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Abstract. We propose an inertial Krasnosel’skiı̆–Mann and Ishikawa-type iterative process with step-size control for

finding fixed points of nonexpansive mappings in Hilbert spaces. Without relying on viscosity-type techniques and

under mild assumptions on the control parameters, we establish strong convergence of the scheme. The method is

also utilized for solving monotone inclusion problems and extended to image restoration applications. Numerical tests

on several blurring operators confirm that the algorithm attains higher signal-to-noise ratio (SNR), delivers superior

restoration quality compared with existing approaches.

1. Introduction

In what follows, we use the notations N for the natural numbers, R for the real numbers, and

Rn for the n-dimensional Euclidean space with n ∈N. The symbol I refers to the identity operator.

Throughout this work, H denotes a real Hilbert space endowed with the inner product 〈·, ·〉 and its

associated norm ‖ · ‖ =
√
〈·, ·〉.

We next recall some standard classes of operators. Consider a mapping T : H→ H:

(i) T is called Lipschitzian if there exists a constant L ≥ 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ H.

(ii) T is called strictly pseudo-contractive if there exists κ ∈ (−∞, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + δ‖(I − T)x− (I − T)y‖2, ∀x, y ∈ H. (1.1)
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Several well-known operator classes arise as special instances of (1.1):

When δ = −1, T is firmly nonexpansive, equivalently,

‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉, ∀ x, y ∈ H.

For δ = 0, T becomes a nonexpansive mapping, that is,

‖Tx− Ty‖ ≤ ‖x− y‖, ∀ x, y ∈ H.

If δ = 1, then T reduces to a pseudo-contractive mapping; see [1] for further details.

Recall that if C is a nonempty closed convex subset of a Hilbert space H, then for every u ∈ H
there exists a unique element x̂ ∈ C such that

‖u− x̂‖ = inf
x∈C
‖u− x‖.

The operator PC : H → C, defined by PC(u) = x̂ is known as the metric projection of H onto C;

see [2].

Fixed Point Problem. For a mapping T : H → H, the fixed point problem is to determine x ∈ H
such that

x = Tx. (1.2)

The collection of such points is denoted by F(T) := {x ∈ H : Tx = x}. This formulation underlies a

wide range of iterative methods aimed at solving optimization tasks as well as monotone inclusion

problems, and it provides the theoretical foundation for the algorithmic scheme proposed in this

paper. The study of fixed points of nonexpansive operators has long been a central topic in

fixed point theory, with numerous applications in signal and image processing, including image

restoration and recovery (see, e.g., [3–5]).

However, employing a straightforward iterative method like the Picard iteration [6], defined by

uk+1 = Tuk, ∀k ∈N∪ {0}, u0 ∈ H arbitrary,

may fail to converge to a fixed point of (1.2). For instance, consider the mapping T : [0, 1]→ [0, 1]

given by Tu = 1 − u for all u ∈ [0, 1]. It is easy to verify that T is nonexpansive with F(T) = {12 }.
Starting with u0 = 2

5 yields u1 = 1− u0 = 3
5 , u2 = 1− u1 = 2

5 , and so on, producing the alternating

sequence (uk)k≥0 =
(

2
5 , 3

5 , 2
5 , 3

5 , . . .
)

, which does not converge to the desired fixed point 1
2 .

To address such limitations, Krasnosel’skiı̆ and Mann independently proposed what is now

known as the Krasnosel’skiı̆–Mann algorithm [7], a widely used scheme for solving (1.2):

uk+1 = (1− αk)uk + αkTuk, ∀k ∈N∪ {0}, (1.3)

where (αk)k≥0 ⊂ [0, 1] is an appropriately chosen control sequence. Reich [8] proved that if T is

nonexpansive with a nonempty fixed point set and (αk)k≥0 satisfies certain standard conditions,

then the sequence generated by (1.3) converges weakly to a fixed point of T.
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Building upon this direction, Ishikawa [9] proposed a two-step iterative scheme for Lipschitzian

pseudo-contractive mappings in Hilbert spaces, which is now referred to as the Ishikawa iteration:wk = (1− αk)uk + αkTuk,

uk+1 = (1− βk)uk + βkTwk, ∀k ∈N∪ {0},
(1.4)

where (αk)k≥0 and (βk)k≥0 are sequences in [0, 1] subject to suitable constraints. Under appropriate

assumptions on C, (αk)k≥0, and (βk)k≥0, Ishikawa established the strong convergence of (1.4) to a

fixed point of T.

Subsequently, Halpern [10] introduced another iterative method for solving the fixed point

problem (1.2) associated with a nonexpansive mapping T. Unlike the Krasnosel’skiı̆–Mann scheme,

Halpern’s approach incorporates a reference element u ∈ C that remains fixed throughout the

iteration, yielding the following process:w, u0 ∈ C,

uk+1 = (1− αk)w + αkTuk, ∀k ∈N∪ {0},
(1.5)

where (αk)k≥0 ⊂ [0, 1]. Halpern proved that, under suitable conditions, the sequence generated

by (1.5) converges strongly to a fixed point of T. Moudafi [11] introduced an enhanced iter-

ative procedure guaranteeing strong convergence, which later became known as the viscosity

approximation method. This method was established by merging Halpern’s iteration with the

theory of contraction mappings. Since its introduction, the viscosity approximation approach has

been extensively studied and generalized in many directions by various authors; see, for exam-

ple, [12–17] for further developments and applications. In 2009, Yao et al. [18] proposed a modified

Krasnosel’skiı̆-Mann iteration for nonexpansive mappings by introducing appropriate step-size

parameters. They proved that the generated sequence converges strongly to a fixed point of a

nonexpansive mapping in Hilbert spaces. Their scheme is given bywk = (1− αk) uk,

uk+1 = (1− βk)wk + βkTwk, ∀k ∈N∪ {0},
(1.6)

where u0 ∈ H and the sequences (αk)k≥0, (βk)k≥0 lie in [0, 1]. A further advancement was made

in 2019 by Bot et al. [19], who refined (1.3) to obtain strong convergence to a fixed point of a

nonexpansive mapping. Their method is formulated as

uk+1 = (1− λk)ρkuk + λkTρkuk, ∀k ∈N∪ {0}, (1.7)

when (λk)k≥0, (ρk)k≥0 ⊂ (0, 1]. Under suitable assumptions on these sequences, they established

that the iteration converges strongly to the fixed point x̂ of T closest to the origin, i.e., x̂ = PF(T)(0).

