for complete CS,-MS of an FPT.
Before proposing our theorems, we will utilise the idea of §-contraction, which is due to War-
dowski [26] involved in this context.
Consider a mapping & : (0,00) — R satisfying,
(i) & is strictly increasing,
(i) For all sequences {y,} for positive numbers lim y, = 0 if and only if }L@o S(yq) = =00,

g—00

(iii) There exists r € (0,1) such that lin% V'E(y) =0.
y—)
Recall that this mapping of a F-contraction if there exists 7 > 0 such that d(I'c,I'z) > 0 implies that
T+ F(d(Te,Tz)) < F(d(c,2)),

For each ¢,z € D, (D, d) is an MS. Moreover, the authors in [26, 27] presented the property of the
function &, which is the axiom (i):
Whenever all points 1 € (0, ), there exist their left and right limits as lir? F(y) = &(h) and
y—h

lir;rzlJr J(y) = F(h"). Further, for the function §, one of the two axioms holds: F(0") = c € R or
)/—)

§(0%) = —co.
In 2021, Huang et al. [29] introduced the idea of a convex F-contraction in b MS.

Definition 3.1. [29] Let (D, d}) be a b-MS. Define T : © — D a self-mapping is referred to as a convex
&-contraction if there exists a function § : (0,00) — R such that it satisfies the conditions above (i), (ii),

(iii), and the condition

(iv) Thereexists T > 0and € [0,1) such that T + §(c;) < F(Bey + (1—B)cy), foreachc; > 0,9 € N.
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Theorem 3.1. Let (D, Sy, W) be a complete CS,-MS and T : © — D satisfy the condition: Forallc,z € D,
such that Sy(T'c,Tc,Tz) > 0 implies

(3.1)

T+ F(Sy(Te,Te T2)) < ?s(p Su(c,c,Tc)Sy(c, ¢, Tz) 4+ Sp(z,2,T2)Sp(z, 2, Fc))

max({Sy(c,c,Tz),Sy(z,2,Tc)}

Let ¢y = W(cn-1,Tcn-1;Bn-1)- If p < # and B,-1 € [0, p] for n € IN, then there is a unique fixed point
of I'in D.

Proof. Assume that I'c # zand I'z # c. For n € N, we get
Sp(cn, en, Ten-1) = Sp(Tep-1,Ten-1,¢n) = Sp(Len-1, Ten-1, Wicn-1,Ten-1;fn-1))
< Bu-1Sp(Ten-1,Tcn-1, cp-1).
If ¢, = ¢,,—1, then
Sp(cn-1,Tcn-1,Tcp-1) = Sp(cn, Ten-1,Tcn-1) < Bn-1Sp(cn-1,Tcn-1,Tcn-1),

it implies that the mapping I' is a fixed point. Thus, assume that ¢, # c¢,—1 and ¢, # I'cy,.
Through (S2), we deduce

g’(Sb(Cn, Cn, rcn)) <7+ %(Sb(cn/ Cn, rcn))
< &(2uSp(cn, en, Ten-1) + uSp(Ten, Ten, Ten-1))
= g’(zﬂsb(cnr Cn, 1—'Cn—l) + #Sb(rcn—lr rcn—lr rcn))- (32)

From the eq. (3.1), we obtain

T+ 3(Sb(rcnz Tcy, rCn—l)) =T+ 3(Sb(rcn—1/ Icyq, rcn))

Sb(cn—lr Cn-1, rcn—l )Sb (Cn—lz Cn-1, rcn) + Sb(cn/ Cn, rcn)sb(cnr Cn, rcn—l)
max{Sb(cn_l, Cn-1, FCH), Sb(cn/ Cn, rcn—l)} )

<8|p
Since

Sp (Cn—lz Cn-1, Cn) =Sy (Cn—lz Cn—1, (W(Cn—lr eyt ﬁn—l ) )
< (1=Bu-1)Sp(cn-1,cp-1,Tcp-1),

and, if Sp(cy-1,cn-1,Tcn) < Sp(cn, cn, Tcp-1), then

T+ Cls;(sb(l—‘cn—lr Teyq, rcn))

<3 Sp(cn-1,n-1,Tcn-1)Sp(cn-1,cn-1,Tcn) + Sp(cn, cn, Tcn)Sp(cn, cn, Tcn-1)
- Sb(cn; Cn, I—‘Cn—l)
& (p
p

[Sb(cn-1,cn-1,Fcn-1)5b(cn-1,cn-1,Fcn)])
< 8': ( [Sb (Cn—lf Cn-1, I1011—1) + Sb(cn/ Cn, rcn)]) . (33)

IA

Sb(cnr Cn, l—'Cn—l) + Sb (Cn/ Cn, rcn)
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But, if Sy(cn, cn, Tep-1) < Sp(cn-1,¢n-1,Tcy), then

T+ & (Sp(Ten-1,Teuo1,Tcn))

< % Sb (Cn—lr Cn-1, Fcn—l)sb(cn—lr Cn—1, rcn) + Sb (Cn/ Cn, I-_‘Cn)sb (Cn/ Cn, rcn—l)
B ‘O Sb (Cl’l—llcn—llrcn)
< & (p [Sp(cn-1,cn-1,Ten-1) + Sp(cu, cn, Ten)]) -

Then, utilising (i), we obtain
Sy(Ten—1,Ten—1,Ten) < p [Sp(cn-1,cn-1,Tcn-1) + Sp(cn, cn,Tcn)] . (3.4)
Hence, from (3.2) and (3.4),
&(Sp(cn,cn Ten)) <& (2uPn-1Sp(cn-1, cn-1,Tcn-1)
+1p[Sp(cn-1,cu-1,Tcn1) + Sp(cn, cn, Tcu)) -
Thus, utilising (i), we obtain

