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Abstract. We propose an inertial Krasnosel’skii-Mann and Ishikawa-type iterative process with step-size control for
finding fixed points of nonexpansive mappings in Hilbert spaces. Without relying on viscosity-type techniques and
under mild assumptions on the control parameters, we establish strong convergence of the scheme. The method is
also utilized for solving monotone inclusion problems and extended to image restoration applications. Numerical tests
on several blurring operators confirm that the algorithm attains higher signal-to-noise ratio (SNR), delivers superior

restoration quality compared with existing approaches.

1. INTRODUCTION

In what follows, we use the notations IN for the natural numbers, R for the real numbers, and
R" for the n-dimensional Euclidean space with nn € IN. The symbol I refers to the identity operator.
Throughout this work, H denotes a real Hilbert space endowed with the inner product {-, -) and its
associated norm || - || = V¢, ).

We next recall some standard classes of operators. Consider a mapping T : H — H:
(i) T is called Lipschitzian if there exists a constant L > 0 such that
ITx—Tyll < Lllx-yll, Vx,ye€H.
(ii) T is called strictly pseudo-contractive if there exists k € (—co,1) such that
ITx = Tyl < llx = yI? + 0l = T)x = (I =T)yl?, Vx,y € H. (1.1)
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Several well-known operator classes arise as special instances of (1.1):

When 6 = -1, T is firmly nonexpansive, equivalently,
IITJc—TyII2 <{x—-y,Tx-Ty), Vx,ye€H.
For 6 = 0, T becomes a nonexpansive mapping, that is,
ITx = Tyll < |lx—yll, Yx,yeH.

If 6 =1, then T reduces to a pseudo-contractive mapping; see [1] for further details.

Recall that if C is a nonempty closed convex subset of a Hilbert space H, then for every u € H
there exists a unique element £ € C such that

[lu — || = inf |ju — ||
xeC

The operator Pc : H — C, defined by Pc(u) = % is known as the metric projection of H onto C;
see [2].

Fixed Point Problem. For a mapping T : H — H, the fixed point problem is to determine x € H
such that

x = Tx. (1.2)

The collection of such points is denoted by F(T) := {x € H : Tx = x}. This formulation underlies a
wide range of iterative methods aimed at solving optimization tasks as well as monotone inclusion
problems, and it provides the theoretical foundation for the algorithmic scheme proposed in this
paper. The study of fixed points of nonexpansive operators has long been a central topic in
fixed point theory, with numerous applications in signal and image processing, including image
restoration and recovery (see, e.g., [3-5]).

However, employing a straightforward iterative method like the Picard iteration [6], defined by
ugr1 = Tur, VkeINU{0}, wuo€ H arbitrary,

may fail to converge to a fixed point of (1.2). For instance, consider the mapping T : [0,1] — [0, 1]
given by Tu = 1—u for all u € [0,1]. It is easy to verify that T is nonexpansive with F(T) = {1}.
Starting with ug = £ yields u3 = 1—ug = £, up = 1 —u; = £, and so on, producing the alternating
sequence (U )0 = (%, %, %, %, .. ) , which does not converge to the desired fixed point %

To address such limitations, Krasnosel’skii and Mann independently proposed what is now

known as the Krasnosel’skii-Mann algorithm [7], a widely used scheme for solving (1.2):
Upr1 = (1 - ak)uk + oy Tu,, VYkeNU/{0}, (1.3)

where (ax)r=0 C [0,1] is an appropriately chosen control sequence. Reich [8] proved that if T is
nonexpansive with a nonempty fixed point set and (ay)»( satisfies certain standard conditions,

then the sequence generated by (1.3) converges weakly to a fixed point of T.
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Building upon this direction, Ishikawa [9] proposed a two-step iterative scheme for Lipschitzian

pseudo-contractive mappings in Hilbert spaces, which is now referred to as the Ishikawa iteration:
{wk = (1 —ap)ux + axTuy,

(1.4)
Uy = (1 —ﬁk)uk + BTwy, VkeINU{0},

where (a) k=0 and (Bk)r=0 are sequences in [0, 1] subject to suitable constraints. Under appropriate
assumptions on C, (a)ks0, and (B )0, Ishikawa established the strong convergence of (1.4) to a
tixed point of T.

Subsequently, Halpern [10] introduced another iterative method for solving the fixed point
problem (1.2) associated with a nonexpansive mapping T. Unlike the Krasnosel’skii-Mann scheme,
Halpern’s approach incorporates a reference element u € C that remains fixed throughout the

iteration, yielding the following process:

