A Novel Approach to D-Stability and Additive D-Stability of Economic Models
Main Article Content
Abstract
The study of \(D\)-stability in mathematical analysis is crucial for understanding and ensuring the stability of linear dynamical systems. This article introduces novel findings on the characterization of \(D\)-stability, along with its connections to additive \(D\)-stability concerning speed and coordinate transformations in linear dynamical systems with \(n\) degrees of freedom
\[
A \frac{d^2\mu(\tau)}{d\tau^2} + B \frac{d\mu(\tau)}{d\tau} + C \mu(\tau) = 0, \ \tau \in \mathbb{R}, \ \tau > 0,
\]
Consider the stiffness, mass, and damping matrices \(A, B, C \in \mathcal{M}^{n \times n}\), and let \( \mu(\tau) \in \mathbb{R}^n \) denote the vector of generalized coordinates with \(\frac{d\mu(\tau)}{d\tau}\) representing its corresponding velocity vector. This work derives new theoretical insights into \(D\)-stability, additive \(D\)-stability with respect to velocity, and additive \(D\)-stability concerning coordinate transformations. These results are established using techniques from linear algebra, matrix theory, dynamical systems, and their connections to structured singular value computations. Additionally, numerical investigations of the spectrum, singular values, and pseudospectra of the coefficient matrices \(A, B, C \in \mathcal{M}^{n \times n}\) are conducted using EigTool, providing further validation of the theoretical framework.
Article Details
References
- A.C. Enthoven, K.J. Arrow, A Theorem on Expectations and the Stability of Equilibrium, Econometrica 24 (1956), 288–293. https://doi.org/10.2307/1911633.
- K.J. Arrow, Stability Independent of Adjustment Speed, in: Trade, Stability, and Macroeconomics, Academic Press, 1974: pp. 181–202. https://doi.org/10.1016/B978-0-12-356750-5.50012-8.
- K.J. Arrow, M. McManus, A Note on Dynamic Stability, Econometrica 26 (1958), 448–454. https://doi.org/10.2307/1907624.
- A. Packard, J. Doyle, The Complex Structured Singular Value, Automatica 29 (1993), 71–109. https://doi.org/10.1016/0005-1098(93)90175-s.
- A. Packard, M. Fan, J. Doyle, A Power Method for the Structured Singular Value, in: Proceedings of the 27th IEEE Conference on Decision and Control, IEEE, pp. 2132-2137, 1988. https://doi.org/10.1109/cdc.1988.194710.
- C.R. Johnson, Sufficient Conditions for D-Stability, J. Econ. Theory 9 (1974), 53–62. https://doi.org/10.1016/0022-0531(74)90074-x.
- C. Yu, M.K. Fan, Decentralized Integral Controllability and D-Stability, Chem. Eng. Sci. 45 (1990), 3299–3309. https://doi.org/10.1016/0009-2509(90)80221-y.
- D.D. Siljak, Large-Scale Dynamic Systems: Stability and Structure (Dover Civil and Mechanical Engineering), Dover Publications, 2007.
- D. Piga, Computation of the Structured Singular Value via Moment Lmi Relaxations, IEEE Trans. Autom. Control 61 (2015), 520–525. https://doi.org/10.1109/TAC.2015.2438452.
- E.H. Abed, Strong D-Stability, Syst. Control. Lett. 7 (1986), 207–212. https://doi.org/10.1016/0167-6911(86)90116-7.
- E.H. Abed, A.L. Tits, On the Stability of Multiple Time-Scale Systems, Int. J. Control. 44 (1986), 211–218. https://doi.org/10.1080/00207178608933591.
- G. Giorgi, Stable and Related Matrices in Economic Theory, Control. Cybern. 32 (2003), 397–410.
- X. Ge, M. Arcak, A New Sufficient Condition for Additive D-Stability and Application to Cyclic Reaction-Diffusion Models, in: 2009 American Control Conference, IEEE, 2009, pp. 2904-2909. https://doi.org/10.1109/acc.2009.5160022.
