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Abstract. We investigate the clique numbers and structural properties of commuting graphs associated with direct
sum matrix rings over finite commutative rings. For a finite commutative ring L with unity, we study the commuting
graph I'(M(m @m, L)) whose vertex set consists of all non-central matrices in M(m @ m, L), where two distinct vertices
are adjacent if and only if they commute. Our main contributions establish fundamental lower bounds for the clique
number wI' (M(m @m,L))) across various ring structures. We prove that for any finite commutative ring R with unity
and positive integer m > 3, the clique number satisfies w(I'(M(m,R))) > [R™ - |R[>. For rings isomorphic to Zpr
where 7 > 3 is odd, we establish the improved bound w(I'(M(m, R))) > max{(p")?" —p*, (p"~! )mz_m(p’“)m_lpz’ -p¥).
When 7 > 2 is even, the bound becomes @ (I'(M(m,R))) > max{(p")?" — p*, (pr)’“z_1 p?" — p?}. Our approach combines
sophisticated matrix-theoretic techniques with graph-theoretic analysis to construct explicit maximal cliques and derive
optimal bounds. The results provide new insights into the intersection of algebraic graph theory and matrix ring theory,

with potential applications in coding theory and combinatorial optimization.

1. INTRODUCTION

The study of algebraic graph theory has emerged as a fundamental bridge between discrete
mathematics and abstract algebra, providing profound insights into the structural properties of
algebraic objects through graph-theoretic methods. Within this rich mathematical landscape,
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commuting graphs associated with matrix rings represent a particularly fascinating area of inves-
tigation, offering deep connections between linear algebra, ring theory, and combinatorial graph
theory.

The foundational work in this field traces back to Beck’s pioneering investigation of coloring
properties of commutative rings, which established the theoretical framework for associating
graphs with algebraic structures [21]. This seminal contribution was subsequently formalized
and extended by Anderson and Livingston, who developed the systematic study of zero-divisor
graphs and established many of the fundamental principles that continue to guide research in
algebraic graph theory [1-17].

Building upon these foundational contributions, the study of commuting graphs has gained
significant momentum, particularly through the influential work of Akbari and colleagues. Their
investigations into the diameters of commuting graphs [19] and the structural properties of com-
muting graphs in matrix algebras [18-20] have provided essential insights into the graph-theoretic
behavior of non-commutative algebraic structures. The non-commuting graph perspective, as ex-
plored by Abdollahi, Akbari, and Maimani [18], has further enriched our understanding of these
fundamental constructions.

For a non-commutative ring R, the commuting graph I'(R) is defined with vertex set R \ Z(R),
where Z(R) denotes the center of R, and two distinct vertices a and b are adjacent if and only if
ab = ba. This construction naturally extends to matrix rings, where the non-commutativity arises
from the inherent matrix structure rather than properties of the base ring. The investigation of
such graphs in the context of matrix rings has revealed rich structural phenomena that continue
to challenge and inspire researchers.

The present research focuses specifically on direct sum matrix constructions over finite com-
mutative rings, a setting that provides both mathematical elegance and computational tractability.
For matrices T € M(r1,L) and N € M(r,L) over a ring L, the direct sum T @ N forms a block
diagonal matrix structure that preserves many algebraic properties while introducing fascinating
combinatorial features. The collection M(r; &, L) of all such direct sum matrices serves as the
foundation for our graph-theoretic investigation.

Recent advances in understanding the structural properties of matrix rings have been com-
plemented by sophisticated techniques from both matrix theory and graph theory. The work of
Friedland on simultaneous similarity of matrices [22] and Gerstenhaber’s investigations into dom-
inance and varieties of commuting matrices [23] have provided crucial theoretical foundations.
Additionally, the computational approaches developed by Giudici and Pope for analyzing diame-
ters of commuting graphs in linear groups and matrix rings [24] have demonstrated the practical
teasibility of systematic analysis in these complex algebraic structures.

The central focus of this investigation concerns the clique number w(G) of commuting graphs,
defined as the maximum size of a complete subgraph. This parameter captures fundamental

information about the extent to which elements can simultaneously commute, providing insights
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into the algebraic structure through combinatorial means. Our analysis establishes several key

theoretical contributions:

(1) For any finite commutative ring R with unity and positive integer m > 3, we prove the

fundamental lower bound:
@(T(M(m&m,R))) = IR =R’
(2) For rings isomorphic to Z,» where r > 3 is odd, we establish the improved bound:
o(T(M(m&m,R))) = max {(p")2" = p, (p=)" " (p )" 1p? — )
(3) When r > 2 is even, the corresponding bound becomes:
w(T(M(m@m,R))) = max{(p' )" =, (¢')""p* = p*}

These results represent significant advances in our understanding of clique structures in matrix
commuting graphs, providing both theoretical insights and computational tools for further inves-
tigation. The methodology combines sophisticated matrix-theoretic analysis with graph-theoretic
techniques, demonstrating the power of interdisciplinary mathematical approaches.