{w, uy € C,

(1.5)
1 = (1—agp)w+ axTug, Yk e NU{0},

where (ax)rs0 C [0,1]. Halpern proved that, under suitable conditions, the sequence generated
by (1.5) converges strongly to a fixed point of T. Moudafi [11] introduced an enhanced iter-
ative procedure guaranteeing strong convergence, which later became known as the viscosity
approximation method. This method was established by merging Halpern’s iteration with the
theory of contraction mappings. Since its introduction, the viscosity approximation approach has
been extensively studied and generalized in many directions by various authors; see, for exam-
ple, [12-17] for further developments and applications. In 2009, Yao et al. [18] proposed a modified
Krasnosel’skii-Mann iteration for nonexpansive mappings by introducing appropriate step-size
parameters. They proved that the generated sequence converges strongly to a fixed point of a

nonexpansive mapping in Hilbert spaces. Their scheme is given by

{wk = (1— ) uy,

(1.6)
Upp1 = (1 - ﬁk) Wi + PrTwy, Yk € N U {0},

where 1y € H and the sequences (ax)io, (Br)iso lie in [0,1]. A further advancement was made
in 2019 by Bot et al. [19], who refined (1.3) to obtain strong convergence to a fixed point of a

nonexpansive mapping. Their method is formulated as
Upp1 = (1 - /\k)pkuk + AT prua, Yk € N U {0}, (1.7)

when ()0, (Px)k=0 € (0,1]. Under suitable assumptions on these sequences, they established
that the iteration converges strongly to the fixed point £ of T closest to the origin, i.e., £ = Pr(1)(0).

Earlier, in 1964, Polyak [20] introduced several acceleration techniques to enhance the conver-
gence speed of iterative schemes. These include the use of variable relaxation parameters and
inertial extrapolation terms of the form 6y (1 — 1), where the sequence (6 )i satisfies certain
conditions. Since then, inertial-type strategies have attracted considerable attention and have been

extensively studied; see [21-27] for comprehensive references. In 2019, Shehu [28] introduced an
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algorithm combining inertial terms, Halpern’s method, and error perturbations to approximate
tixed points of nonexpansive mappings. Subsequently, Kitkuan et al. [29] applied inertial ex-
trapolation techniques to the viscosity approximation method in order to solve certain monotone
inclusion problems, with applications to image restoration. Along similar lines, Artsawang and
Ungchittrakool [30] proposed and analyzed an inertial Mann-type iterative scheme, motivated
by the work of Bot et al. [19], for approximating fixed points of nonexpansive mappings. Their
method was further applied to monotone inclusion and image restoration problems. The iterative

procedure can be written as

up,u1 € H,
(AU2020) { wy = Uy + Gk(uk - Mk_l),
U1 = prwi + ar(Tprwi — prwy) + e, Yk €N,

where (Ok)i>1, (ak)k>1, (Px)k>1 are sequences chosen from [0,1] which satisfy certain desirable
properties.

The main contribution of this paper is to propose a new iterative algorithm for approximating
fixed points of nonexpansive mappings in Hilbert spaces. The construction of our method is
motivated by several classical and modern iterative schemes, in particular, the Ishikawa iteration
and the modified Krasnosel’skii-Mann iteration, together with inertial extrapolation techniques.
By combining these ideas, we develop a unified framework which not only generalizes a number
of existing algorithms but also improves their convergence behavior. Under suitable conditions on
the involved control sequences, we prove that the sequence generated by our algorithm converges
strongly to the fixed point £ € F(T) closest to the origin, namely, £ = Pr(r)(0).

The remainder of this paper is organized as follows. Section 2 collects some basic definitions,
lemmas, and preliminary results needed in the sequel. In Section 3, we introduce the proposed
algorithm and provide a detailed proof of its strong convergence. In section 4, we apply the
algorithm to monotone inclusion problems. Section 5 deals with applications to image restoration
problems and provides numerical experiments illustrating the efficiency of the method. Finally,

Section 6 concludes the paper with further remarks and possible research directions.

2. PRELIMINARIES

In this part, we compile several auxiliary results in the setting of real Hilbert spaces, which will

serve as key ingredients for establishing the main theorem in the subsequent section.

Lemma 2.1 ( [31,32]). Let H denote a real Hilbert space. The identities and inequalities below are valid for
allx,y € Hand t € R:

) lIx+ylP < IIMP+2x+y,y), VYxyeH;
@) litx + (1 =)yl = tixl® + (1 = O)llyl?> = t(1 = t)llx — yl>, Vte Randx,y € H.
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Lemma 2.2 ( [33, Lemma 2.5], [34, Lemma 3.1]). Consider sequences (ci)isq, (€k)iso S [0, +0),
(Uk)sg € [0,1] and (Ak)iso € R satisfying

Crk+1 < (1 - llk)ck + WAk + €k, Vk € IN U {0}.
If ¥ ex < o0, then the following assertions hold:
k=0

(1) If uxAx < oy (where o > 0), then (cx ), is bounded.
(2) If Y. ux = +ooand limsup A, <0, then lim ¢ = 0.
k=0

k—oo k—oo

Proposition 2.1 ( [35, Theorem 1.]). Let T : H — H be a nonexpansive operator with a nonempty fixed
point set F(T). Then F(T) forms a closed and convex subset of H.

In this work, the notation “— ” will denote strong convergence, while “— ” will indicate weak

convergence.

Lemma 2.3 (Demi-closed principle [2]). Assume T : H — H is nonexpansive and let (uy)r>o € H. The
operator I — T is demi-closed at the origin; that is, whenever uy — u € H and simultaneously ||uy — Tuy|| — 0
as k — oo, it must hold that u is a fixed point of T, i.e., u € F(T).