- H.K. Khalil, P.V. Kokotovic, $D$-Stability and Multi-Parameter Singular Perturbation, SIAM J. Control Optim. 17 (1979), 56–65. https://doi.org/10.1137/0317006.
- F. Hahn, Chapter 16 Stability, in: Handbook of Mathematical Economics, Elsevier, 1982: pp. 745–793. https://doi.org/10.1016/S1573-4382(82)02011-6.
- S.J. Hu, H. Li, Simultaneous Mass, Damping, and Stiffness Updating for Dynamic Systems, AIAA J. 45 (2007), 2529–2537. https://doi.org/10.2514/1.28605.
- J. Doyle, Analysis of Feedback Systems with Structured Uncertainties, in: IEE Proceedings D Control Theory and Applications, Institution of Engineering and Technology (IET), 1982, pp. 242–250. https://doi.org/10.1049/ip-d.1982.0053.
- K.J. Arrow, M. McManus, A Note on Dynamic Stability, Econometrica 26 (1958), 448–454. https://doi.org/10.2307/1907624.
- M.C. Kemp, Y. Kimura, Introduction to Mathematical Economics, Springer New York, 1978. https://doi.org/10.1007/978-1-4612-6278-7.
- K. Chen, C. Wang, C. Yen, Numerical Algorithms for the Largest Structured Singular Value of a $mu$–synthesis Control System, Taiwan. J. Math. 14 (2010), 973–998. https://doi.org/10.11650/twjm/1500405877.
- O.Y. Kushel, R. Pavani, The Problem of Generalized D-Stability in Unbounded LMI Regions and Its Computational Aspects, J. Dyn. Differ. Equ. 34 (2020), 651–669. https://doi.org/10.1007/s10884-020-09891-y.
- L. Wang, M.Y. Li, Diffusion-Driven Instability in Reaction–Diffusion Systems, J. Math. Anal. Appl. 254 (2001), 138–153. https://doi.org/10.1006/jmaa.2000.7220.
- M. Fan, A. Tits, J. Doyle, Robustness in the Presence of Mixed Parametric Uncertainty and Unmodeled Dynamics, IEEE Trans. Autom. Control. 36 (1991), 25–38. https://doi.org/10.1109/9.62265.
- P.K. Newman, Some Notes on Stability Conditions, Rev. Econ. Stud. 27 (1959), 1–9. https://doi.org/10.2307/2296045.
- N. Guglielmi, M. Rehman, D. Kressner, A Novel Iterative Method to Approximate Structured Singular Values, SIAM J. Matrix Anal. Appl. 38 (2017), 361–386. https://doi.org/10.1137/16m1074977.
- J.P. Quirk, R. Saposnik, Introduction to General Equilibrium Theory and Welfare Economics, McGraw-Hill, (1968).
- R. Braatz, P. Young, J. Doyle, M. Morari, Computational Complexity of $mu$ Calculation, IEEE Trans. Autom. Control. 39 (1994), 1000–1002. https://doi.org/10.1109/9.284879.
- R.G. Casten, C.J. Holland, Stability Properties of Solutions to Systems of Reaction-Diffusion Equations, SIAM J. Appl. Math. 33 (1977), 353–364. https://doi.org/10.1137/0133023.
- M. Rehman, S.H. Alshabhi, A.O. Mustafa, M.M. Mohammed, S. Aljohani, et al., Spectrum and Pseudspectrum of D-Stable Matrices of Economy Models, J. Math. Comput. Sci. 38 (2024), 298–312. https://doi.org/10.22436/jmcs.038.03.02.
- K. Shye, M. Richardson, Mass, Stiffness, and Damping Matrix Estimates From Structural Measurements, in: Proceedings of the Fifth International Modal Analysis Conference, vol. 1, pp. 756-761. 1987.
- W. Kafri, Robust $D$-stability, Appl. Math. Lett. 15 (2002), 7–10.
- J.E. Woods, Mathematical Economics. Topics in Multi-Sectoral Economics, Longman, London, (1978).