2UBn-1 + pp 5,

Sp(cn, cn, Tey) < p—

(Cn—l/ Cn-1, rcl’l—l )/

putting v, = 2“/31”_'#, and note that 8,1 € [0, p], p < 3:7 for n € N, we deduce

1
Sp(cn, cn, Ten) < Yn-1Sp(cn-1,cn-1,Tcyu-1) < ﬁsb(cn—lrcn—l/rcn—l)~

Showing that {Sy(cn, ¢y, T'cy)} is a decreasing sequence of non-negative reals, then there is A > 0,

where lirf Sp(cn,cn, Tcy) = A. Let A > 0, and n tend to infinite, leads to A < A a contradiction, so
n—-+oo

that A = 0, and

Sb<Cn/ Cn, Cn+1> :Sb(cn/ Cn/W(Cn/ rcn;ﬁn)) < <1 _ﬁn)sb(cn/ Cn, rcn) < Sb(cnz Cny rcn)z
0.

lim Sb(cnz Cn, CVH—l) =
n——+oo

Next, we prove that {c,} is a Cauchy in D. On the contrary, if the claim is that {c,} is not Cauchy,
then by Lemma 2.6, there exist € > 0 and subsequence {c;,, } and {c,,} of {c,} positive integers such

that lim sup Sy(cu,, Cny, Cmy_,) < ﬁ, and

k— o0

Sp (an/ Cigr Crg g ) = Sp (ka+1/ Comgeqs (W(C”k—l ’ rc”k—l; ﬁ”k—l ))
= ﬁ”k—l Sp (an—l’ Cry_17 Cigiq ) + (1 - ﬁ”k—l )Sb (rcnk—l ’ rc”k—l s Cimjeyq )
< ﬁnk—l Sb (an—l’ Cry_1s ka+1 ) + (1 - ﬁnk—l )Pl [2Sb (rcnk—l ’/ rcnk—l’ rcmk+1 )

+ Sb(cmk+1’ Cittgy17 chk+l )] .

By the same process above with (3.4) from (3.1), with respect to the two subsequences, we obtain

Sb (rcnk—l 4 rc”k—l s rcmk+1 ) < p [Sb (C"k—l 4 C”k—] 4 FCHIH ) + Sb (ka+] 4 ka+] ’ rka+1 )]/ (3'5)
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because

Sv(Cnr s Cy) < By S (€ ys s C ) + (1= B ) 1125 (T, Teny , Tem,.,)
+ Sp(Cmgrr Caqs Ty 1)
< Brugy 111256 (Cryy s Crg_y s Em) + St (Comgs Comgs i)
+ (1= Buy ) u[2p[Se(eny_ys i Temy )

+ Sp (ka+1 7 Crgq s rcmk+l )] + Sp (ka+1 7 Comg iy rcmk+l )]

Taking k — 400, we deduce lim sup Sy(cp, Cny,Crypy) < ﬁ; this is a contradiction, so {c,} is a
k——+o0

Cauchy sequence in ©. By completeness, there is ¢y € D so that lir+n ¢y = ¢o. To prove that cp is a
n—-+oo

tixed point of I', that is
Sp(co, co,T'co) < 1[2Sp(co, co, cn) + Sp(Teo, Teo, cn)]
< 2uSp(co, co, cn) + 214*Sp(Tco, Teo, Ten) 4 2 Sp(Ten, Ten, cn), (3.6)

and

Sp(co, co, Tco)Sp(co, co, Ten) + Sp(cn, cn, Ten)Sp(cn, cn, T'co)

Sy(Tco, Teo, Tcy)) <
v+ 8(Sy(Teo, o, Ten) ) < T p max{Sy(co, co, Tcn), Sp(cn, cn, Tco)}

if Sy(co, co,Tcy) < Sp(cn, cn, Tep), then
T+ §(Sp(Tco, Teo, Ten)) < F(p[Sp(co, co, Tco) + Sp(cn, cn, Ten)]). (3.7)
Similarly, if we take Sy (cp, cn, T'co) < Sp(co, co, T'cy), we get (3.7). Therefore, by (i), we undergo
Sy(Tco, Teo, Ten) < p[Sp(co, co, Tco) + Sp(cn, cn, T'cy)],
Subsequently,
Sp(co, co, Teco) < 2uSp(co, o, cn) + Zyzp[Sb(co, co,Tco) + Sp(cn, cn, Ten)] + yZSb(Fcn,Fcn,cn).

Lettingn — +o00, we get, S(co, co, Tco) < p2(4p +1)Sy(co, co, Tcp), 50 gotoTeg = cp. The uniqueness
is in letting cp and ¢g be different fixed points of . Thus, by (3.1), Sy(co, co, ¢0) = Sp(Tco, Tco, T'co)leqO,
hence, Sy (co, co,c0) = 0, that is, ¢g = ¢o. O

Now, we show the second kind of F-Khan-contraction with Mann’s iteration in complete CSy-
MS.

