Clique Numbers in Direct Sum Matrix Commuting Graphs: Structural Analysis and Optimal Bounds
Main Article Content
Abstract
We investigate the clique numbers and structural properties of commuting graphs associated with direct sum matrix rings over finite commutative rings. For a finite commutative ring L with unity, we study the commuting graph \(\Gamma(M(m \oplus m, L))\) whose vertex set consists of all non-central matrices in \(M(m \oplus m, L)\), where two distinct vertices are adjacent if and only if they commute. Our main contributions establish fundamental lower bounds for the clique number \(\omega\Gamma(M(m \oplus m, L)))\) across various ring structures. We prove that for any finite commutative ring R with unity and positive integer \(m \geq 3\), the clique number satisfies \(\omega(\Gamma(M(m, R))) \geq |R|^{2m} - |R|^2\). For rings isomorphic to \({Z}_{p^r}\) where \(r \geq 3\) is odd, we establish the improved bound \(\omega(\Gamma(M(m, R))) \geq \max\{(p^r)^{2m} - p^{2r}, (p^{r-1})^{m^2-m}(p^{r+1})^{m-1}p^{2r} - p^{2r}\}\). When \(r \geq 2\) is even, the bound becomes \(\omega(\Gamma(M(m, R))) \geq \max\{(p^r)^{2m} - p^{2r}, (p^r)^{m^2-1}p^{2r} - p^{2r}\}\). Our approach combines sophisticated matrix-theoretic techniques with graph-theoretic analysis to construct explicit maximal cliques and derive optimal bounds. The results provide new insights into the intersection of algebraic graph theory and matrix ring theory, with potential applications in coding theory and combinatorial optimization.
Article Details
References
- M. Al-Labadi, E.M. Almuhur, Planar of Special Idealization Rings, WSEAS Trans. Math. 19 (2020), 606–609. https://doi.org/10.37394/23206.2020.19.66.
- M. Al-Labadi, Some Properties of the Zero-Divisor Graphs of Idealization Ring $R(+)M$, Math. Probl. Eng. 2022 (2022), 6888963. https://doi.org/10.1155/2022/6888963.
- M. Al-Labadi, S.M. Alsalem, E. Suleiman, New Structure of D-Algebras Using Permutations, in: International Conference on Mathematical and Statistical Physics, Computational Science, Education and Communication (ICMSCE 2023), SPIE, 2023, pp. 13. https://doi.org/10.1117/12.3011428.
- M. Al-Labadi, S.M. Alsalem, E. Suleiman, N. Yerima, On 1-Commutative Permutation BP-Algebras, in: International Conference on Mathematical and Statistical Physics, Computational Science, Education and Communication (ICMSCE 2023), SPIE, 2023, pp. 10. https://doi.org/10.1117/12.3011417.
- M. Al-Labadi, S. Khalil, The Idealization Ring, AIP Conf. Proc. 3097 (2024), 080008. https://doi.org/10.1063/5.0209920.
- M. Al-Labadi, E.M. Almuhur, W. Audeh, A. Al-Boustanji, Geodetic Number and Domination Number of $Gamma(R(+)M)$, Bol. Soc. Parana. Mat. 43 (2025), 1–8.
- M. Al-Labadi, R. Al-Naimi, W. Audeh, Singular Value Inequalities for Generalized Anticommutators, J. Inequal. Appl. 2025 (2025), 15. https://doi.org/10.1186/s13660-025-03264-z.
- W. Audeh, A. Al-Boustanji, M. Al-Labadi, R. Al-Naimi, Singular Value Inequalities of Matrices via Increasing Functions, J. Inequal. Appl. 2024 (2024), 114. https://doi.org/10.1186/s13660-024-03193-3.
- W. Audeh, M. Al-Labadi, R. Al-Naimi, Numerical Radius Inequalities via Block Matrices, Acta Sci. Math. (Szeged) (2024). https://doi.org/10.1007/s44146-024-00164-4.