The broader significance of this research extends beyond pure mathematical interest. The tech-
niques and results developed here have potential applications in coding theory, where commuting
properties of matrices play crucial roles in error-correction algorithms. Similarly, the combinatorial
optimization aspects of our clique analysis may inform computational approaches to problems in
algebraic complexity theory and symbolic computation.

Furthermore, the systematic construction of maximal cliques presented in this work, particu-
larly through the analysis of diagonal matrix families and specialized block structures, provides a
template for investigating similar problems in related algebraic contexts. The explicit characteriza-
tion of clique sizes offers both theoretical understanding and practical computational advantages
for researchers working with matrix rings over finite fields and more general finite commutative
rings.

This research contributes to the ongoing development of algebraic graph theory as a mature
mathematical discipline, bridging fundamental questions in abstract algebra with sophisticated
techniques from combinatorial optimization. The results establish new benchmarks for clique
analysis in matrix commuting graphs while opening avenues for future investigation into related

graph parameters and more general algebraic structures.

2. MaTtHEMATICAL FRAMEWORK AND DEFINITIONS

We establish the foundational concepts necessary for our analysis of direct sum commuting

graphs. Throughout this work, all rings are assumed to be finite and commutative with unity.
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Definition 2.1. For matrices T € M(r1,L) and N € M(rp, L) over a ring L, the direct sum T @ N is defined

as the block diagonal matrix of T and N, both are square matrices

ToN = [T”X” OWZJ,
Orxri Nrxrs

yields a matrix in M((r1 + r2) X (r1 + r2), L), for simplicity denoted by M(r1 & 12, L), with a specific block

structure that preserves many algebraic properties while introducing interesting combinatorial features.

The collection M(r1 @1y, L) of all such direct sum matrices forms the foundation for our graph-theoretic

investigation and provides a rich setting for studying domination properties.

Definition 2.2. The commuting graph T (M(m @ m, R)) has vertex set consisting of all non-central matrices
in M(m@®m,R):

VI(M(m&m,R))) = M(m&m,R)\ Z(M(m&m,R))
where Z(M(m@&m,R)) = {cl, ® fl, : ¢, f € R}. Two distinct vertices A and B are adjacent if and only if
AB = BA.

3. PRELIMINARIES AND Basic PROPERTIES

Throughout this paper, R denotes a finite commutative ring with unity 1z. We denote by I, the

m x m identity matrix and by E;; the matrix with 1 in position (i, j) and 0 elsewhere.

Definition 3.1. The commuting graph T(M(m & m,R)) of M(m @ m, R) is the simple graph with vertex
set

V(IT(M(mem,R))) =M(me&m,R)\Z(M(me&m,R)) = M(m&m,R) \ {cl,® fl, : ¢, f € R}
and edge set E(T(M(m@&m,R))) = {{A,B} : A, Be V(I (M(m&m,R))),A # B,AB = BA}.
Definition 3.2. [24] Let G = (V,E) be a simple undirected graph. A subset S C V is called a clique if

every pair of distinct vertices in S is adjacent, i.e., for all u,v € S with u # v, we have {u, v} € E.
Equivalently, S is a clique if and only if the induced subgraph G[S] is a complete graph.

Definition 3.3. [24] A clique S in a graph G = (V,E) is called maximal if there exists no clique S’ in
G such that S € S’. In other words, S is maximal if it cannot be extended by adding any additional vertex
while preserving the clique property.
Formally, S is a maximal clique if:
(1) Sisa clique, and
(2) Foreveryv € V\S, the set S U {v} is not a clique.

Definition 3.4. [24] The cliqgue number of a graph G, denoted w(G), is the size of the largest clique in G:
w(G) = max{|S| : S is a maximal clique in G}.