Theorem 3.2. Suppose (D, Sy, W) is a complete CSp-MS and T : D — D satisfies the condition: For all
¢,z €D, such that S,(T'c,Tc,Tz) > 0 implies

Sp(c,¢,Tc)Sy(c,¢,Tz) + Sp(z,2,T2)Sy(z,2,Tc)

Sp(Te, Te, Tz)) < Sp(c ¢,
T+ F(Sp(Tc, T, Tz)) < FlaiSu(c,c,z) + an S0(c.c.T2) 1 Su(z,2,T0)

(3.8)

1- 1)—2a 2
Let ¢, = W(cp-1,Tcn-1;Bn-1)- If a1 < “%,az <1land 0 < By-1 < ”[Dﬁz(éia)w)m“ },for n € IN, then

there is a unique fixed point of I in D.
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Proof. Considering the same construction of the previous result, if we conclude from the Eq. (3.8),

we obtain

T+ &F(Sp(Ten, Tey, Tep—1)) = 7+ F(Sp(Ten—1,Tep-1,Tey))

< & (a1Sp(cn-1,cn-1,¢n)

tan Sp(cu-1,n-1,T¢n-1)Sp(Ccn-1,n-1,Tcu) + Sp(cn, cn, Tcn)Sp(cu, cn, Tcn-1)

St(cn-1,cn-1,Tcn) + Sp(cn, cn, Ten-1)
Since
Sp(cn=1,¢n-1,¢n) = Sp(cn—1, cn—1, W(cn-1,Tcn-1; Pu-1))
< (1= Bn-1)Sp(€n-1,cn-1,Tcn-1),

and,

T+ F(Sp(Ten-1,Teno1, Tcn))
< F(a1Sp(cn-1,Ccn-1,¢n)

Sb (Cn—lz Cn-1, rcn—1>Sb<Cn—1/ Cn-1, rcn) + Sb (Cn/ Cn, rcn)sb (Cn/ Cn, I1Cn—1)

“+ an
Sb (Cn—lz Cn—1, rcn) + Sb(cn; Cn, rcn—l)

< %(al [24Sp(cn-1,cn-1,Ten-1) + pSp(cn, cn, Ten-1)] + @2[Sp(cn-1, cn-1,Tcn-1)
+ Sb (Cn/ Cn, rcn)])
< §((2uar + a2)Sp(cn-1,cn-1,Tcn—1) + a1uSp(cn, cn, Ten-1) + a2Sp(cn, cn, Tcn)). (3.9)

Then, utilising (i), we obtain

Sp (rcn—lz [cy-1, rcn) < <2}la1 + aZ)Sb (Cn—lz Cn-1, rcn—l) +m Ivlsb(cn/ Cn,s I1Cn—1)
+ @25y (Cn/ Cns rcn)- (3.10)
Hence, from (3.2) and (3.10),
3(Sb (Cn/ Cn, rcn )) < C&(z#ﬁn—lsb (Cn—lz Cn-1, rcn—l) + u (2[40[1 + 012)517 (Cn—lr Cn—1, rcn—l)
+ a p* -1 Sp (1, en-1, Teno1) + a2piSp(cn, cn, Ten)).

Utilising (i), we conclude

pl2 4 a1p)(Bu1 +2) +ar — 4]
1-aru

Sb(cnz Cny rcn) < Sb(cn—lz Cn-1, rcn—l)/

pl2+aip) (Ba-1+2) +az—4]

. 1- 1)—2a; u?
putting y,,_1 = e , and note that a7 < ‘%,az <land 0 < B,-1 < ploz(p+1)—2aq4]

u2(2+ap)

for n € IN, we deduce

1
Sp(cn, cn, Ten) < Yu-1Sp(cn-1,cn-1,Tcyuo1) < ﬁsb(cn—lrcn—l/rcn—l)-
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Showing that {Sy(cy, cu, T'c,)} is a decreasing sequence of nonnegative reals, then, there is A > 0,
where lirf Sp(cn,cn,Tcy) = A. Let A > 0, and n tend to infinite, which leads to A < A a
n—-+0oo

contradiction, so that A = 0, and
Sb(CnsCnyCng1) = Sp(cn, cn, W(cn, Tew; Bn)) < (1 =Bn)Sp(cn, cn, Ten) < Sp(cn, cn, Tcn),

nl—i>Too Sb(cnr Cns Cn+1) =0.

Next, we prove that {c,} is a Cauchy in D. On the contrary, if the claim is that {c,} is not Cauchy,
then by Lemma 2.6, there exist € > 0 and subsequence {c;, } and {c,,} of {c,} positive integers such

that lim sup Sy(cnu,, Cny, Cmy_y) < ﬁ, and

k——+o0

Sb (C”k’ Cryr Cringiq ) =S5 (cmk+l 7 Cittjesq s (W(c”k—l’ rc”k—l; ﬁ”k—l ) )
< ﬁ”k—l Sp (C”k—l 7 Cg_q s Comgeyq ) + (1 - ank—] )Sb (rcnk—l ’ Fcnk—l 7 Cittgyq )
< ﬁnk—l Sp (Cﬂk—lf Cry_17 Cim 4 ) + (1 - :Bﬂk—l )tu' [ZSb (Fcﬂk—ll rc”k—l’ rcmk+1 )

+Sp (ka+1' Crtsrr chk+1 )]

By the same process above with (3.10) from (3.8), with respect to the equations, we obtain

Sb (rcnk—l ’ Fcﬂk—u rcmk+1 ) < alsb (C”k—l’ Cry_qs ka+1 ) +az [Sb (Cﬂk—lf Cry_1s Fcnk-l)

+ Sb (ka+1 Y rcmk+1 )], (3‘11)

because

Su(Cnpr Crr Cmn) < Py So(Coys Cry s Cngy ) + (1= By )t (25 (T, Ten , Tmy, )

+ Sp(Cmrs Coeers Ty

< B So (s Cnp s Cmy) + (1= B 1112018 (Cay oy o)

+ 202 [Sp(Cn gy Teny) + So(Cmgoyr Cmsrr Temy )]+ 286 (Congry s Cmgoys Ty )]