We now recall certain properties of the metric projection, which will play an important role in

establishing the main theorem of the next section. These can be formulated as follows:

Lemma 2.4 ([2]). Let C C H be a closed convex set with C # (. For eachu € Hand % € C,
£ = Pc(u) ifand only if (u —%,v—-%) <0, VYveC.

3. MaiIn Resurts

In this section, we introduce a new iterative algorithm which incorporates inertial terms, the
Ishikawa-type averaging process, and a Krasnosel’skii-Mann relaxation step with error perturba-
tions. The proposed method extends and unifies several existing schemes in the literature, and it
will be shown to converge strongly to the nearest fixed point of a nonexpansive mapping. The

formal description of the method is given as follows.

Algorithm 3.1 A strongly convergent inertial-Ishikawa KM-type algorithm

Initialization: Given real sequences (6x)k>1 C [0,60] with 6 € [0,1), (sk)k>1, (B)k=1 € [0,1),
(pr)k>1 € [0,1], and an error sequence (&x)k>1 € H. Choose arbitrary initial points ug, u; € H.

Iterative Steps: For a current iterate uy, uy_1 € H, repeat the following step:
Step 1. wy := uy + O (ug — 14x-1),
Step 2. v := (1 —sg)wy + s Twg,
Step 3. w1 := (1 —t) prvk + 4T Pxvk + &k

Update k := k + 1 and return to Step 1.
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In order to establish the strong convergence of Algorithm 3.1, it is necessary to impose certain
conditions on the control sequences and the perturbation terms. These conditions are presented

below.

Assumption 1. Let (ar)i=0, (bi)i=0 € [0,1), (pr)rso € [0,1], and (k)i S H be sequences satisfying

the following conditions:

(1) ¥ 1—s; < +oo.

n=0

(2) limsup t <land ). |t — tq| < +o0.
k— o0 k=1

(3) lim pe =1, kZ (1= px) = +oo, and kZ lpk — pr=1l < +-o0.
—00 —0 =1

4) X llexll < +oo.
k=0
We can create some examples of simple sequences that satisfy the Assumption 1 as follows:

Remark 3.1. As a concrete example, take v € H and define sy = 1 — 217/ e = % + kJ%l, pr=1- HLZ’ and
&k = o forall k > 0. It is straightforward to check that the sequences above satisfy Assumption 1.

Lemma 3.1. Let T : H — H be a nonexpansive mapping with F(T) # 0 and let (uy)x=o be generated by

[o¢]

Algorithm 3.1. Suppose (Ok)k>1 C [0, 6] with 6 € (0,1) such that Y, O |lux — tg—_1|| < +oo. and assume
k=1

Assumption 1 holds. Then the sequence (uy)yq is bounded.
Proof. Letk € N and u € F(T). Then we consider

oy = ull = |Jux + Ok (e — 1) — ual| < Nl = well + O letg — gl (3.1)
By using (3.1), we get that

o = ull = || (1 = si)wg + s Ty — ul|
= ||(1 = s) (wic — ) + se(Teog — )|
< (1= sg)llwx — ull + sill Ty — ull

< llwy — ul| (3.2)
From (3.2), we deduce that

\|pwox = u|| = llox (o = 1) + (px = 1)ull
< prellox = ull + (1 = pg) llul]
< prellug = ull + pr Ol — ug—ll + (1 = pi) llull
< prllug = ull + Ol — I + (1 = pi) [l - (3.3)



Int. J. Anal. Appl. (2025), 23:257 7

Using (3.3) for connecting, we will have

||uk+1 - u|| = [|(1 — t) pxvk + T pxvk + €k — ull
= ||(1 - tk)(pkvk - M) + tk(TpkUk - u) + Ek”
< (1= to)llpxvr — ull + el Tpxvr — ull 4 llekll

< lpxvx — ull + llexll

< px g = ull + Okl — wr—a [l + (1 = pge) el -+ llegll. (3.4)
Invoking Lemma 2.2 (1) in connection with (3.4) and choosing ux = 1— py, llux —ull = ¢, llull =
Ay = 0, and O |lug — ux_1]| + llexll = &, it follows that (1 )¢ remains bounded. O

Lemma 3.2. Let T : H — H be a nonexpansive mapping with nonempty fixed point set F(T), and
suppose (uy)i>o is generated by Algorithm 3.1. Assume that (Ox);sq < [0, 0] for some 6 € [0,1) satisfies

Y, Ok llug — ug—1ll < +o00, together with Assumption 1. Then ||uk+1 - uk” — 0ask — oo,
k=1

Proof. To begin with, note that

o = wiall = ||t = =1 + O (e — 1) — O (gt — 12|
< lug — ug—all + O lluk — ug—all + Og—1 k-1 — ug—2ll.- (3.5)
Using (3.5), we get that
lok = k11l = I1(1 = sg)wi + sk Twy — (1 = sp_1) wr—1 — Sk Tl