Earlier, in 1964, Polyak [20] introduced several acceleration techniques to enhance the conver-

gence speed of iterative schemes. These include the use of variable relaxation parameters and

inertial extrapolation terms of the form θk(uk − uk−1), where the sequence (θk)k≥0 satisfies certain

conditions. Since then, inertial-type strategies have attracted considerable attention and have been

extensively studied; see [21–27] for comprehensive references. In 2019, Shehu [28] introduced an
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algorithm combining inertial terms, Halpern’s method, and error perturbations to approximate

fixed points of nonexpansive mappings. Subsequently, Kitkuan et al. [29] applied inertial ex-

trapolation techniques to the viscosity approximation method in order to solve certain monotone

inclusion problems, with applications to image restoration. Along similar lines, Artsawang and

Ungchittrakool [30] proposed and analyzed an inertial Mann-type iterative scheme, motivated

by the work of Bot et al. [19], for approximating fixed points of nonexpansive mappings. Their

method was further applied to monotone inclusion and image restoration problems. The iterative

procedure can be written as

(AU2020)


u0, u1 ∈ H,

wk = uk + θk(uk − uk−1),

uk+1 = ρkwk + αk(Tρkwk − ρkwk) + εk, ∀k ∈N,

where (θk)k≥1, (αk)k≥1, (ρk)k≥1 are sequences chosen from [0, 1] which satisfy certain desirable

properties.

The main contribution of this paper is to propose a new iterative algorithm for approximating

fixed points of nonexpansive mappings in Hilbert spaces. The construction of our method is

motivated by several classical and modern iterative schemes, in particular, the Ishikawa iteration

and the modified Krasnosel’skiı̆-Mann iteration, together with inertial extrapolation techniques.

By combining these ideas, we develop a unified framework which not only generalizes a number

of existing algorithms but also improves their convergence behavior. Under suitable conditions on

the involved control sequences, we prove that the sequence generated by our algorithm converges

strongly to the fixed point x̂ ∈ F(T) closest to the origin, namely, x̂ = PF(T)(0).

The remainder of this paper is organized as follows. Section 2 collects some basic definitions,

lemmas, and preliminary results needed in the sequel. In Section 3, we introduce the proposed

algorithm and provide a detailed proof of its strong convergence. In section 4, we apply the

algorithm to monotone inclusion problems. Section 5 deals with applications to image restoration

problems and provides numerical experiments illustrating the efficiency of the method. Finally,

Section 6 concludes the paper with further remarks and possible research directions.

2. Preliminaries

In this part, we compile several auxiliary results in the setting of real Hilbert spaces, which will

serve as key ingredients for establishing the main theorem in the subsequent section.

Lemma 2.1 ( [31,32]). Let H denote a real Hilbert space. The identities and inequalities below are valid for
all x, y ∈ H and t ∈ R:

(1) ‖x + y‖2 ≤ ‖x‖2 + 2〈x + y, y〉, ∀x, y ∈ H;
(2) ‖tx + (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2, ∀t ∈ R and x, y ∈ H.
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Lemma 2.2 ( [33, Lemma 2.5], [34, Lemma 3.1]). Consider sequences (ck)k≥0, (εk)k≥0 ⊆ [0,+∞),
(µk)k≥0 ⊆ [0, 1] and (λk)k≥0 ⊆ R satisfying

ck+1 ≤ (1− µk)ck + µkλk + εk, ∀k ∈N∪ {0}.

If
∞∑

k=0
εk < +∞, then the following assertions hold:

(1) If µkλk ≤ σµk (where σ ≥ 0), then (ck)k≥0 is bounded.

(2) If
∞∑

k=0
µk = +∞ and lim sup

k→∞
λk ≤ 0, then lim

k→∞
ck = 0.

Proposition 2.1 ( [35, Theorem 1.]). Let T : H → H be a nonexpansive operator with a nonempty fixed
point set F(T). Then F(T) forms a closed and convex subset of H.

In this work, the notation “→ ” will denote strong convergence, while “⇀ ” will indicate weak

convergence.

Lemma 2.3 (Demi-closed principle [2]). Assume T : H→ H is nonexpansive and let (uk)k≥0 ⊆ H. The
operator I−T is demi-closed at the origin; that is, whenever uk ⇀ u ∈ H and simultaneously ‖uk − Tuk‖ → 0

as k→∞, it must hold that u is a fixed point of T, i.e., u ∈ F(T).

We now recall certain properties of the metric projection, which will play an important role in

establishing the main theorem of the next section. These can be formulated as follows:

Lemma 2.4 ( [2]). Let C ⊂ H be a closed convex set with C , ∅. For each u ∈ H and x̂ ∈ C,

x̂ = PC(u) if and only if 〈u− x̂, v− x̂〉 ≤ 0, ∀v ∈ C.

3. Main Results

In this section, we introduce a new iterative algorithm which incorporates inertial terms, the

Ishikawa-type averaging process, and a Krasnosel’skiı̆-Mann relaxation step with error perturba-

tions. The proposed method extends and unifies several existing schemes in the literature, and it

will be shown to converge strongly to the nearest fixed point of a nonexpansive mapping. The

formal description of the method is given as follows.

Algorithm 3.1 A strongly convergent inertial–Ishikawa KM-type algorithm

Initialization: Given real sequences (θk)k≥1 ⊆ [0,θ] with θ ∈ [0, 1), (sk)k≥1, (tk)k≥1 ⊆ [0, 1),

(ρk)k≥1 ⊆ [0, 1], and an error sequence (εk)k≥1 ⊆ H. Choose arbitrary initial points u0, u1 ∈ H.