< By 2010 (1 = By y))Sp(Cny s Oy Cmyyy) + 2002 (1 = By 1) [So(Cnyys ey Tem )
+ Sp(Cmecrs Coe Tomyy )] 4 200 (1 = By ) S (Cor Cong 1 Tmy)

< By + 201p(1 = By ) )1 [2S0 (Cm_ys Cniys ) + So(Crs Cis Cony )]

+ 2ua (1 = By, ) [Sp(Cnyys ey Temy) + So(Comprs Coners Tmy )]

+ 20(1 = By ) Sv(Comg 1 Cey 1 Ty )

< 20128y (Cugy, Cys ) + So(Cogs Cigs Coneyy )] + 22 (1 = By, ) [Sp (c(k-1/Cnyys Tenyy)
+ St (Cmprs Cmeyrs Tomer )] + 20 (1 = B ) So(Cmy1s Oy Tmyy)-

Taking k — 400, we deduce lim sup Sy(cy,, Cn,, Cm, +1) < ﬁ, which is a contradiction, so {c,} is a
k—+oc0

Cauchy sequence in ©. By completeness, there is ¢y € D so that lir+n cn = ¢o. To prove that cp is a
n—-roo
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fixed point of T, from (3.6) and

T+ C&(Sb(rco, Tco, Ten)) < F(a1Sp(co, co, cn)

Sp(co,co, Tco)Sp(co, co, Ten) + Sp(cn, ¢n, Ten)Sp(cn, cn, Tco)
Sb (CO/ co, rci’l) + Sb (Cn/ Cn, rc())

< §(a1Sp(co, co, cn) + a2[Sp(co, co, Tco) + Sp(cn, cn, Ten)]), (3.12)

+ an

Therefore, by (i), we undergo
Sp(Tco, Teo, Ten) < a1Sp(co, co, cn) + @2[Sp(co, co, Teo) + Sp(cn, cn, Ten)],
Subsequently,

Sp(co, co, Tco) < 2uSy(co, co,cn) + ZMZ[me(Co, €0,Cn)
+2[Sp(co, €0, Tco) + Sp(Cu, eu, Ten)]| + 12Sp(Ten, Ten, ca).

Letting n — oo, we get, Sy(co,co,Tco) < p?(4az + 1)Sy(co,co,Tcp), so go to Teg = co. The
uniqueness is in letting ¢y and ¢y be different fixed points of I'. Thus, by (3.8), S;(co,co,c0) =
Sp(Tco, Tep, Teg) < a1Sy(co, co, o), hence, Sy(co, co,co) = 0, that is, ¢g = cp. O

Theorem 3.3. Suppose (D, Sy, W) is a complete CS,-MS and T : © — D satisfies the condition: For all
¢,z €D, such that S,(T'c,T¢,Tz) > 0 implies

Sp(c,c,Tc)Sy(c, ¢, Tz) 4+ Sp(z,2,T2)Sp(z,2,Tc)
Sp(c, ¢, Tz) + Sp(z,2,Tc)
Sp(c,¢,Tc)Sy(z,2,Tc) + Sp(z,2,T2)Sy(c, ¢, Tz)
Sp(c, ¢, Tz) + Sp(z,2,Tc) ’

T+ F(Sp(Tc, T, Tz)) < %(alsb(c, c,z)+ap

+ a3 (3.13)

1- 1)—2a1u?
Letcy = W(cy-1,Tcn-1;Bn-1)- Ifaq < %,az +a3<1land0 < By1 < ”[(aﬁf(sz)ﬁ;;)) A ],forn €N,

then there is a unique fixed point of I' in D.

Proof. Considering the same construction of the previous result, if we conclude

T+ F(Sp(Ten-1,Ten-1,Tcn)) < F(a1Sp(cn-1,n-1,¢n)
Sp(Cn-1,¢n-1,Tcn-1)Sp(Cn-1,cn-1,Tcn) + Sp(cn, cn, Tcn)Sp(cn, cun, Ten-1)
Sp(cn-1,¢n-1,Tcn) + Sp(cn, cn, Tep-1)
Sp(€n-1,¢n-1,Tcn-1)Sp(cn, cn, Tcu-1) + Sp(cu, cn, Tcn)Sp(cn-1,cn-1,Tcn)
Sp(cn-1,¢n-1,Tcn) + Sp(cn, cn, Tey-1)

< &(1[2uSp(en-1, cn-1,Ten-1) + pSp(cn, cn, Ten-1)]

+ (CVZ + 0(3) [Sb (Cn—lf Cn—1, rcn—l) + S (Cn/ Cn, rcn)])

+ ar

+ a3

< %((Zyoq + a2 +a3)Sp(cn-1,cn-1,Tcu-1) + a14Sp(cu, cn, Ten-1) + (a2 + @3)Sp(cn, cn, Ten)). (3.14)
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Then, utilising (i), we obtain
Sp(Ten-1,Tcy-1,Tcy) < (2ua + az + a3)Sp(cn-1, cn-1, Tcn-1) + a1uSp(cn, cn, Ten—1)
+ (a2 + a3)Sp(cn, cn, Ten), (3.15)
implying, from (3.2) and (3.15),
&(Sp(cn,cn, Ten)) < ?J(Z,Uﬁn—lsb(cn—l, cn-1,Tcu-1) + p(2uar + az + a3)Sp(cn-1, cn-1,Tcn-1)
+ a1 Buo1Sp(enar, euor, Teno) + (2 + a3)pSp(cu, e, Ten) ).