Lemma 3.1. The center of M(m @& m,R) is Z(M(m@®m,R)) = {cl,, ® fl,, : ¢, f € R}, and |Z(M(m &
m, R))| = IRP.
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Proof. Since R is commutative, any scalar matrix cI, ® fI,, commutes with all matrices in M(m &

m,R). Conversely, if A®B = (aij)?j:l ® (bi,j)?j:l € Z(M(m@m,R)), then A® B commutes with

all elementary matrices Ej @ Ej;. The condition (A@® B)(E12 ® E12) = (E12® E12)(A @ B) implies
a;j = 0,bj; = 0 fori # jand a;y = axn,by1 = by. Similarly, (A® B)(Ex ® Exs) = (Ex3 ® Ex3) (A®B)
implies a = a33, by = b33. Continuing this process shows A® B = a1l ® b1, for some
a1,b11 € R. O

Proposition 3.1. The commuting graph T(M(m @ m, R)) has [R|*"* — |R]? vertices.

Proof. This follows immediately from |[M(m & m, R)| = IR*"* and Lemma 3.1. O

4. STRUCTURE OF MaxiMAL CLIQUES
We now establish our principal results on the clique number of matrix commuting graphs.
Lemma 4.1. Let D(m@®m,R) = {diag(dy,da,...,dy) ®diag(x1,x2,..., %) : di,x; € R}\ Z(M(m &

m, R)) be the set of non-central diagonal matrices. Then D(m @& m,R) is a maximal cliques in T (M(m &
m,R)).

Proof. Any two diagonal matrices commute since

(diag(ay, ..., am) ®diag(x1,x2, ..., %)) (diag(by, ..., by) ®diag(y1, Y2, .., Ym))
= (diag(mby,...,amby) ®diag(x1y1,. .., XmYm))
= (diag(hay, ..., bypay) ®diag(y1x1, ..., YmXm))
(since a;, b;, x;, y; € R, R is a commutative ring)
= (diag(by,..., by)®diag(ys,..., ym))(diag(ay, ..., ay,) ®diag(x1, ..., Xm)).
Any matrix commute with all diagonal matrices must be a diagonal matrix, therefore D(m@®m, R) =

{diag(dy,dy, ..., dw) ®diag(x1,x2,...,%m) : di,x;i € R}\ Z(M(m & m,R)) is a maximal cliques in
I'(M(me@&m,R)). m|

Theorem 4.1. For any finite commutative ring R with unity and positive integer m > 3,
w(T(M(m,R))) = IRP" - |RP. (4.1)

Proof. By Lemma 4.1, the diagonal matrices form a maximal clique. The number of diagonal
matrices is [R[*", and the number of scalar matrices (which are central) is |R|. Therefore, |D(m &
m,R)| = [R*™ — R]?, giving the desired lower bound. O

Now, we give other examples of maximal cliques in I'(M(m @ m,Z,)) when r > 3 is odd. We

start with the following remark.
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6
X1,1 X1,2 X1,m Y11
Remark 4.1. Anymatrix A®B = X2',1 2 o ® y%'l
Xm1 Xm,2 Xm,m Yma
X111+ €1 X1,2 X1,m
matrix (A+c11) @ (B+col) = x%'l 722+ tam
Xm,1 Xim,2 Xmm + C1

Let S = {x;p!, yjp' : xj,yj € Zy and t > 22} and Oy = {xjp",

be the set of all matrices A @ B of the form

Y12 Yi,m
Y22 Yo,m .
) _ |commutes with the
Ym,2 Ymm
Y11+ Y12 Yim
Y21 Y22+ C2 Yom
Yma Ymp2 Ymm + C2

yip' i xj,yj € Zyand t > 5L} Let L

X101+ X1,2 X1,m-1 X1,m yi1+c Y12 Y1,m-1 Y1,m
X2,1 X224 €1 X2,m-1 X2,m Y21 Yoo+ C2 Y2,m-1 Yo,m
® . . . |
Xm-1,1 Xm-1,2 Xm-1,m-1+C1 Xm-1m Ym-1,1 Ym-1.2 Ym-1,m-1+C2  Ym-1,m
Xm,1 Xm,2 Xm,m-1 1 Yma Ym,2 Ymm-1 C2

such that X1 r Xm=1,m=1, Y1,1, - - - » Ym-1,m-1 € Oq,c1,00 € Zpr, and Xij, Yij € S1,i# ]

Lemma 4.2. Suppose that r is an odd number, L and Sy are defined as above. Then L induces a maximal

cliqgue in T(M(m®m, Zy)).