Iterative Steps: For a current iterate uk, uk−1 ∈ H, repeat the following step:

Step 1. wk := uk + θk(uk − uk−1),

Step 2. vk := (1− sk)wk + skTwk,

Step 3. uk+1 := (1− tk)ρkvk + tkTρkvk + εk.

Update k := k + 1 and return to Step 1.
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In order to establish the strong convergence of Algorithm 3.1, it is necessary to impose certain

conditions on the control sequences and the perturbation terms. These conditions are presented

below.

Assumption 1. Let (ak)k≥0, (bk)k≥0 ⊆ [0, 1), (ρk)k≥0 ⊆ [0, 1], and (εk)k≥0 ⊆ H be sequences satisfying
the following conditions:

(1)
∞∑

n=0
1− sk < +∞.

(2) lim sup
k→∞

tk < 1 and
∞∑

k=1
|tk − tk−1| < +∞.

(3) lim
k→∞

ρk = 1,
∞∑

k=0
(1− ρk) = +∞, and

∞∑
k=1
|ρk − ρk−1| < +∞.

(4)
∞∑

k=0
‖εk‖ < +∞.

We can create some examples of simple sequences that satisfy the Assumption 1 as follows:

Remark 3.1. As a concrete example, take v ∈ H and define sk = 1− 1
2k , tk =

1
3 +

1
k+1 , ρk = 1− 1

k+2 , and
εk =

v
5k for all k ≥ 0. It is straightforward to check that the sequences above satisfy Assumption 1.

Lemma 3.1. Let T : H → H be a nonexpansive mapping with F(T) , ∅ and let (uk)k≥0 be generated by

Algorithm 3.1. Suppose (θk)k≥1 ⊂ [0,θ] with θ ∈ (0, 1) such that
∞∑

k=1
θk ‖uk − uk−1‖ < +∞. and assume

Assumption 1 holds. Then the sequence (uk)k≥0 is bounded.

Proof. Let k ∈N and u ∈ F (T). Then we consider

‖wk − u‖ =
∥∥∥uk + θk(uk − uk−1) − u

∥∥∥ ≤ ‖uk − u‖+ θk ‖uk − uk−1‖ . (3.1)

By using (3.1), we get that

‖vk − u‖ =
∥∥∥(1− sk)wk + skTwk − u

∥∥∥
=

∥∥∥(1− sk)(wk − u) + sk(Twk − u)
∥∥∥

≤ (1− sk)‖wk − u‖+ sk‖Twk − u‖

≤ ‖wk − u‖ (3.2)

From (3.2), we deduce that∥∥∥ρkvk − u
∥∥∥ = ‖ρk(vk − u) + (ρk − 1)u‖

≤ ρk ‖vk − u‖+ (1− ρk) ‖u‖

≤ ρk ‖uk − u‖+ ρkθk‖uk − uk−1‖+ (1− ρk) ‖u‖

≤ ρk ‖uk − u‖+ θk‖uk − uk−1‖+ (1− ρk) ‖u‖ . (3.3)
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Using (3.3) for connecting, we will have∥∥∥uk+1 − u
∥∥∥ = ‖(1− tk)ρkvk + tkTρkvk + εk − u‖

= ‖(1− tk)(ρkvk − u) + tk(Tρkvk − u) + εk‖

≤ (1− tk)‖ρkvk − u‖+ tk‖Tρkvk − u‖+ ‖εk‖

≤ ‖ρkvk − u‖+ ‖εk‖

≤ ρk ‖uk − u‖+ θk‖uk − uk−1‖+ (1− ρk) ‖u‖+ ‖εk‖. (3.4)

Invoking Lemma 2.2 (1) in connection with (3.4) and choosing µk = 1 − ρk, ‖uk − u‖ = ck, ‖u‖ =
λk = σ, and θk ‖uk − uk−1‖+ ‖εk‖ = εk, it follows that (uk)k≥0 remains bounded. �

Lemma 3.2. Let T : H → H be a nonexpansive mapping with nonempty fixed point set F(T), and
suppose (uk)k≥0 is generated by Algorithm 3.1. Assume that (θk)k≥1 ⊆ [0,θ] for some θ ∈ [0, 1) satisfies
∞∑

k=1
θk ‖uk − uk−1‖ < +∞, together with Assumption 1. Then

∥∥∥uk+1 − uk

∥∥∥→ 0 as k→∞.

Proof. To begin with, note that

‖wk −wk−1‖ =
∥∥∥uk − uk−1 + θk(uk − uk−1) − θk−1(uk−1 − uk−2)

∥∥∥
≤ ‖uk − uk−1‖+ θk ‖uk − uk−1‖+ θk−1 ‖uk−1 − uk−2‖ . (3.5)

Using (3.5), we get that

‖vk − vk−1‖ = ‖(1− sk)wk + skTwk − (1− sk−1)wk−1 − sk−1Twk−1‖

= ‖(1− sk)(wk −wk−1) + sk(Twk − Twk−1) − (sk − sk−1)(wk−1 − Twk−1)‖

≤ ‖wk −wk−1‖+ |sk − sk−1|‖wk−1 − Twk−1‖

≤ ‖wk −wk−1‖+ |sk − sk−1|M1, (3.6)

where M1 := sup {‖wk−1 − Twk−1‖ : k ∈N}. Combining (3.6) with the inequality below, we deduce

that ∥∥∥ρkvk − ρk−1vk−1

∥∥∥ = ∥∥∥ρk(vk − vk−1) + (ρk − ρk−1)vk−1

∥∥∥
≤ ρk ‖vk − vk−1‖+

∣∣∣ρk − ρk−1

∣∣∣ ‖vk−1‖

≤ ρk ‖wk −wk−1‖+ |sk − sk−1|M1 +
∣∣∣ρk − ρk−1

∣∣∣ ‖vk−1‖

≤ ρk ‖uk − uk−1‖+ θk ‖uk − uk−1‖+ θk−1 ‖uk−1 − uk−2‖

+ |sk − sk−1|M1 +
∣∣∣ρk − ρk−1

∣∣∣ M2, (3.7)

where M2 := sup {‖vk−1‖ : k ∈N}. From (3.7), it follows that:∥∥∥uk+1 − uk

∥∥∥ = ∥∥∥(1− tk)ρkvk + tkTρkvk + εk − ((1− tk−1)ρk−1vk−1 + tk−1Tρk−1vk−1 + εk−1)
∥∥∥