Utilising (i), we conclude

2+ arp)(Brn-1 +2) + az + as — 4]

S 7 /r S
b(cn Cn Cn) 1= ol — azpl

Sb(cn—lz Cn—1/ rcn—l)-

o plHap) (Bu—142)Far+az—4]

Plugging y,-1 = jeT— , and note that a3 < &

[f”

a+az3 <1,and 0 < B,—1 <

1-pf(ar+tas) (u+1) 201 44]
#2(2+ary)

for n € IN, we deduce

1
Sb(cn/ Cn, rcn) < yn—lsb(cn—lr Cn-1, rcn—l) < psb(cn—lr Cn-1, rcn—l)-

Proceeding in the same way, we can show that {Sy(cy, ¢y, I'cy)} is a decreasing sequence of non-
negative reals, then, lirf Sp(¢n, cn,cnt1) = 0.
n—-—+0o
Moreover, we prove that {c,} is a Cauchy in ©. On the contrary, if the claim is that {c,} is not Cauchy,
then by Lemma 2.6, there exist € > 0 and subsequence {c,, } and {c,,} of {c,} positive integers such
that lim sup Sy(cp,, Cnys Cmy_,) < 5, and
k—+4o0 5
Sp (C”k’ Crgr Crmg 4 ) =5p (ka+1 7 Comg g7 (W(C”k—l ’ rc”k—] ’ ﬁ”k—] ))
< ﬁnk—l Sp (C”k—l’ Cry_ys Crgyq ) + (1 - :Bnk—l )Sb (rcnk—l’ FC"/H/ ka+1)
< ﬁnk—l Sb (an—l’ Cry_qs ka+1 ) + (1 - ;Bnk—l )1“ [2Sb (rcﬂk-v rcnk—l’ chk+1 )

+ Sp (ka+1/ Crgys rka+1 )]

By the same process above with (3.15) from (3.13), with respect to the two subsequences, we obtain

Sp (FCHH/ Loy, rcmk+1 ) <SSy (C”k—l s Crgys Crmg iy ) + (012 + 0‘3) [Sb (CHH/ Cryyr Ly )

+ Sb(cmk+l’ Cimggs chk+1 )]' (3.16)

because

Su(Cnpr Crr Cmgn) < Py So(Coys Cry s Cgy ) + (1= By )t [2Sp (T, Ten , Temy, )

+ Sp(Cmgys Cogr s Ty 1)

< B Sv(CnysCnysCmgy) + (1= By ) 1t[201Sp (g1 Cnpys gy

+2(a2 + a3) [Sp(cnys Cnpy s Teney) + So(Cmpys S Tome iy )]+ 280 (Congy s Cmgens Ty )]
< By + 2004 (1 = By )) S (Cyys Cnecys Oy
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+2u (a2 + a3) (1= Bu, ) [Sp(Cn s €y Teny) + So(Cogry s Comgoy s Tomyy)]
+20(1 = Bu ) Se(Cmgys Cors Ty 1)

< By +200p1(1 = By, ) )t [28p (€ Copy s ) + So(Cns Cogr Cmyy)]
+2u(az + a3) (1= By ) [Sp(Cn s Cmeys Tomey) + Sp(Cmeyys Cmyrs Tomyy )]
+20(1 = B ) Se(Cmgys Cos Ty 1)

< 2021 [2Sp (Cnyys Cmys Cy) + Sp(Cus Crs Cyy)]

+ 2u (a2 4+ @3) (1 = By, ) [Sp(Cneys Crr T y) + St (Congers Cnger s Ty )]
+ 20 (1 = B ) Se(Cmgsys Cmg iy Ty )-

Taking k — 400, we deduce khm sup Sp(Cny, Cnys Comy +1) < ﬁ, which is a contradiction, so {c,} is
— 400

Cauchy sequence in . By completeness, there is ¢y € D so that hm ¢y = co. To prove that cp is a
n—+4
tixed point of I, from Eq. (3.13) and

T+ g(Sb(Fco, T'co, Fcn)) < 3(&15;7(00, Co,Cn)

Sy(co, co,Tco)Sp(co,co,Tcn) + Sp(cn, cn, Tcn)Sp(cn, cn, Tco)
Sy(co,co,Tcn) + Sp(cn, cn, Teo)

Sp(co,c0,Tco)Sp(cn, cn, Tco) + Sp(cn, cn, Tcn)Sp(co, co, Ten)
Sy(co,co,Ten) + Sp(cu, cn, Teo) )

)

< F(a1Sp(co, o, cn) + (a2 + a3)[Sp(co, co, Tco) + Sp(cn, cn, Ten)]), (3.17)

az

+ a3

Therefore, by (i), we undergo
Sy(Tco, Teo, Ten) < a1Sp(co, co, cn) + (a2 + asz)[Sp(co, co, Tco) + Sp(cn, cn, Ten)]-
Subsequently,

Sp(co, co, Tco) < 2uS(co, co, cn) + 2u*[e1Sp(co, co, cn)
+ (a2 + @3) [Sp(co, co, Tco) + Sp(cn, cn, Ten)]] + u2Sp(Ten, Ten, cn).
Letting n — 00, we get, Sy(co, o, [co) < p?(4aa + 4az + 1)Sy(co, co, Tep), s0 go to Tep = cp. The

uniqueness is in, letting ¢ and co be different fixed points of I'. Thus, by (3.13), S,(co, co,C0) =
Sp(Tco, Teo, Teo) < a1Sy(co, co, €o)- Thus, cp = ¢o and we get the desired result. O

Example 3.1. Suppose © = R and define Sy, by (see Example 2.1 (2))
Sp(a,b,c) =dy(a,c)+dy(b,c).