= II(1 = si) (wi — wi-1) + sk (Twy — Twi-1) = (sk = Sk-1) (W1 — Twe-1)ll
< lwx — wi—1ll + Isk = Sk-1lllwg—1 — Twy-ll
< |lwy — wi-all + Isk — Sk-11M1, (3.6)
where M; := sup {|lwx_1 — Twi_1]| : k € N}. Combining (3.6) with the inequality below, we deduce
that
lloxvx = pr1via|| = || (06 = vkc1) + (pr = pret ) vrc |
< prlfox = vkl + i = pr-a o
< picllw = wiall 4 Ik = k-1 M1 + |px = pia | ol
< P g = el + Ok Nl — vg—a [l + Op—1 l|1tge—1 — uge2ll
+ Isk = ske1l My + | ok — proa| Mo, 3.7)
where M := sup {||vx_1]| : kK € IN}. From (3.7), it follows that:

[Jsx1 = ]| = || (1 = te) prve + & Tpicve + ek = (1 = te1) pre10i-1 + b1 Tpraaver + &)
= ||(1 = #) (pxvk = pr-1vr-1) = (b = tee1) pro1k-1 + be(Tpivr — Tp-10k-1)
+(te = te1) Tpro10e-1 + (&5 — 1) |
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< (1= ti) ||loevr = prerve || + 1t = tieal | pec1a || + B || Toxor = Toro1 |
+ 1t =t || Tprmrve || + llex — excall
< |lpkvr = prorrea || + 1t — bt Ms + ek — gl
< P g — e ll + O Nl — g1l + O l[uk—1 — g—2ll + Isg — sg—1| M1
+ |ox = pret| Mz + It — bt M3 + lle — gl
= (1= (1= px)) lug = ugall + vk, (3.8)
where M3 := sup {”Pk—lvk—lH + ||Tpk_1vk_1|| ke ]N} and
Vi := O llug = ttall + O itk = g2l + Isic = st | Mi + |k = pia | M2
+ Itk — tk—1| M3 + lleg — el
By applying Lemma 2.2 (2) together with Assumption 1 in relation (3.8), we deduce that

||uk+1 - uk” — 0ask — oo. O

Theorem 3.1. Let T : H — H be a nonexpansive mapping with F(T) # 0 and let (uy)i>o be the sequence
generated by Algorithm 3.1. Suppose (6x)i»; C [0, 0] with 6 € [0,1) satisfies Y, Ok llug — ug—1ll < 400,
- k=1
and assume Assumption 1 holds. Then (uy)x=o converges strongly to £ := Pr(7)(0).
Proof. From Lemma 3.1, we have (uy)kso is bounded. Since F(T) # 0, wy = uy + Ok (1 — ux_1) and
O = (1= sx) wi + sk Twy, 50 (Wi ) k=0 and (Vg )y are both bounded. Let £ := P (1 (0). It follows that
% € F(T). Using Lemma 2.1 (1), we obtain
s . 2
o = £ = ||ute = £ + O (ux — 11|
< Nl = 21 + 20k (wi = £, g — tg-1)
< llug = 21P + Okl — el Lo, (3.9)
where Ly := sup {2 |[wy — £|| : k € IN}. Therefore, applying (3.9), we deduce that
. 112
o = 212 = | (1 = ) + 5Ty = 2
< (1= sp)llw — £II* + sl Twe — 212 + (1 = si)sillewe — Tawgl?
< ooy = 217 + (1 = sg)llew — TeoglI®

< llug = 21 + Ol = 1| Ly + (1= s) My, (3.10)

where M; := sup {||wk —Twl? : k e ]N} . Relation (3.10) implies that

lowoi = = llpi(ox =2) + (= D[
= ppllox = 21 +20(1 = pi) (=2, 0 = ) + (1 = pi) I8P
< px (It = 1P + O g = i |l Ly + (1= 5) M )
+ (1= pr) (206 (-2, 0 = ) + (1= p)l2I17)
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< (1= (1= p))llug = 2P + (1= pi) (2Pk (=%, y -2+ (1- Pk)||3?||2)
+ O llug — 1|l L1 + (1 = sp) M. (3.11)
Relation (3.11) yields
[ 9?”2 = ||pxor + t(Tpivr — prve) + ek - J?”2
= [|(1 = ) (prvx — 2) + ti(Tprvr — 2) + €k||2
< [|(1 = ) (pox — 2) + te(Tpgoe = 2)|* + 2 (g1 — £, 1)
<(1- tk)”pkvk - 3?”2 + tk”Tpkvk - 3?”2 + 2 (U1 — X, &)
< ||pkvk - 3?”2 +2ugy 1 — %, €x)
< (1= (1= pi)lle — I + (1= pi) (2px (=2, 0 = £) + (1= py) 121)
+ Ok llug — 11l L1 + (1 = s) M + llexll L, (3.12)
where L, := sup {2 ||uk+1 - J?” ke lN} . Our next step is to verify that ||Tpkvk - pkvk” — 0ask — oo.
We observe that
||Tuk+1 - Uk” = ||Tuk+1 = (1 =sp)wg - Skka”
= |lsk(Tugs1 = Tewo) + (1= se) (Tutgsr — i)
< sll Tt — Twill + (1 = i) Tug 1 — wiell
< 1 = will + (1 = s I Ter1 — il
= |[etk1 = e = O (i — i) || + (1 = si) I Tgeg1 — il
< | = | + Ol = a4+ (1 = s) M, (3.13)
where My := sup {||Tuy1 — will : k € N}. By using (3.13), we get that