=
∥∥∥(1− tk)(ρkvk − ρk−1vk−1) − (tk − tk−1)ρk−1vk−1 + tk(Tρkvk − Tρk−1vk−1)

+(tk − tk−1)Tρk−1vk−1 + (εk − εk−1)
∥∥∥
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≤ (1− tk)
∥∥∥ρkvk − ρk−1vk−1

∥∥∥+ |tk − tk−1|
∥∥∥ρk−1vk−1

∥∥∥+ tk

∥∥∥Tρkvk − Tρk−1vk−1

∥∥∥
+ |tk − tk−1|

∥∥∥Tρk−1vk−1

∥∥∥+ ‖εk − εk−1‖

≤

∥∥∥ρkvk − ρk−1vk−1

∥∥∥+ |tk − tk−1|M3 + ‖εk − εk−1‖

≤ ρk ‖uk − uk−1‖+ θk ‖uk − uk−1‖+ θk−1 ‖uk−1 − uk−2‖+ |sk − sk−1|M1

+
∣∣∣ρk − ρk−1

∣∣∣ M2 + |tk − tk−1|M3 + ‖εk − εk−1‖

= (1− (1− ρk)) ‖uk − uk−1‖+ γk, (3.8)

where M3 := sup
{∥∥∥ρk−1vk−1

∥∥∥ +
∥∥∥Tρk−1vk−1

∥∥∥ : k ∈N
}

and

γk := θk ‖uk − uk−1‖+ θk−1 ‖uk−1 − uk−2‖+ |sk − sk−1|M1 +
∣∣∣ρk − ρk−1

∣∣∣ M2

+ |tk − tk−1|M3 + ‖εk − εk−1‖ .

By applying Lemma 2.2 (2) together with Assumption 1 in relation (3.8), we deduce that∥∥∥uk+1 − uk

∥∥∥→ 0 as k→∞. �

Theorem 3.1. Let T : H → H be a nonexpansive mapping with F(T) , ∅ and let (uk)k≥0 be the sequence

generated by Algorithm 3.1. Suppose (θk)k≥1 ⊆ [0,θ] with θ ∈ [0, 1) satisfies
∞∑

k=1
θk ‖uk − uk−1‖ < +∞,

and assume Assumption 1 holds. Then (uk)k≥0 converges strongly to x̂ := PF(T)(0).

Proof. From Lemma 3.1, we have (uk)k≥0 is bounded. Since F(T) , ∅, wk = uk + θk (uk − uk−1) and

vk = (1− sk)wk + skTwk, so (wk)k≥0 and (vk)k≥0 are both bounded. Let x̂ := PF(T)(0). It follows that

x̂ ∈ F(T). Using Lemma 2.1 (1), we obtain

‖wk − x̂‖2 =
∥∥∥uk − x̂ + θk(uk − uk−1)

∥∥∥2

≤ ‖uk − x̂‖2 + 2θk 〈wk − x̂, uk − uk−1〉

≤ ‖uk − x̂‖2 + θk ‖uk − uk−1‖L1, (3.9)

where L1 := sup {2 ‖wk − x̂‖ : k ∈N} . Therefore, applying (3.9), we deduce that

‖vk − x̂‖2 =
∥∥∥(1− sk)wk + skTwk − x̂

∥∥∥2

≤ (1− sk)‖wk − x̂‖2 + sk‖Twk − x̂‖2 + (1− sk)sk‖wk − Twk‖
2

≤ ‖wk − x̂‖2 + (1− sk)‖wk − Twk‖
2

≤ ‖uk − x̂‖2 + θk ‖uk − uk−1‖L1 + (1− sk)M1, (3.10)

where M1 := sup
{
‖wk − Twk‖

2 : k ∈N
}

. Relation (3.10) implies that∥∥∥ρkvk − x̂
∥∥∥2

=
∥∥∥ρk(vk − x̂) + (ρk − 1)x̂

∥∥∥2

= ρ2
k‖vk − x̂‖2 + 2ρk(1− ρk) 〈−x̂, vk − x̂〉+ (1− ρk)

2
‖x̂‖2

≤ ρk

(
‖uk − x̂‖2 + θk ‖uk − uk−1‖L1 + (1− sk)M1

)
+ (1− ρk)

(
2ρk 〈−x̂, vk − x̂〉+ (1− ρk)‖x̂‖2

)
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≤ (1− (1− ρk))‖uk − x̂‖2 + (1− ρk)
(
2ρk 〈−x̂, vk − x̂〉+ (1− ρk)‖x̂‖2

)
+ θk ‖uk − uk−1‖L1 + (1− sk)M1. (3.11)

Relation (3.11) yields∥∥∥uk+1 − x̂
∥∥∥2

=
∥∥∥ρkvk + tk(Tρkvk − ρkvk) + εk − x̂

∥∥∥2

=
∥∥∥(1− tk)(ρkvk − x̂) + tk(Tρkvk − x̂) + εk

∥∥∥2

≤

∥∥∥(1− tk)(ρkvk − x̂) + tk(Tρkvk − x̂)
∥∥∥2

+ 2
〈
uk+1 − x̂, εk

〉
≤ (1− tk)

∥∥∥ρkvk − x̂
∥∥∥2

+ tk

∥∥∥Tρkvk − x̂
∥∥∥2

+ 2
〈
uk+1 − x̂, εk

〉
≤

∥∥∥ρkvk − x̂
∥∥∥2

+ 2
〈
uk+1 − x̂, εk

〉
≤ (1− (1− ρk))‖uk − x̂‖2 + (1− ρk)

(
2ρk 〈−x̂, vk − x̂〉+ (1− ρk)‖x̂‖2

)
+ θk ‖uk − uk−1‖L1 + (1− sk)M1 + ‖εk‖L2, (3.12)

where L2 := sup
{
2
∥∥∥uk+1 − x̂

∥∥∥ : k ∈N
}

. Our next step is to verify that
∥∥∥Tρkvk − ρkvk

∥∥∥→ 0 as k→∞.