Proof. Let X and Y be any two matrices in the set L. Then

apy +cq aip a1,m-1 a1,m fir+c
a1 dp -ty a2 -1 a2,m fo1
X = I} :
Am-1,1 An-1,m-1+tC1 Am-1,m fm—l,l
Am1 Am,2 Am,m-1 C1 fm,l
Eli,]',fi’]' € 04, ai’i,fi,i €51,1# j, C1,C2 € Zpr. One can write X = (
0 aip a,m 0  fe
a0 a,m fo1r O
G= @
Am1 Am2 0 f m,1 f m,2
is a matrix with all elements in S;, and the matrix
tl1,1 0 0 f 1,1 0
| 0 app 0 0 for
0 0 A m 0 0

fi2 fim-1 fim
fop+e2 fam-1 fom
fm-tm—1+c2 fuim
fm,Z fm,mfl C2
J + (cil ®col) 4 G), where
fl,m—l fl,m
fom=1 fom
fm,m—l 0

fm,m
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is a diagonal matrix where the main diagonal consists of elements that belong to O;. Similarly

big+c3 b1y a b1 m-1 b1m lin+cy Lis e I m—1 Iim
b1 byp+c3 .- bo -1 b m Iy Lo+cy -+ Iy m—1 Lo
Y = : : : e
bu11 b1z 0 bp—imer o2 byim lnap Iumip 0 bncymet +ca Lypim
bm,l bm,Z cee bm,mfl c3 lm,l lm,2 T lm,m—l C4

and Y = (J' + (c3I®cal) + G*), where

0 b -+ biwm 0 hp -+ hnm

b2 0 e bom| i O Do
G =] . . . |®el . i
bm,l bm,Z toe 0 lm,l lm,2 et 0

is a matrix with all elements in S;

bi; O 0 L, O 0

0 b 0 0 I 0
= 2,2 BE 22

0 0 - bum 0 0 - Lum

is a diagonal matrix where the main diagonal consists elements belonging to O;. Then XY =
(J+(@loc) +G)(J*+ (3ldcal) + G) = J'+ ] + 0+ a1+l + a1G+ 0+ G+ 0 =
IT+al*+0+c] + el +cG+0401G +0= (J* + 2l + G*)(J + c1l + G) = YX. Hence X and
Y commute and the induced subgraph on L is complete.

X110 X122 cc Xim yir Yiz o Yim
X21 X22 0 Xom Y1 Y22 - Yom .

Let A®B =| . . . . ; Xij, Yij € Zyr be any matrix that
Xm1 Xm2 *°° Xmm Ym1l Ym2 ° Ymm

commutes with all elements in L. The matrix A & B commute with p% Ei1® p% E;1 and hence
(Ap'TE11)® (BpTE11) = (pTE11A) @ (p'T E11B). From that we get x1,p7 = 0

I

Nll ||
AN

xl,mp% = O, lelp% = O = e = xm,lp% = 0 and yl,ZP% = O = e = yl,mp = O,
yzllp% =0 = = ymrlp% = 0. Similarly A ® B commutes with all the matrices
r=1 r=1 r=1 r=1 r=1 r—1
p2Ey,®p2Ey--p2Eym®p 2 Eyy. From that we get x1,p2 = 0 = -+ = Xpoymp 2,
xm,lp% =0 = = xm,m_lp%. So, x; = (cl,j—f—idl,j)p", P’ € {0,p%,...,p’_1}, I #j
r— r—1 r—1 r=1 .
Ximp2 =0=- =xpmp2,and yy1p2z =0= "= Ypmap 2. So, yij = (cl,]- + ldl,]')pe,

P e{0,p T, ..., P, 1#]. So
X114 X12 0 Xim i Yiz2 - Yim
X21 X22 0 X, 2,1 22 2,

Xm1 Xm2 ' Xmm Ym1l Ym2 ° Ymm
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where x11,X12, -+, Xmm, Y1,1, Y12/ - - - Ymm € Zpr, Xij, Yij € S1 ¥i # j. Now, we need to show
that A®@B € L. Since A ® B commutes with p%ELz @p%Em,...,p%Em_Lm @p%Em_Lm, we
have (ApT E15) ® (Bp'Z E1p) = (pTE10A) ® (p2 E12B), ..., (ApT Eim) ® (BpT Eppei) =

(PF Ep-1mA) ® (0T Eyy_1mB). So,

0 xl,lp% - 0 0 }/1,1]9% 0
" " o o - of o o 0
(Ap 7 Eip)®(Bp? E1p) = : : el ‘
0 0 0 0 0 0
0 xz,zp% ... 0\ (0 yz,zp% o 0
" " 0 0 ol o o 0
= (p 2 El,ZA) (&) (]9 2 El,ZB) = : : . : @ : .
0 0 ... ol lo 0 o 0
So, we get x11p'T = xpop 7 and hence (x11 - x22)p'T = 0, y1ap'T = yaop'T and hence
(y11 - yz,z)}?% = 0. From that we get y11 = 22 + vlp% ; U1 € Zy. Similarly since
0 0 0 o --- 0 0 0 0 o --- 0
. . 00 xpopz7 0 -~ 0| [0 0 yop™ O 0
(Ap 7 Ez23)® (Bp 2 Ea3) = . el .
0 : 0
0 0 0 0 0 0
00 0 0 0 00 0 0 0
r+1 r+1 0 O x3,3p% 0 M 0 0 0 y3,3p% O e 0
=(p7 E23A)@(p? E3B) =|. . . e, . o,
Do 0 : : Do 0 o
00 0 I 00 0