||Tpkvk - kak” = ||Tpk0k — Tugq + Tugq — kak”
< ||Tpxor = Tugsa || + || Trtksr — prcve|
< |lowox = || + 1| (1 = pi) Tugen + pr(Totiea — 01|
< |lpwor = (1= te) prvr + te(Tpive) + ex)|
+ (1= pe) | T || + e || Tres1 — |
<t || Tpxox — pivr| + llexll + (1 = pi)Ls
+ 1 = ]| + O lluge = el + (1 = s) Mo, (3.14)

where L3 := sup {||Tuk+1|| 1k e ]N} . It follows from (3.14), Assumption 1 and Lemma 3.2 that

| Tpxvr = prve| < (||€k|| + (1= pr)Ls + |[icr1 — | + O Mot — gl + (1 - Sk)MZ)

1
(1—t)
— 0 as k — oo. (3.15)
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By (3.15), one obtains

lim | Tpxox — pri|| = 0. (3.16)
We proceed to show that the sequence (u)i>o converges strongly to £ which it is enough to show
that

limsup(-%, v, — %) < 0. (3.17)

k—o0

Suppose, for contradiction, that (3.17) does not hold. Hence, there exists a real number r > 0 and

a subsequence (vx, )m>1 € (Vk)k>1 such that
(=%, —%)2r>0, VYm=>1

The fact that (v, )m>1 is bounded ensures the existence of a subsequence (v, )i>1 of (vk, Jm=1 such
that Ok, — Z€ H as ] — oo. Therefore,

O<r< Ilim(—a?, (W X)) =(-%,z-2%). (3.18)

Given that lim p; = 1, we deduce

k—o0

Pk, Uk, — 2 as k — co. (3.19)

From (3.16), (3.19) and Lemma 2.3, one obtains z € F(T). The combination of Proposition 2.1
and Lemma 2.4 ensures that the inequality (—%,z — %) = (0 - %,z — %) < 0 is valid which causes a
contradiction with (3.18). This contradiction establishes that (3.17) is valid. And then, Assumption
1 (4.1) ensures that

lim sup (2p(~%, v — £) + (1 - py) I2I?) < 0.

k—o0

In the last step, applying (3.12) and Lemma 2.2 (2), we deduce klim ux = %. This completes the
proof. m]

Remark 3.2. Let {Exlgs1 € [0, +00) be the sequence such that Y, & < 4oo. Then, we define

k=1
i &k .
O = mm{@, Iluk—umn}' if g # g1,
0, otherwise,

where (uy) =0 and O are specified by Theorem 3.1. In addition, when (6 )is1 is selected [0, O] for all k € N
it follows that ), O |[uy — ux_1l| < +o0.
k=1

4. ALGORITHMIC APPLICATIONS TO MONOTONE INCLUSIONS

This section is devoted to applying Algorithm 3.1 to the problem of finding a zero of certain
monotone inclusion problems involving three operators in the setting of real Hilbert spaces.

Let Q) : H — 2H be a set-valued operator, where 2H denotes the collection of all subsets of H.
The set of zeros of () is defined as zer(Q2) := {z € H : 0 € Qz}, while the graph of () is given
by G(Q) := {(u,v) € HXH : v € Qu}. We recall the following standard notions for a set-valued

operator ():
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(A) Q is said to be monotone if
x—-y,x-9)>0, Y(x3%),(y7) <GQ).
(B) Qis called y-strongly monotone, with y > 0, if
-y 2= 2yl-ylP, V(x%), (v 7) €GQ).
(C) Q) is A-cocoercive (or equivalently, A-inverse strongly monotone), with A > 0, if
-y 2= 2 AE-g?, V(x5 (7)€ G(Q).

(D) Qissaid to be maximal monotone if it is monotone and its graph cannot be properly contained
in the graph of another monotone operator. In other words, if ¥ : H — 2H is monotone
and G(Q) € G(¥), then necessarily G(Q)) = G(¥).

In the particular case when () : H — H is single-valued, the above conditions simplify to:

(a) Q) is monotone if
-y, Qx-Qy) >0, VYx,yeH.

(b) Qis y-strongly monotone, with y > 0, if
(x—y,Qx—Qy) > yllx—yl*, VYx,yeH.
(c) Q) is A-cocoercive, with A > 0, if
(x—y,Ox - Qy) > AIOx - Qy|?, VYx,yeH.

Recall that for a set-valued operator () : H — 2H, the mapping Jo := (I+ Q)™ : H — 2H is called
the resolvent of Q. It is a classical result that if Q : H — 2H is maximal monotone and n > 0, then
the resolvent ], is single-valued and firmly nonexpansive.

In this section, we are concerned with the following monotone inclusion problem involving
three operators:

find x € H such that 0 € ¥x + Qx + dx, (4.1)

where ¥, Q) : H — 2H are maximal monotone operators and ® : H — H is a A-cocoercive operator
with some A > 0.