We observe that ∥∥∥Tuk+1 − vk

∥∥∥ = ∥∥∥Tuk+1 − (1− sk)wk − skTwk

∥∥∥
=

∥∥∥sk(Tuk+1 − Twk) + (1− sk)(Tuk+1 −wk)
∥∥∥

≤ sk‖Tuk+1 − Twk‖+ (1− sk)‖Tuk+1 −wk‖

≤ ‖uk+1 −wk‖+ (1− sk)‖Tuk+1 −wk‖

=
∥∥∥uk+1 − uk − θk(uk − uk−1)

∥∥∥+ (1− sk)‖Tuk+1 −wk‖

≤

∥∥∥uk+1 − uk

∥∥∥+ θk ‖uk − uk−1‖+ (1− sk)M2, (3.13)

where M2 := sup
{
‖Tuk+1 −wk‖ : k ∈N

}
. By using (3.13), we get that∥∥∥Tρkvk − ρkvk

∥∥∥ = ∥∥∥Tρkvk − Tuk+1 + Tuk+1 − ρkvk

∥∥∥
≤

∥∥∥Tρkvk − Tuk+1

∥∥∥+ ∥∥∥Tuk+1 − ρkvk

∥∥∥
≤

∥∥∥ρkvk − uk+1

∥∥∥+ ∥∥∥(1− ρk)Tuk+1 + ρk(Tuk+1 − vk)
∥∥∥

≤

∥∥∥ρkvk − ((1− tk)ρkvk + tk(Tρkvk) + εk)
∥∥∥

+ (1− ρk)
∥∥∥Tuk+1

∥∥∥+ ρk

∥∥∥Tuk+1 − vk

∥∥∥
≤ tk

∥∥∥Tρkvk − ρkvk

∥∥∥+ ‖εk‖+ (1− ρk)L3

+
∥∥∥uk+1 − uk

∥∥∥+ θk ‖uk − uk−1‖+ (1− sk)M2, (3.14)

where L3 := sup
{∥∥∥Tuk+1

∥∥∥ : k ∈N
}

. It follows from (3.14), Assumption 1 and Lemma 3.2 that∥∥∥Tρkvk − ρkvk

∥∥∥ ≤ 1
(1− tk)

(
‖εk‖+ (1− ρk)L3 +

∥∥∥uk+1 − uk

∥∥∥+ θk ‖uk − uk−1‖+ (1− sk)M2

)
→ 0 as k→∞. (3.15)
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By (3.15), one obtains

lim
k→∞

∥∥∥Tρkvk − ρkvk

∥∥∥ = 0. (3.16)

We proceed to show that the sequence (uk)k≥0 converges strongly to x̂ which it is enough to show

that

lim sup
k→∞

〈−x̂, vk − x̂〉 ≤ 0. (3.17)

Suppose, for contradiction, that (3.17) does not hold. Hence, there exists a real number r > 0 and

a subsequence (vkm)m≥1 ⊆ (vk)k≥1 such that

〈−x̂, vkm − x̂〉 ≥ r > 0, ∀m ≥ 1.

The fact that (vkm)m≥1 is bounded ensures the existence of a subsequence (vkml
)l≥1 of (vkm)m≥1 such

that vkml
⇀ z ∈ H as l→∞. Therefore,

0 < r ≤ lim
l→∞
〈−x̂, vkml

− x̂〉 = 〈−x̂, z− x̂〉. (3.18)

Given that lim
k→∞

ρk = 1, we deduce

ρkml
vkml

⇀ z as k→∞. (3.19)

From (3.16), (3.19) and Lemma 2.3, one obtains z ∈ F(T). The combination of Proposition 2.1

and Lemma 2.4 ensures that the inequality 〈−x̂, z− x̂〉 = 〈0− x̂, z− x̂〉 ≤ 0 is valid which causes a

contradiction with (3.18). This contradiction establishes that (3.17) is valid. And then, Assumption

1 (4.1) ensures that

lim sup
k→∞

(
2ρk〈−x̂, vk − x̂〉+ (1− ρk)‖x̂‖2

)
≤ 0.

In the last step, applying (3.12) and Lemma 2.2 (2), we deduce lim
k→∞

uk = x̂. This completes the

proof. �

Remark 3.2. Let {ξk}k≥1 ⊆ [0,+∞) be the sequence such that
∞∑

k=1
ξk < +∞. Then, we define

θ̃k =

 min
{
θ, ξk
‖uk−uk−1‖

}
, if uk , uk−1,

θ, otherwise,

where (uk)k≥0 and θ are specified by Theorem 3.1. In addition, when (θk)k≥1 is selected [0, θ̃k] for all k ∈N

it follows that
∞∑

k=1
θk ‖uk − uk−1‖ < +∞.

4. Algorithmic Applications toMonotone Inclusions

This section is devoted to applying Algorithm 3.1 to the problem of finding a zero of certain

monotone inclusion problems involving three operators in the setting of real Hilbert spaces.

Let Ω : H → 2H be a set-valued operator, where 2H denotes the collection of all subsets of H.

The set of zeros of Ω is defined as zer(Ω) := { z ∈ H : 0 ∈ Ωz }, while the graph of Ω is given

by G(Ω) := {(u, v) ∈ H ×H : v ∈ Ωu}. We recall the following standard notions for a set-valued

operator Ω:
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(A) Ω is said to be monotone if

〈x− y, x̃− ỹ〉 ≥ 0, ∀(x, x̃), (y, ỹ) ∈ G(Ω).