Then let (D, Sy, W) be a complete CSy-MS with p = 2, where dy(a,b) = (a—b)?, for eacha,b € D. Now,
consider the map I : © — D by
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Here W : Dx DX [0,1] — D is a mapping such that ‘W (a,b;B) < ap+ (1 —B)b for a,b € D and
B €[0,1]. Set cy = W(cp-1,Tcy-1;Bn-1) and -1 = ﬁ < 11—3 = p in Theorem 3.1.

Sy(Tc,Tc,Tz) = (Tc—T¢c)? + (e —Iz)?

1 2 1 2
< — N JE— J—
< —(c+=0)"+=(z+ =2)

1 Sy(c,c,Tc)Sy(c, ¢, Tz) 4 Sp(z,2,T2)Sp(z,2,Tc)
26 max({Sy(c,c,Tz),Sy(z,z,Tc)}

Taking F(c) = In(c) in §, we deduce that

1 Sp(c, ¢, Tc)Sy(c, ¢, Tz) + Sp(z,2,T2)Sp(z,2,Tc)
13 max{Sy(c,¢,Tz),Sp(z,z Tc)}

In(2) +In(Sy(T'¢,Te, Tz)) < ln(

Hence §-contraction axiom is satisfied.

Choose ¢ € D,¢p = W(cn-1,Tcn-1;Bn-1),Pn-1 = ﬁ and T'(c) = 3¢, implies that ¢, = ﬁcn_l +

ﬁ (_62”6‘1) = 2—18cn_1, repeating in the same manner, we get ¢, = (%)”CO. Thus, ¢, — 0as n tends to co. So
0 is a fixed point of I'. Similarly, the results hold if we take Sy in Example 2.5.

Example 3.2. Let {c,}u>0 be a sequence such that: ¢, = n(n; 1). Let ©® = {c,;, : n € IN} and take
Sy in Example 2.5. Then let (D,S,, W) be a complete CS,-MS with yu = 2, such that a mapping
W(a,b;B) <ap+ (1-PB)bfora,b e Dandp € [0,1]. Define the mappingT : D - Dby T'(c1) =c1 =1

and T'(c,) = cy—1 for n > 1. Therefore, c1 is a fixed point of T with §-contraction, which is F(c) = ¢+ Inc
1+16m

8(1tay) in Theorem 3.2. It is not

and T = e~ see Ref. [19]. Moreover, taking a; = %,az =0and By—1 <
difficult to see that I satisfies the desired result.

Next, we show the special rational kind of §-contraction with Mann’s iteration in complete
CS,-MS.

Theorem 3.4. Let (D,S,, W) be a complete CS,-MS and T : D — D satisfies the condition: For all
¢,z €D, such that S,(I'c,Tc,Tz) > 0 implies
Si(c, ¢, Tc)

w[2Sp(z,2,Tc) + Sp(z,z,¢)]

T+ F(Sp(Tc, T, Tz)) < Ty(alsb(c, c,z)+a

S3(z,2,Tz)
1[2Ss(c, ¢, z) + Sp(c, ¢, Tz)] )

. 1 1 (1—a3)—plaz+2a
Let ¢y = W(cp-1,Tcn-1;Bn-1)- If a1 < 5502 < 17,03 < 1,and 0 < By-1 < W,forn eN,

then there is a unique fixed point of I' in D.

+ a3

(3.18)

Proof. Considering the same construction of the previous result, if we conclude

T+ cer(sb(l—‘cn—lr 1—'Cn—lz rcn)) < c5’(051817 (Cn—lr Cn-1, Cn)
Si (Cn—lr Cn-1, 1—‘Cn—l)
1[2Sy(cu, cn, Ten-1) + Sp(cn, cnycn1)]

+ an
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S2(cnscn, Ten)
+ a3 .
1[2Sp(cn-1,cn-1,¢n) + Sp(cn-1,cn-1,Tcy)]
Since
Sp(cn,cn, Ten) < 20Sp(Cn, Cn, Cu1) + uSp(cu-1,cn-1,Tcn).
Hence,

T+ §(Sp(Ten-1,Ten-1,Tcn)) < §(c1Sp (1, cursn)
[2uSp(cn-1,cn-1,cn) + pSp(cn, cn, Ten-1)]Sp(cn-1,cn-1,Tcn-1)
1[2Sy(cn, cn, Ten—1) + Sp(cn, cn, n-1)]
[2uSp(cn-1,cn-1,cn) + uSp(cn-1,n-1,Tcn)]Sp(cn, cn, Ten)
1[2Sp(cn-1,cn-1,¢n) + Sp(Cn-1,cn-1,Tcn)
= §(a1[2uSp(cn-1,cn-1,Ten-1) + pSp(cn, cn, Ten-1)]
+ a2Sp(cn-1,cn-1,Tcn-1) + azSp(cn, cn, I'cy)). (3.19)

+0(3

Then, utilising (i), we obtain
Sp(Ten-1,Ten-1,Ten) < (2uar + a2)Sp(cn-1,cn-1,Tcn-1)
+ parSp(cn, cn, Ten—1) + asSp(cn, cn, Ten), (3.20)
implies, from (3.2) and (3.20),
S(Sp(cn, cn,Ten)) < F(2uPn-1Sp(cn-1,cn-1,Tcn-1) + (2uar + a2)Sp(cn-1, cn-1,Tcn-1)
+ pa1Bn-1Sp(cn-1,cn-1,Tcn-1) + @3Sp(cn, cn, Tcy)).
Utilising (i), we conclude

o BPn-1(2+ 1) + 200 + a2
- 1- a3

Sv(cnsCn,s rcn) Sh<Cn_1,Cn_1,rCn_1).

