Strongly Convergent Inertial Krasnosel'skii–Mann and Ishikawa-Type Schemes for Fixed Point and Monotone Inclusion Problems with Applications to Image Restoration

Main Article Content

Kasamsuk Ungchittrakool, Natthaphon Artsawang

Abstract

We propose an inertial Krasnosel'skii–Mann and Ishikawa-type iterative process with step-size control for finding fixed points of nonexpansive mappings in Hilbert spaces. Without relying on viscosity-type techniques and under mild assumptions on the control parameters, we establish strong convergence of the scheme. The method is also utilized for solving monotone inclusion problems and extended to image restoration applications. Numerical tests on several blurring operators confirm that the algorithm attains higher signal-to-noise ratio (SNR), delivers superior restoration quality compared with existing approaches.

Article Details

References

  1. F. Browder, W. Petryshyn, Construction of Fixed Points of Nonlinear Mappings in Hilbert Space, J. Math. Anal. Appl. 20 (1967), 197–228. https://doi.org/10.1016/0022-247x(67)90085-6.
  2. H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, (2017).
  3. C. Byrne, A Unified Treatment of Some Iterative Algorithms in Signal Processing and Image Reconstruction, Inverse Probl. 20 (2003), 103–120. https://doi.org/10.1088/0266-5611/20/1/006.
  4. C.I. Podilchuk, R.J. Mammone, Image Recovery by Convex Projections Using a Least-Squares Constraint, J. Opt. Soc. Am. A 7 (1990), 517. https://doi.org/10.1364/josaa.7.000517.
  5. P. Combettes, Constrained Image Recovery in a Product Space, in: Proceedings., International Conference on Image Processing, IEEE Comput. Soc. Press, pp. 25-28, 1995. https://doi.org/10.1109/icip.1995.537406.
  6. E. Picard, Mémoire sur la Théorie des Équations aux Dérivées Partielles et la Méthodedes Approximations Successives, J. Math. Pures Appl. 6 (1890), 145–210. https://eudml.org/doc/235808.
  7. W.R. Mann, Mean Value Methods in Iteration, Proc. Am. Math. Soc. 4 (1953), 506–510. https://doi.org/10.2307/2032162.
  8. S. Reich, Weak Convergence Theorems for Nonexpansive Mappings in Banach Spaces, J. Math. Anal. Appl. 67 (1979), 274–276. https://doi.org/10.1016/0022-247x(79)90024-6.
  9. S. Ishikawa, Fixed Points by a New Iteration Method, Proc. Am. Math. Soc. 44 (1974), 147–150. https://doi.org/10.2307/2039245.
  10. B. Halpern, Fixed Points of Nonexpansive Maps, Bull. Amer. Math. Soc. 73 (1967), 957–961.
  11. A. Moudafi, Viscosity Approximation Methods for Fixed-Points Problems, J. Math. Anal. Appl. 241 (2000), 46–55. https://doi.org/10.1006/jmaa.1999.6615.
  12. S. Takahashi, W. Takahashi, Viscosity Approximation Methods for Equilibrium Problems and Fixed Point Problems in Hilbert Spaces, J. Math. Anal. Appl. 331 (2007), 506–515. https://doi.org/10.1016/j.jmaa.2006.08.036.
  13. S. Plubtieng, R. Punpaeng, A General Iterative Method for Equilibrium Problems and Fixed Point Problems in Hilbert Spaces, J. Math. Anal. Appl. 336 (2007), 455–469. https://doi.org/10.1016/j.jmaa.2007.02.044.
  14. S. Plubtieng, K. Ungchittrakool, Viscosity Approximation Methods for Equilibrium Problems and Zeroes of an Accretive Operator in Hilbert Spaces, Int. Math. Forum 3 (2008), 1387–1400.
  15. P. Cholamjiak, S. Suantai, Viscosity Approximation Methods for a Nonexpansive Semigroup in Banach Spaces with Gauge Functions, J. Glob. Optim. 54 (2011), 185–197. https://doi.org/10.1007/s10898-011-9756-4.
  16. N. Nimana, N. Petrot, Viscosity Approximation Methods for Split Variational Inclusion and Fixed Point Problems in Hilbert Spaces, in: Conference: International MultiConference of Engineers and Computer Scientists, pp. 12–14, (2014).
  17. N. Artsawang, Accelerated Preconditioning Krasnosel'skiĭ-Mann Method for Efficiently Solving Monotone Inclusion Problems, AIMS Math. 8 (2023), 28398–28412. https://doi.org/10.3934/math.20231453.
  18. Y. Yao, H. Zhou, Y. Liou, Strong Convergence of a Modified Krasnoselski-Mann Iterative Algorithm for Non-Expansive Mappings, J. Appl. Math. Comput. 29 (2008), 383–389. https://doi.org/10.1007/s12190-008-0139-z.