(B) Ω is called γ-strongly monotone, with γ > 0, if

〈x− y, x̃− ỹ〉 ≥ γ‖x− y‖2, ∀(x, x̃), (y, ỹ) ∈ G(Ω).

(C) Ω is λ-cocoercive (or equivalently, λ-inverse strongly monotone), with λ > 0, if

〈x− y, x̃− ỹ〉 ≥ λ‖x̃− ỹ‖2, ∀(x, x̃), (y, ỹ) ∈ G(Ω).

(D) Ω is said to be maximal monotone if it is monotone and its graph cannot be properly contained

in the graph of another monotone operator. In other words, if Ψ : H → 2H is monotone

and G(Ω) ⊆ G(Ψ), then necessarily G(Ω) = G(Ψ).

In the particular case when Ω : H→ H is single-valued, the above conditions simplify to:

(a) Ω is monotone if

〈x− y, Ωx−Ωy〉 ≥ 0, ∀x, y ∈ H.

(b) Ω is γ-strongly monotone, with γ > 0, if

〈x− y, Ωx−Ωy〉 ≥ γ‖x− y‖2, ∀x, y ∈ H.

(c) Ω is λ-cocoercive, with λ > 0, if

〈x− y, Ωx−Ωy〉 ≥ λ‖Ωx−Ωy‖2, ∀x, y ∈ H.

Recall that for a set-valued operator Ω : H → 2H, the mapping JΩ := (I + Ω)−1 : H → 2H is called

the resolvent of Ω. It is a classical result that if Ω : H → 2H is maximal monotone and η > 0, then

the resolvent JηΩ is single-valued and firmly nonexpansive.

In this section, we are concerned with the following monotone inclusion problem involving

three operators:

find x ∈ H such that 0 ∈ Ψx + Ωx + Φx, (4.1)

where Ψ, Ω : H→ 2H are maximal monotone operators and Φ : H→ H is a λ-cocoercive operator

with some λ > 0.

To solve problem (4.1) via Algorithm 3.1, we require several auxiliary tools. One of the key

ingredients is the following result of Davis and Yin.

Proposition 4.1 ( [36]). Let F1, F2 : H → H be two firmly nonexpansive operators and let Φ : H → H be
a λ-cocoercive operator with λ > 0. For any η ∈ (0, 2λ), define

T := F1 ◦ (2F2 − I − ηΦ ◦ F2) + I − F2.

Then T is τ-averaged with constant τ := 2λ
4λ−η < 1. In particular, for all x, y ∈ H,

‖Tx− Ty‖2 ≤ ‖x− y‖2 −
1− τ
τ
‖(I − T)x− (I − T)y‖2.
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The set of solutions to the three-operator monotone inclusion problem can be represented in

terms of fixed points of the operator T given in Proposition 4.1. More precisely, the following

characterization holds.

Lemma 4.1 ( [36, Lemma 2.2]). Let Ψ, Ω : H → 2H be maximal monotone operators and Φ : H → H be
an operator. Suppose that zer (Ψ + Ω + Φ) , ∅. Then

zer (Ψ + Ω + Φ) = JηΩ (F(T)) ,

where T = JηΨ ◦
(
2JηΩ − I − ηΦ ◦ JηΩ

)
+

(
I − JηΩ

)
and η > 0.

In particular, when T is defined as above, Step 2 of Algorithm 3.1 can be expressed as

vk = (1− sk)wk + skTwk

= (1− sk)wk + sk

(
JηΨ ◦

(
2JηΩ − I − ηΦ ◦ JηΩ

)
+ (I − JηΩ)

)
wk. (4.2)

Moreover, for Step 3 we observe that

T(ρkvk) − ρkvk =
(
JηΨ ◦ (2JηΩ − I − ηΦ ◦ JηΩ) + (I − JηΩ)

)
(ρkvk) − ρkvk

= JηΨ

(
2JηΩ(ρkvk) − ρkvk − ηΦ ◦ JηΩ(ρkvk)

)
+ ρkvk − JηΩ(ρkvk) − ρkvk

= JηΨ

(
2JηΩ(ρkvk) − ρkvk − ηΦ ◦ JηΩ(ρkvk)

)
− JηΩ(ρkvk). (4.3)

Therefore, by applying Algorithm 3.1 to the three-operator monotone inclusion problem (4.1), we

obtain the following iterative scheme.

Algorithm 4.1 Algorithm for solving the three-operator monotone inclusion problem

Initialization: Given real sequences (θk)k≥1 ⊆ [0,θ] with θ ∈ [0, 1), (sk)k≥1, (tk)k≥1 ⊆ [0, 1),

(ρk)k≥1 ⊆ [0, 1], and an error sequence (εk)k≥1 ⊆ H. Fix η ∈ (0, 2λ).

Iterative Steps: For a current iterate uk, uk−1 ∈ H, repeat the following step:

Step 1. wk := uk + θk(uk − uk−1),

Step 2. vk := (1− sk)wk + sk

(
JηΨ

(
2JηΩ(wk) −wk − ηΦ(JηΩ(wk))

)
+ wk − JηΩ(wk)

)
,

Step 3. uk+1 := ρkvk + tk

(
JηΨ

(
2JηΩ(ρkvk) − ρkvk − ηΦ(JηΩ(ρkvk))

)
− JηΩ(ρkvk)

)
+ εk.

Update k := k + 1 and return to Step 1.

Theorem 4.1. Let Ψ, Ω : H → 2H be maximal monotone operators and Φ : H → H be λ-cocoercive
with λ > 0. Assume that zer (Ψ + Ω + Φ) is nonempty. Let (θk)k≥1 be a sequence in [0,θ] with
θ ∈ [0, 1) and η ∈ (0, 2λ). Let (uk)k≥0, (wk)k≥1, and (vk)k≥1 be generated by Algorithm 4.1. Assume that
∞∑

k=1
θk ‖uk − uk−1‖ < +∞ and the Assumption 1 hold. Then the following assertions are valid:

(1) (uk)k≥0, (wk)k≥1 and (vk)k≥1 converge strongly to x̂ := PF(T)(0), where
T := JηΨ ◦

(
2JηΩ − I − ηΦ ◦ JηΩ

)
+

(
I − JηΩ

)
.
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(2)
(
JηΩ(wk)

)
k≥1

and
(
JηΩ(ρkvk)

)
k≥1

converge strongly to JηΩ(x̂) ∈ zer (Ψ + Ω + Φ).