To solve problem (4.1) via Algorithm 3.1, we require several auxiliary tools. One of the key

ingredients is the following result of Davis and Yin.

Proposition 4.1 ( [36]). Let F1,F, : H — H be two firmly nonexpansive operators and let & : H — H be
a A-cocoercive operator with A > 0. For any 1 € (0,2A), define
T:=Fo (ZFQ—I—T](DOFz) +1-F>.

Then T is T-averaged with constant T := 722 5 <1.In particular, for all x,y € H,

1-71
Il

ITx = Tyl < |lx - yl? - (I-T)x—(I-T)yl*

T
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The set of solutions to the three-operator monotone inclusion problem can be represented in
terms of fixed points of the operator T given in Proposition 4.1. More precisely, the following

characterization holds.

Lemma 4.1 ( [36, Lemma 2.2]). Let ¥, Q) : H — 2 be maximal monotone operators and ® : H — H be
an operator. Suppose that zer (¥ + Q) + @) # 0. Then

zer (Y +Q+®) = Jn (F(T)),
where T = [y o (2],70 —I-n®o ],,Q) + (I—]ng) and n > 0.
In particular, when T is defined as above, Step 2 of Algorithm 3.1 can be expressed as
v = (1 —sg)wy + s Twy
= (1= sy + si{Jow o (250 = 1= @ ) + (1= ) o @2)

Moreover, for Step 3 we observe that
T(pxvx) — pxvx = (]q‘f o(2fya—I-n®Po )+ (I- an))(kak) — PkUk
= ]q‘P(anQ(PkUk) — ko —nPo ]nQ(PkUk)) + prvk = Jna (Prvk) — Prvx

= ]17‘1’(2]n0(9kvk) —prvog—nPo ]no(PkUk)) — Ina(pxvk). (4.3)
Therefore, by applying Algorithm 3.1 to the three-operator monotone inclusion problem (4.1), we

obtain the following iterative scheme.

Algorithm 4.1 Algorithm for solving the three-operator monotone inclusion problem

Initialization: Given real sequences (6x)k>1 € [0,60] with 6 € [0,1), (sk)i>1, (fx)k>1 € [0,1),
(Pr)k=1 € [0,1], and an error sequence (&)1 € H. Fix 1 € (0,2A).
Iterative Steps: For a current iterate uy, u;_; € H, repeat the following step:

Step 1. wy := g + O (ug — t4g—1),
Step2. v = (1 —sp)wi + Sk(]q‘f(%o(wk) — Wi — qu)(]qo(wk))) +wy — ]qo(wk)),

Step 3. ugi1 i= Pk + tk(]r;‘f(2]nn(()kvk) = PkUk — T?‘P(]no(f)kvk))) - ],,Q(pkvk)) + &
Update k := k + 1 and return to Step 1.

Theorem 4.1. Let ¥,Q : H — 2H be maximal monotone operators and ® : H — H be A-cocoercive
with A > 0. Assume that zer (¥ + Q + ®) is nonempty. Let (Ok)x>1 be a sequence in [0, 0] with
0 €[0,1) and n € (0,2A). Let (ug)kso0, (Wi )1, and (vy)x>1 be generated by Algorithm 4.1. Assume that

Y. Ok llug — ug_1ll < +o00 and the Assumption 1 hold. Then the following assertions are valid:
k=1

(1) (u)ks0, (Wi)k=1 and (v )x=1 converge strongly to £ := Prr)(0), where
T:=Jpwo(2pa—I-n®oJya)+(I-Jha).
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(2) (],7Q(wk))k21 and (],7Q(pkvk))k21 converge strongly to ], (%) € zer (¥ + Q) + D).

Proof. (1) From Proposition 4.1, the operator T is nonexpansive. Applying Theorem 3.1, we
deduce that (ug)ro converges strongly to £ := Pp(r)(0). Since wy = uy + Ok(ur — ux-1) and
Y, O llug — ug—1|| < +o0, it follows that w;, — £. Furthermore, because sy — 1 and T is continuous,

k=1
we conclude that vy = (1 —sg)wy + sgTwy — TR = X.

(2) From part (1) we know wy — £ and vy — £. Since py — 1, this gives pxvy — £. By continuity
of the resolvent J,n, we obtain J,o(wx) — J;a(£) and Jya(pkox) — Jha(£). Finally, Lemma 4.1
ensures that [, (%) € J;0(F(T)) = zer(¥Y + Q + ®). mi

If we set () = 0 in Theorem 4.1, then the resolvent reduces to
Ina(x) = I+nQ)(x) = I+0)""(x) =I(x), VYxeH.
In this case, the operator T becomes

T=Jyeo(2fpa—T-1® o Jya) + (I-Jya)
=Jppo(2Ql—I-n®ol)+ (I-1)
= ]T]lFO (I—TICD)

By Lemma 4.1, it follows that zer('¥ + ®) = F(T). This leads to the following corollary.