. _up _1(24a1)F2paq+an 1 1
Plugging y,-1 = == oo , and note that a; < 02 < 13,43 < 1, and 0 < B,-1 <

(1-a3)—pfaz+2a1 4]
12 (2+arp)

for n € IN, we deduce

1
Sb(cn/ Cn, rcn) < Vn—lsb(cn—lz Cn-1, 1ﬂcn—l) < ﬁsb(cn—lz Cn-1, 1ﬂcn—l)-

Proceeding in the same way, we can show that {Sy(cy, ¢y, I'cy)} is a decreasing sequence of non-
negative reals, then, lim Sj(cp, ¢y, cut1) = 0.

n—-00
Moreover, we prove that {c,} is a Cauchy in ©. On the contrary, if claim that {c,} is not a Cauchy,
then by Lemma 2.6, there exist € > 0 and subsequence {c,, } and {c,,} of {c,} positive integers such

that lim sup Sy(cp,, Cnys Cmy_y) < ﬁ, and

k— o0
Sp (C”k’ Crgr Cimyeiq ) =5 (ka+1 s Crmg 17 (W(C”k—l’ Ley )/' [ ))
= ﬁ”k—l Sp (C”k—l 7 Cg_q 7 Cmpeq ) + (1 - .Bﬂkq )Sb (rcnk—l’ rcnk—l’ Crtgq )

< ﬁnk—l Sb (an—l’ Cry_1s ka+1) + (1 - :Bnk—l )1“ [2517 (rcﬂk-v rcnk—l’ chk+1 )
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+ Sp(Cmprs Cs Tomy 1))
By same process above with (3.20) from (3.18), with respect to the two subsequences, we obtain
Sv(Ten_ys Loy Temy,,) < a1Sp(Cnys Cnyys Cingyy ) + @25 (Cry_y s Cy s Ty )
+ @3Sy (Cmgyys Cmgoyr Ty ) (3.21)
because

Sb(Cns Cir Cor) < Prgy S €y Crgy s Em ) + (1= By )1 [2Sp(Teny_, Teny Ty

+ Sp(Cmgsrs Cog s Ty )]
< By Sv ey ys Cmy ) + (1 =By )1 [201Sp(Cnyy s Crys Cmg )
+ 2028y (cy sy Tengy ) + (203 + 1) Sp(Congyy s Cmg s Ty )]
< By +20101(1 = By, )) So(Cners Coyrs Comy)
+2uaz(1 =B )Sp(Cnys Cryyr Tny )
+u(1=Bny) 2z 4+ 1)Sp(Cnyyrs Cmyoy s Temyy)
< (B +2a1p(1 = B y) ) u[2Sp(cny s Oy Eni) + Sh(Crys Cns Oy )]
+ 2uar(1 =B, )Su(cne sy Ty )
+u(1=Bny) 2z +1)Sp(Cnyyrs Cmyoy s Temyy)
< 22125y (Cny_ys Crgys Cnp) + Sp(Cuys iy Cmgq)]
+ 2uar(1 =B, )Sp(CneysCn s Ty )
+u(1 =B y) 2z +1)Sp(Cmyys Cmgys T,y )-

Taking k — 400, we deduce lim sup Sy(cy,, Cn,, Cm, +1) < #%, which is a contradiction, so {c,} is a

k—+oc0

Cauchy sequence in . By completeness, there is ¢y € D so that lir+n ¢y = ¢o. To prove that cp is a
n—-+oo
FP of I, from (3.18)
S%(co, co, Tco)
1[2Sp(cn, cn, Teo) + Sp(cn, cns co)]
3 S7(cn, cn, Tcn) )
1[2Sp(co, co, cn) + Sp(co, co, Ten)]

< F(a1Sp(co, co, cn) + a2Sp(co, co, Tco) + azSp(cn, cn, Ten)). (3.22)

T+ §(Sp(Teo, Teo, I'ep)) < 8(0115;;(60, Co,Cn) + a2

+a

Therefore, by (i), we undergo
Sy(Teo, Teo, Tey) < a1Sp(co, co, cn) + a2Sp(co, co, Tco) + asSp(cn, cn, Tey).
Subsequently,
Sp(co, co, Tco) < 2uSp(co, o, cn) + 2/42 [1Sp(co, co, cn) + @2Sp(co, co, Tco)
+ a3Sy(cn, cn, Ten)] + yZSb(Fcn, Tcy, cn).
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Letting n — +o00, we get, Sy(co,co,Tco) < p?(2aa + 2a3 + 1)Sy(co, co, Teo), so go to T'cg = cp.
The uniqueness is in, letting cp and co be different FP of I. Thus, by (3.18), Sy(co, co,C0) =
Sp(Tco, Teo, Tcg) < a1Sp(co, co, o) < Sp(co, co, o). Thus, cg = o and we get the desired result. m]

4. APPLICATIONS

The concepts of existence and uniqueness have become attractive for researchers in nonlinear
analysis, particularly for solving differential equations, integral equations, and fractional differen-

tial equations, among others. This situation has improved the applications of FP techniques.

4.1. Mixed Volterra-Fredholm integral: In this part, we apply Theorem 3.2 The mixed Volterra-
Fredholm integral (MVFI) is given by

T b
z(n) = h(n) +a\£]j; H(r,t)z(t)dtdr, n € [a,b] =1, (4.1)

where h(n) and $(r, t) are continuous on [a,b] and K = {(r,t) : t,r < n € I}, but not necessary if
z(1) is a continuous.

Theorem 4.1. Let Eq. (4.1) be satisfied and $(r,t) be a bounded function, if |a| < 3k35( e k> 1bea

constant number, then (4.1) admits a unique solution on 1. Moreover, we can write the solution as

b
zn(n) = h(n) +afnf S(r, t)zn(t)dtdr, n€l,

for n tend to +oo, such zo(n) = 20,0 < By-1 < %, and z,(n) = Pu-1zn-1(n) + (1 -

Bu-1)Tzn-1(1).