Proof. (1) From Proposition 4.1, the operator T is nonexpansive. Applying Theorem 3.1, we

deduce that (uk)k≥0 converges strongly to x̂ := PF(T)(0). Since wk = uk + θk(uk − uk−1) and
∞∑

k=1
θk ‖uk − uk−1‖ < +∞, it follows that wk → x̂. Furthermore, because sk → 1 and T is continuous,

we conclude that vk = (1− sk)wk + skTwk −→ Tx̂ = x̂.

(2) From part (1) we know wk → x̂ and vk → x̂. Since ρk → 1, this gives ρkvk → x̂. By continuity

of the resolvent JηΩ, we obtain JηΩ(wk) → JηΩ(x̂) and JηΩ(ρkvk) → JηΩ(x̂). Finally, Lemma 4.1

ensures that JηΩ(x̂) ∈ JηΩ(F(T)) = zer(Ψ + Ω + Φ). �

If we set Ω ≡ 0 in Theorem 4.1, then the resolvent reduces to

JηΩ(x) = (I + ηΩ)−1(x) = (I + 0)−1(x) = I(x), ∀x ∈ H.

In this case, the operator T becomes

T = JηΨ ◦
(
2JηΩ − I − ηΦ ◦ JηΩ

)
+ (I − JηΩ)

= JηΨ ◦ (2I − I − ηΦ ◦ I) + (I − I)

= JηΨ ◦ (I − ηΦ).

By Lemma 4.1, it follows that zer(Ψ + Φ) = F(T). This leads to the following corollary.

Corollary 4.1. Let Ψ : H→ 2H be a maximal monotone operator and let Φ : H→ H be λ-cocoercive with
λ > 0. Suppose that zer(Ψ + Φ) , ∅. Let (uk)k≥0 be generated by the following scheme:

Algorithm 4.2 Algorithm for the two-operator inclusion problem

Initialization: Given real sequences (θk)k≥1 ⊆ [0,θ] with θ ∈ [0, 1), (sk)k≥1, (tk)k≥1 ⊆ [0, 1),

(ρk)k≥1 ⊆ [0, 1], and an error sequence (εk)k≥1 ⊆ H. Fix η ∈ (0, 2λ).

Iterative Steps: For a current iterate uk, uk−1 ∈ H, repeat the following step:

Step 1. wk := uk + θk(uk − uk−1),

Step 2. vk := (1− sk)wk + skJηΨ

(
wk − ηΦwk

)
,

Step 3. uk+1 := (1− tk)ρkvk + tkJηΨ

(
ρkvk − ηΦ(ρkvk)

)
+ εk.

Update k := k + 1 and return to Step 1.

Assume that
∞∑

k=1

θk‖uk − uk−1‖ < +∞, and that Assumption 1 holds. Then (uk)k≥0 converges strongly

to the projection Pzer(Ψ+Φ)(0).
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5. Applications to Image Restoration and Computational Experiments

In this section, we demonstrate how the proposed iterative method can be applied to image

restoration tasks, where the aim is to recover high-quality images from degraded observations

that suffer from blur, noise, or other distortions. A standard model for the degradation process is

given by

y = Bx + w, (5.1)

where x represents the original image, B is a blur operator, and w denotes additive noise. The

recovery problem is often formulated as a regularized least-squares optimization model of the

form

min
x

{1
2
‖Bx− y‖22 + τΨ(x)

}
, (5.2)

where τ > 0 is a regularization parameter and Ψ(·) is a regularization function. A widely used

choice for Ψ is the `1 norm, which serves as a sparsity-promoting penalty and is well known in the

context of Tikhonov-type regularization [37]. With this choice, problem (5.2) becomes

min
x∈Rk

{1
2
‖Bx− y‖22 + τ‖x‖1

}
, (5.3)

where y denotes the observed degraded image and B is a bounded linear operator. It is worth noting

that (5.3) can be cast as a particular instance of the two-operator monotone inclusion problem (4.1)

with the specifications: Ψ = ∂ f (·), Ω ≡ 0, Φ = ∇L(·), where f (x) = ‖x‖1, L(x) = 1
2‖Bx− y‖22, and

the regularization parameter is chosen as τ = 0.001. Under this setting, the cocoercive operator

becomes Φ(x) = ∇L(x) = B∗(Bx − y), where B∗ denotes the adjoint (transpose) of B. To conduct

the experiments, a set of images was selected and corrupted by different blurring operators. The

restoration procedure was then carried out using Algorithm 4.2, corresponding to Corollary 4.1,

with the following control parameters: sk = 1− 1
(10k+1)2 , tk = 0.97+ 1

(k+100)2 , ρk = 1− 1
10k+1 , εk = 0,

and the inertial parameter (θk) defined by

θk =


min

{
70k−9
100k , 1

(k+1)2‖uk−uk−1‖

}
, if uk , uk−1,

70k−9
100k , otherwise.

(5.4)

Finally, to assess the effectiveness of the proposed scheme, we perform a comparative study

with two existing approaches: the inertial Mann-type iteration introduced by Artsawang and

Ungchittrakool (abbreviated as AU2020) in [30, Corollary 2], and the iterative procedure described

in [38, Algorithm (4.1)] (referred to as Akutsah et al. Alg. 2023).

For the algorithm proposed by Artsawang and Ungchittrakool (AU2020), the parameters are

specified as αk = 0.97 + 1
(k+100)2 , ρk = 1 − 1

100k+1 , λk = 0.7. In the case of the scheme introduced

by Akutsah et al. (2023), we adopt the parameter choice αk = βk = Bk = 0.1 + 1
(10k)2 . To assess the

fidelity of the reconstructed images, we measure the signal-to-noise ratio (SNR), defined as

SNR(k) = 20 log10

‖x‖22
‖x− uk‖

2
2

,
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where x represents the original image and uk denotes the approximation obtained after k iterations.