  19. R.I. Boţ, E.R. Csetnek, D. Meier, Inducing Strong Convergence Into the Asymptotic Behaviour of Proximal Splitting Algorithms in Hilbert Spaces, Optim. Methods Softw. 34 (2018), 489–514. https://doi.org/10.1080/10556788.2018.1457151.
  20. B.T. Polyak, Some Methods of Speeding Up the Convergence of Iterative Methods, Zh. Vychisl. Mat. Mat. Fiz. 4 (1964), 791–803.
  21. N. NIMANA, N. ARTSAWANG, A Strongly Convergent Simultaneous Cutter Method for Finding the Minimal Norm Solution to Common Fixed Point Problem, Carpathian J. Math. 40 (2023), 155–171. https://doi.org/10.37193/cjm.2024.01.11.
  22. F. Alvarez, H. Attouch, An Inertial Proximal Method for Maximal Monotone Operators via Discretization of a Nonlinear Oscillator with Damping, Set-Valued Anal. 9 (2001), 3–11. https://doi.org/10.1023/a:1011253113155.
  23. F. Alvarez, Weak Convergence of a Relaxed and Inertial Hybrid Projection-Proximal Point Algorithm for Maximal Monotone Operators in Hilbert Space, SIAM J. Optim. 14 (2004), 773–782. https://doi.org/10.1137/s1052623403427859.
  24. H. Attouch, J. Bolte, B.F. Svaiter, Convergence of Descent Methods for Semi-Algebraic and Tame Problems: Proximal Algorithms, Forward–Backward Splitting, and Regularized Gauss–Seidel Methods, Math. Program. 137 (2011), 91–129. https://doi.org/10.1007/s10107-011-0484-9.
  25. D.A. Lorenz, T. Pock, An Inertial Forward-Backward Algorithm for Monotone Inclusions, J. Math. Imaging Vis. 51 (2014), 311–325. https://doi.org/10.1007/s10851-014-0523-2.
  26. A. Moudafi, M. Oliny, Convergence of a Splitting Inertial Proximal Method for Monotone Operators, J. Comput. Appl. Math. 155 (2003), 447–454. https://doi.org/10.1016/s0377-0427(02)00906-8.
  27. N. ARTSAWANG, S. PLUBTIENG, O. BAGDASAR, K. UNGCHITTRAKOOL, S. BAIYA, et al., Inertial Krasnosel’skiĭ-Mann Iterative Algorithm with Step-Size Parameters Involving Nonexpansive Mappings with Applications to Solve Image Restoration Problems, Carpathian J. Math. 40 (2024), 243–261. https://doi.org/10.37193/cjm.2024.02.02.
  28. Y. Shehu, O.S. Iyiola, F.U. Ogbuisi, Iterative Method with Inertial Terms for Nonexpansive Mappings: Applications to Compressed Sensing, Numer. Algorithms 83 (2019), 1321–1347. https://doi.org/10.1007/s11075-019-00727-5.
  29. D. Kitkuan, P. Kumam, J. Martínez-Moreno, K. Sitthithakerngkiet, Inertial Viscosity Forward–Backward Splitting Algorithm for Monotone Inclusions and Its Application to Image Restoration Problems, Int. J. Comput. Math. 97 (2019), 482–497. https://doi.org/10.1080/00207160.2019.1649661.
  30. N. Artsawang, K. Ungchittrakool, Inertial Mann-Type Algorithm for a Nonexpansive Mapping to Solve Monotone Inclusion and Image Restoration Problems, Symmetry 12 (2020), 750. https://doi.org/10.3390/sym12050750.
  31. W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
  32. W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009.
  33. H. Xu, Iterative Algorithms for Nonlinear Operators, J. Lond. Math. Soc. 66 (2002), 240–256. https://doi.org/10.1112/s0024610702003332.
  34. P. Maingé, Approximation Methods for Common Fixed Points of Nonexpansive Mappings in Hilbert Spaces, J. Math. Anal. Appl. 325 (2007), 469–479. https://doi.org/10.1016/j.jmaa.2005.12.066.
  35. W.G. Dotson, Fixed Points of Quasi-Nonexpansive Mappings, J. Aust. Math. Soc. 13 (1972), 167–170. https://doi.org/10.1017/s144678870001123x.
  36. D. Davis, W. Yin, A Three-Operator Splitting Scheme and Its Optimization Applications, Set-Valued Var. Anal. 25 (2017), 829–858. https://doi.org/10.1007/s11228-017-0421-z.
  37. A.N. Tikhonov, V.Y. Arsenin, Solutions of Ill-Posed Problems, W.H. Winston, Washington, 1977.
  38. F. Akutsah, A. Mebawondu, P. Pillay, N. Kumar, C. Igiri, A New Iterative Method for Solving Constrained Minimization Variational Inequality and Split Feasibility Problems in the Framework of Banach Spaces, Sahand Commun. Math. Anal. (2023), 20 (2023), 147–172. https://doi.org/10.22130/scma.2022.540338.1000.