- W. Audeh, M. Al-Labadi, Numerical Radius Inequalities for Finite Sums of Operators, Complex Anal. Oper. Theory 17 (2023), 128. https://doi.org/10.1007/s11785-023-01437-6.
- W. Audeh, M. Al-Labadi, Some Results About Numerical Radius Inequalities, Int. J. Math. Comput. Sci. 17 (2022), 33–39.
- M. Al-Labadi, S. Saranya, Yasmeen, M.I. Idrisi, On Difference Fuzzy Anti $lambda$-Ideal Convergent Double Sequence Spaces, Bull. Math. Anal. Appl. 15 (2023), 34–42.
- M. Al-Labadi, S.M. Khalil, E. Almohur, Some Properties of the Circulant Graphs, in: International Conference on Mathematical and Statistical Physics, Computational Science, Education and Communication (ICMSCE 2023), SPIE, 2023, pp. 12. https://doi.org/10.1117/12.3011425.
- M. Al-Labadi, S.M. Alsalem, E. Suleiman, N. Yerima, On 1-Commutative Permutation Bp-Algebras, in: International Conference on Mathematical and Statistical Physics, Computational Science, Education and Communication (ICMSCE 2023), SPIE, 2023, pp. 10. https://doi.org/10.1117/12.3011417.
- E. Almuhur, H. Miqdad, M.A. Al-labadi, M.I. Idrisi, $mu$-$L$-Closed Subsets of Noetherian Generalized Topological Spaces, Int. J. Neutrosophic Sci. 23 (2024), 148–153. https://doi.org/10.54216/ijns.230313.
- M. Al-Labadi, S. Khalil, Properties of Idealization Graph Over a Ring, in: Algorithms for Intelligent Systems, Springer Nature Singapore, Singapore, 2024, pp. 365-373. https://doi.org/10.1007/978-981-99-8976-8_31.
- label{pp} M. Al-Labadi, S. Khalil, V.R. Radhika, K. Mohana, Pentapartitioned Neutrosophic Vague Soft Sets and Its Applications, Int. J. Neutrosophic Sci. 25 (2025), 64–83. https://doi.org/10.54216/ijns.250207.
- label{ii} A. Abdollahi, S. Akbari, H. Maimani, Non-Commuting Graph of a Group, J. Algebr. 298 (2006), 468–492. https://doi.org/10.1016/j.jalgebra.2006.02.015.
- S. Akbari, A. Mohammadian, H. Radjavi, P. Raja, On the Diameters of Commuting Graphs, Linear Algebr. Appl. 418 (2006), 161–176. https://doi.org/10.1016/j.laa.2006.01.029.
- label{iii} S. Akbari, H. Bidkhori, A. Mohammadian, Commuting Graphs of Matrix Algebras, Commun. Algebr. 36 (2008), 4020–4031. https://doi.org/10.1080/00927870802174538.
- I. Beck, Coloring of Commutative Rings, J. Algebr. 116 (1988), 208–226. https://doi.org/10.1016/0021-8693(88)90202-5.
- S. Friedland, Simultaneous Similarity of Matrices, Adv. Math. 50 (1983), 189–265. https://doi.org/10.1016/0001-8708(83)90044-0.
- M. Gerstenhaber, On Dominance and Varieties of Commuting Matrices, Ann. Math. 73 (1961), 324–348. https://doi.org/10.2307/1970336.
- M. Giudici, A. Pope, the Diameters of Commuting Graphs of Linear Groups and Matrix Rings Over the Integers Modulo $m$, Australasian J. Comb. 48 (2010), 221–230.
- S. Khalil, M. Al-Labadi, E. Suleiman, N. Yerima, New Structure of Algebras Using Permutations in Symmetric Groups, J. Discret. Math. Sci. Cryptogr. 27 (2024), 1611–1618. https://doi.org/10.47974/jdmsc-2003.
- P. Zhang, G. Chartrand, Introduction to Graph Theory, Tata McGraw-Hill Education, 2006.