Corollary 4.1. Let ¥ : H — 2! be a maximal monotone operator and let ® : H — H be A-cocoercive with
A > 0. Suppose that zer(¥ + @) # 0. Let (uy x>0 be generated by the following scheme:

Algorithm 4.2 Algorithm for the two-operator inclusion problem

Initialization: Given real sequences (6x)k>1 € [0,0] with 6 € [0,1), (sk)k>1, (tx)k>1 € [0,1),
(pk)k>1 € [0,1], and an error sequence (&)1 € H. Fix 1 € (0,247).

Iterative Steps: For a current iterate uy, uy_1 € H, repeat the following step:
Step 1. wy := g + O (ug — tx—1),
Step 2. v := (1—sp)wy + sk]nly(wk — nq)wk),

Step 3. up1 = (1—te)pxox + tk]n‘I’(kak - T@(Pk”k)) + &
Update k := k + 1 and return to Step 1.

Assume that Z Okllug — ug_1ll < 400, and that Assumption 1 holds. Then (uy )i converges strongly
k=1
to the projection Per(v 1) (0).
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5. AprrLICATIONS TO IMAGE RESTORATION AND COMPUTATIONAL EXPERIMENTS

In this section, we demonstrate how the proposed iterative method can be applied to image
restoration tasks, where the aim is to recover high-quality images from degraded observations
that suffer from blur, noise, or other distortions. A standard model for the degradation process is
given by

y=Bx+w, (5.1)

where x represents the original image, B is a blur operator, and w denotes additive noise. The
recovery problem is often formulated as a regularized least-squares optimization model of the

form
1
min {§||Bx —ylls + T\F(x)}, (5.2)

where 7 > 0 is a regularization parameter and ¥(-) is a regularization function. A widely used
choice for ¥ is the £; norm, which serves as a sparsity-promoting penalty and is well known in the

context of Tikhonov-type regularization [37]. With this choice, problem (5.2) becomes
1
ind LBy — o2 } 5.3
ffeliarkl{zll x = yll5 + llxlh (5.3)

where y denotes the observed degraded image and B is abounded linear operator. Itis worth noting
that (5.3) can be cast as a particular instance of the two-operator monotone inclusion problem (4.1)
with the specifications: ¥ = Jf(-), Q =0, ® = VL(:), where f(x) = |Ixll;, L(x) = %IIBx - ||, and
the regularization parameter is chosen as 7 = 0.001. Under this setting, the cocoercive operator
becomes ®(x) = VL(x) = B*(Bx — y), where B* denotes the adjoint (transpose) of B. To conduct
the experiments, a set of images was selected and corrupted by different blurring operators. The

restoration procedure was then carried out using Algorithm 42, corresponding to Corollary 4.1,

with the following control parameters: s, = 1 — m, =097+ ——— (k+100)2’ pr=1- ﬁ, & =0,
and the inertial parameter (6y) defined by
min{7loé‘0_k9, T 1_ }, if ug # u_q,
6, = (k+1)2 =g (5.4)
7106‘—0_](9, otherwise.

Finally, to assess the effectiveness of the proposed scheme, we perform a comparative study
with two existing approaches: the inertial Mann-type iteration introduced by Artsawang and
Ungchittrakool (abbreviated as AU2020) in [30, Corollary 2], and the iterative procedure described
in [38, Algorithm (4.1)] (referred to as Akutsah et al. Alg. 2023).

For the algorithm proposed by Artsawang and Ungchittrakool (AU2020), the parameters are
specified as ay = 0.97 4 m, prk=1- m, Ar = 0.7. In the case of the scheme introduced
by Akutsah et al. (2023), we adopt the parameter choice ay = fx = By = 0.1 + (10k)

fidelity of the reconstructed images, we measure the signal-to-noise ratio (SNR), defined as

12113

7
e — |2

To assess the

SNR (k) = 20log,,
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where x represents the original image and u; denotes the approximation obtained after k iterations.
All numerical experiments were implemented in MarrLas 9.19 (R2022b) and executed on a

MacBook Pro (14-inch, 2021) equipped with an Apple M1 Pro processor and 16 GB of memory.

The results obtained under the above parameter settings are illustrated in the following figures.

\t\ h

ke

AMVA

(a) Bicycle

(c) AU2020 (p) Akutsah et al. Alg.2023 (e) Algorithm 3

Ficure 1. Image restoration results on the Bicycle test image. Subfigure (A) shows
the original image, while (B) displays the degraded version corrupted by Gauss-
ian blur. Subfigures (C), (D), and (E) present the reconstructions obtained using
AU2020, Akutsah et al. Algorithm 2023, and the proposed Algorithm 4.2, respec-
tively.