All numerical experiments were implemented in Matlab 9.19 (R2022b) and executed on a

MacBook Pro (14-inch, 2021) equipped with an Apple M1 Pro processor and 16 GB of memory.

The results obtained under the above parameter settings are illustrated in the following figures.

(a) Bicycle (b) Gaussian blur

(c) AU2020 (d) Akutsah et al.Alg.2023 (e) Algorithm 3

Figure 1. Image restoration results on the Bicycle test image. Subfigure (A) shows

the original image, while (B) displays the degraded version corrupted by Gauss-

ian blur. Subfigures (C), (D), and (E) present the reconstructions obtained using

AU2020, Akutsah et al. Algorithm 2023, and the proposed Algorithm 4.2, respec-

tively.
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(a) Motorcycle (b) Average blur

(c) AU2020 (d) Akutsah et al.Alg.2023 (e) Algorithm 3

Figure 2. Image restoration results on the Motorcycle test image. Subfigure (A)

shows the original image, while (B) displays the degraded version corrupted by

average blur. Subfigures (C), (D), and (E) present the reconstructions obtained

using AU2020, Akutsah et al. Algorithm 2023, and the proposed Algorithm 4.2,

respectively.
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(a) Pickup truck (b) Motion blur

(c) AU2020 (d) Akutsah et al.Alg.2023 (e) Algorithm 3

Figure 3. Image restoration results on the Pickup truck test image. Subfigure (A)

shows the original image, while (B) displays the degraded version corrupted by

motion blur. Subfigures (C), (D), and (E) present the reconstructions obtained

using AU2020, Akutsah et al. Algorithm 2023, and the proposed Algorithm 4.2,

respectively.
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(c)

Figure 4. Signal-to-noise ratio (SNR) comparison across iterations for three bench-

mark algorithms: AU2020, Akutsah et al. Alg. 2023, and the proposed Algo-

rithm 4.2. Subfigures (A), (B), and (C) correspond to the test images Bicycle, Mo-

torcycle, and Pickup truck, respectively.

Figures 1–3 present the outcomes of the proposed method compared with the AU2020 and

Akutsah et al. Alg. 2023 algorithms under different degradation settings. In Figure 1 (Bicycle), the

original image and its Gaussian-blurred version are displayed in subfigures (a) and (b), while the

restored images obtained from AU2020, Akutsah et al. Alg. 2023, and Algorithm 4.2 are shown

in (c), (d), and (e), respectively. It can be observed that Algorithm 4.2 provides sharper structural

details of the bicycle, particularly along the wheel spokes and frame, compared to the other two

methods.

Figure 2 (Motorcycle) illustrates the case of Average blur. While all three restoration methods

are capable of reducing blur, Algorithm 4.2 consistently achieves higher visual clarity, preserving

fine details of the motorcycle body and background elements more effectively than AU2020 and

Akutsah et al. Alg. 2023.

In Figure 3 (Pickup truck), the images degraded by Motion blur are considered. The reconstruc-

tion obtained from Algorithm 4.2 demonstrates superior restoration of edge features, especially

around the vehicle’s contours and horizontal patterns, which appear noticeably sharper than in

the results of the comparison methods.
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Figure 4 further validates these observations by reporting the signal-to-noise ratio (SNR) per-

formance across 500 iterations. In all three test images, the SNR values of Algorithm 4.2 dominate

those of AU2020 and Akutsah et al. Alg. 2023, indicating higher reconstruction accuracy.

Table 1. Signal-to-noise ratio (SNR) values obtained at different iterations n for

three test images (Bicycle, Motorcycle, and Pickup truck). The performance of

AU2020, Akutsah et al. Alg. 2023, and the proposed Algorithm 4.2 is compared.

k
Bicycle Motorcycle Pickup truck

AU2020 Akutsah2023 Alg. 3 AU2020 Akutsah2023 Alg. 3 AU2020 Akutsah2023 Alg. 3

1 29.6787 29.4194 29.5414 31.6844 31.3545 31.5117 24.7017 24.4017 24.8135

20 31.3909 30.8607 31.6437 33.7237 33.1011 34.0474 27.8139 26.3347 29.2731

50 31.9315 31.4457 32.2002 34.4268 33.7878 34.8360 30.0526 27.8802 31.8144

100 32.3417 31.8720 32.6608 35.0309 34.3238 35.5568 32.0809 29.5517 34.0522

200 32.8018 32.3033 33.2077 35.7577 34.9212 36.4231 34.3713 31.5191 36.5418

500 33.5486 32.9776 33.9982 36.9241 35.9316 37.5448 37.7407 34.5007 39.9385

6. Conclusion

We have introduced and analyzed an inertial Krasnosel’skiı̆–Mann and Ishikawa-type iterative

scheme with step-size parameters for nonexpansive mappings, formulated as Algorithm 3.1. It

was proved under mild control conditions that Algorithm 3.1 converges strongly to a fixed point

of the underlying nonexpansive operator, namely the nearest point x̂ = PF(T)(0) to the origin

(see Theorem 3.1). To further demonstrate the usefulness of the proposed method, Algorithm 4.1,

derived as a direct application of Algorithm 3.1, was employed to solve a monotone inclusion

problem involving three operators (4.1) (see Theorem 4.1). Moreover, we showed that the image

restoration problem (5.3) can be effectively handled by Algorithm 4.2, which is obtained as a

refinement of Algorithm 4.1 (see Corollary 4.1). Numerical experiments conducted on different

blurred images confirmed the effectiveness of our approach. In particular, the proposed scheme

produced higher signal-to-noise ratio (SNR) values when compared to the algorithms of Artsawang

and Ungchittrakool Alg. 2020 and Akutsah et al. Alg. 2023. These results clearly validate that

our method provides superior performance and constitutes a more efficient iterative tool for both

theoretical and practical applications.
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