Proof. Consider the space ® = Cla, b], and the mapping S, : DX DX D — [0, +0) be defined as
Sp(z1,22,23) = maxyer(lz1(n) —z3(n)| + |z1(n) + z3(n) —222(n)l), and the operator of I' on D by the

form
7 b
['(z) :h(n)+0¢f7f H(r, t)z(t)dtdr,

zu(n) = W(zu-1(1), Tzu-1(1); Br=1) = Bu-12n-1(1) + (1 = fu-1)Tz4-1(1)

:ﬁn—lzn—l(n) (1 ﬁn 1 ( +04f f 55 1’ t Zn dtd?’)

for n > 1. Obviously, (D, Sy, W) is a complete CS;,-MS. So that

S (le,l”zl,l“zg) = 2max|le( ) FZZ(n)|

Ul
aff.{)rtzl t)dtdr — o ff@rtzz t)dtdr

32|a|maxf f 1H(r, 1) max |z1(n) — z2(n)|dtdr
nel J, a nel

= 2max
nel
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n b
< 2|a|Sp(z1,21,22) maxf f |9 (r, t)|dtdr,
nel Ja a

known that $(r, t) is bounded, there is & > 0 such that |H(r, t)| < &, hence

n b
Sp(Tz1,T21,Tzp) < 2|a|ESp (21, 21, 22) male f dtdr
ne a a

< 2|a|ésb(zll Zl/ZZ) (b - a)z

2&(b—a)?

2
< 3k3€(b—ﬂ)25b(21’21,22> = Sb<21121122)

S

2
< 3 a1Sp(z1,21,22)

Sp(z1,21,T21)Sp(21,21,T22) + Sp(22,22,T22)Sp(22, 22, T21)

+ ap
Sp(z1,21,T22) + Sp(22,22,T21)

Taking aq = le' and both sides F(n7) = In(n). Therefore, the desired results hold for the (3.8),
where 7 = In(1.5). Finally, showing the uniqueness, there is z(n), which implies z,, () — z(7), for
n >0, and I'z(n) = z(n), we obtain

norb n b
nl_i)rfmffb(r,t)zn(t)dtdr:ff@(r,t)z(t)dtdr.

Rearranging terms and taking the supremum for both sides, we obtain

7 b 7 b
lim supfjﬁ 55(V,t)(2n(t)—Z(t))ddeSnETmSUPL7£ 1D(r, )|z, (t) — z(t)|dtdr

n—-+4o00
<&(b-a)? hT sup max |z, (t) —z(#)] = 0.
n—-r+0oo

Then, the MVFI inclusion (4.1) has a unique solution. m|

4.2. Polynomial Equation: In this part, we demonstrate the mth degree polynomial by FPT with
convexity. It can be solved in numerous ways; however, we try to have a unique solution using FP

techniques.
Theorem 4.2. Assume ® = [-1,1], and let m > 3 be an arbitrary number in IN. Then

"= (mt=1)c" N —mtc+1=0, (4.2)
admits a unique solution in D.

Proof. Consider the space D = [-1,1], such that without the space D in the Eq. (4.2), it has no
solution. Thus the mapping S : DX D X D — [0, +00) is defined as Sy (c1,¢2,¢3) = (|c1 —c3l+le1 +

2
c3— 262|) , and the mapping I'on D as

" +1
(m*—1)c" + m*’

I'(c)=
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also the mapping is defined as:
By hypothesis m > 3, taking m = 3 is an easy computation, and by not utilising this method, it
leads to the results that hold for each m > 3. We get

A+1

T(e)= ——*=
(©) = 303 181

therefore, the T’ is satisfying the §-contraction, where F(c) = In(c), as follows:

(4.3)

Sp(Tey, Tey, Tep) = 4Tc; — Tepf?

_ CT—I—l CT+1 2

B ‘(rrz‘l—l)c’lﬂ—i—m‘L - (m* =1)c +m4

C3_C3

2
L2 <(—) o — ol
’(80c§+81)(80c§+81)‘ =\g) =

Hence
1 2
In(81) 4+ In(Sy(Tcy,Teq, Tep)) < ln(8—1(lc1 —ca| +le1 — C2|) )

We note that 7 = In(81) > 0, in (4.3). Then, I' is §-contraction mapping of Theorem 3.2.
Lastly, let ¢g € D; according to ¢, = W(cy—1,Tcp-1;Pn-1), so that ¢, = 11_1Cn—1 + %Fcn_h where

a1 = 81—1, a =0and B,-1 = ﬁ as in Theorem 3.2, we deduce that

P T 1|80 + 81

Continuing in the same process, observe that ¢, — 0 as n — +oo. Also, ¢, € D. Therefore, all the

conditions of Theorem 3.2 are fulfilled. We have the desired result. O

5. CONCLUSIONS

This paper aims to explore F-Khan Contraction in the context of CS,-MS. We introduced the
concept of CS,-MS endowed with Mann'’s iterative Scheme in §-Contraction (Wardowski’s), which
expands to b-MS and GbMS. We also introduced some improved results within the framework of
S5p-MS with some intresting examples. Moreover, this work establishes the flexibility of various
&-Khan Contractions in the context of MVFI inclusion and polynomial mth degree, providing
special applications for these convex and nonlinear analysis concepts. This task was achieved by
further weakening the conditions of Wardowski-Khan Contractions. Examples were provided to
support our work. In the future, authors can use refined contractions or extended MS in broader

literature. Furthermore, the result of G. M. Abd-Elhamed is a special case of these theorems.
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