16

Int. J. Anal. Appl. (2025), 23:257

(a) Motorcycle (8) Average blur

(c) AU2020 (p) Akutsah et al. Alg.2023 (e) Algorithm 3

Ficure 2. Image restoration results on the Motorcycle test image. Subfigure (A)
shows the original image, while (B) displays the degraded version corrupted by
average blur. Subfigures (C), (D), and (E) present the reconstructions obtained
using AU2020, Akutsah et al. Algorithm 2023, and the proposed Algorithm 4.2,

respectively.
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“Wp—

sl

(8) Motion blur

(c) AU2020 (p) Akutsah et al. Alg.2023 (e) Algorithm 3

Ficure 3. Image restoration results on the Pickup truck test image. Subfigure (A)
shows the original image, while (B) displays the degraded version corrupted by
motion blur. Subfigures (C), (D), and (E) present the reconstructions obtained
using AU2020, Akutsah et al. Algorithm 2023, and the proposed Algorithm 4.2,

respectively.
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——Algorithm 3
Akutsah et al. Alg. 2023
—*—Artsawang and U i Alg. 20204

0 50 100 150 200 250 300 350 400 450 500
Number of iterations (k)

(a)
—v—Algorithm 3 —v—Algorithm 3
32 Akutsah et al. Alg. 2023 H 26 Akutsah et al. Alg. 2023
—=—Artsawang and Ungchittrakool Alg. 2020 —— and L i Alg. 2020)
. T T T T ; . . . . T T T T ;
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Number of iterations (k) Number of iterations (k)
(8) (©)

Ficure 4. Signal-to-noise ratio (SNR) comparison across iterations for three bench-
mark algorithms: AU2020, Akutsah et al. Alg. 2023, and the proposed Algo-
rithm 4.2. Subfigures (A), (B), and (C) correspond to the test images Bicycle, Mo-

torcycle, and Pickup truck, respectively.

Figures 1-3 present the outcomes of the proposed method compared with the AU2020 and
Akutsah et al. Alg. 2023 algorithms under different degradation settings. In Figure 1 (Bicycle), the
original image and its Gaussian-blurred version are displayed in subfigures (a) and (b), while the
restored images obtained from AU2020, Akutsah et al. Alg. 2023, and Algorithm 4.2 are shown
in (c), (d), and (e), respectively. It can be observed that Algorithm 4.2 provides sharper structural
details of the bicycle, particularly along the wheel spokes and frame, compared to the other two
methods.

Figure 2 (Motorcycle) illustrates the case of Average blur. While all three restoration methods
are capable of reducing blur, Algorithm 4.2 consistently achieves higher visual clarity, preserving
fine details of the motorcycle body and background elements more effectively than AU2020 and
Akutsah et al. Alg. 2023.

In Figure 3 (Pickup truck), the images degraded by Motion blur are considered. The reconstruc-
tion obtained from Algorithm 4.2 demonstrates superior restoration of edge features, especially
around the vehicle’s contours and horizontal patterns, which appear noticeably sharper than in

the results of the comparison methods.
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Figure 4 further validates these observations by reporting the signal-to-noise ratio (SNR) per-
formance across 500 iterations. In all three test images, the SNR values of Algorithm 4.2 dominate
those of AU2020 and Akutsah et al. Alg. 2023, indicating higher reconstruction accuracy.

TasLE 1. Signal-to-noise ratio (SNR) values obtained at different iterations n for
three test images (Bicycle, Motorcycle, and Pickup truck). The performance of
AU2020, Akutsah et al. Alg. 2023, and the proposed Algorithm 4.2 is compared.

Bicycle Motorcycle Pickup truck

AU2020 Akutsah2023 Alg. 3 AU2020 Akutsah2023 Alg. 3 AU2020 Akutsah2023 Alg. 3
1 29.6787 29.4194 29.5414 31.6844 31.3545 31.5117 24.7017 24.4017 24.8135
20 31.3909 30.8607 31.6437 33.7237 33.1011 34.0474 27.8139 26.3347 29.2731
50 31.9315 31.4457 32.2002 34.4268 33.7878 34.8360 30.0526 27.8802 31.8144
100 32.3417 31.8720 32.6608 35.0309 34.3238 35.5568 32.0809 29.5517 34.0522
200 32.8018 32.3033 33.2077 35.7577 34.9212 36.4231 34.3713 31.5191 36.5418
500 33.5486 32.9776 33.9982 36.9241 35.9316 37.5448 37.7407 34.5007 39.9385

6. CONCLUSION

We have introduced and analyzed an inertial Krasnosel skii-Mann and Ishikawa-type iterative
scheme with step-size parameters for nonexpansive mappings, formulated as Algorithm 3.1. It
was proved under mild control conditions that Algorithm 3.1 converges strongly to a fixed point
of the underlying nonexpansive operator, namely the nearest point £ = Pp(r)(0) to the origin
(see Theorem 3.1). To further demonstrate the usefulness of the proposed method, Algorithm 4.1,
derived as a direct application of Algorithm 3.1, was employed to solve a monotone inclusion
problem involving three operators (4.1) (see Theorem 4.1). Moreover, we showed that the image
restoration problem (5.3) can be effectively handled by Algorithm 4.2, which is obtained as a
refinement of Algorithm 4.1 (see Corollary 4.1). Numerical experiments conducted on different
blurred images confirmed the effectiveness of our approach. In particular, the proposed scheme
produced higher signal-to-noise ratio (SNR) values when compared to the algorithms of Artsawang
and Ungchittrakool Alg. 2020 and Akutsah et al. Alg. 2023. These results clearly validate that
our method provides superior performance and constitutes a more efficient iterative tool for both

theoretical and practical applications.
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