= =) (1) =1
we get xop = X33+ Up?2; Uy € Zpr. So x11 = xp0 +up 2 then x11 = x33 + u,’p2
=1 (1)1

Yoo = Y33+ vzp%; V2 €Zp. SO Y11 =Yoo +v1p 2 thenyi1 = y33+ 70, P%-
By the same technique we get

, and

00 - 0 00 - 0
1 1 oL 0 Lot 0
(Ap ; Em—lrm) @ (Bp ; Em—l,m) = . . r+1 ® . . r+1
Lo o PT Xp—1m-1 Dol P27 Ym—1,m-1
0 0 0 00 0
0 0 0 00 - 0
il i1 oL 0 oL 0
= (P 3 Em—l,mA) & (P 3 Em—l,mB) =1. . 1 @ L. 1 ’
N 2 Sl P Ymm
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(m) =1 (m)

=1 r=1
then Xi—1,m-1 = Xmm + Up-1P 2 ; Um-1 € Zpr. SO X11 = Xyym + u, pr;u € Zy and Yy-1,m-1 =

m—1
=1 m) =1 (m)
Ymm + Om-1P 2 ; Om-1 € Zpr. SO Y11 = Ymm + vfn_lp 250, 4 €2y
Then
di1 + Xpm X172 e X fi1+ Ymm Y12 o Yim
X2,1 dop + Xmm - Xom Y21 P2+ Ymm 0 Yom
A®B= ) . . . |® . . P
Xm,1 Xm,2 o Xmum Ym,1 Ym2 c Ymm

di1,d12, - dn-tm-1, 11, L2, - -0 ftm—1 € O1, Xym, Ymm € Zpr and x;j, yij € S1 Vi # j. Then A® B
is a matrix in L. So, the set L is a maximal clique of T(M(m ®m, Zyr)). m]

Observe that [D(m@&m, Zy)| = (p")*" — p*, since D contains diagonal matrices except scalar

matrices. We have

x1,1+ €1 X1,2 X1,m-1 X1,m Y11+ V12 ce Yi,m-1 Yim
X21 Xp+c e X2,m-1 X2,m Y21 Y22+c2 o Yo,m-1 Y2,m
L = : : : : &) : : : : X0, Yii € O1,%ij, Yij € S1;1# j, 01,0 € Zpr 5o
Xm-1,1  Xm-12+C1 *** Xm-1m-1TC1 Xm-1m Ym-11  Ym-12tC2  Yw1m-1+C2 Ym-1m
Xma Xim,2 ce Xm,m-1 &1 Yma Ymp e Ymm—1 2

Where S1 = {x;p!, yjp' : xj,yj € Zy and t > ). And Oy = {xjp!,yjp' - xj,yj € Zy and t > L},
Observe that S| = p'™!, |O1] = p' 1. Hence

IL| = (pr—l)mz—m (pr—i-l)m—ler _ er. (4.2)

Now, we give an example of a maximal clique of the graph I'(M(m @ m, Z,r)) where r is an even
integer.
Let S = {x;p, yjp' : xj,yj € Zy and t > %}. Let L be the set of all matrices A ® B of the form

X101+ X1,2 e X1,m-1 X1,m L2 Y12 Yim-1 Yim
X2,1 Xpp+c1 e X2,m-1 X2,m Y21 Yoo+ oo Y2,m-1 Yo,m
A®B=| : S : Cole| : . : Sl
Xm-11 Xm-12+C1 0 Xm—im-1+C1 Xp—1m Ym-11  Ym-12+C2 - Ym-1m-1+C2 Ym-1,m
Xm,1 Xim,2 o Xim,m-1 1 Yma Ym,2 e Ymm-1 C2

such that x; j, y;; € S, for all i, j, ¢1,¢2 € Zyyr.

Lemma 4.3. Let r be an even number, L and S are defined as above. Then L is a maximal clique in
T(M(m®m,Zy)).

Proof. The proof is similar to that one of Lemma 4.2. m]

Now, we look at the size of the set L.

We have
X114 ¢ X1, e X1,m-1 Xt,m Yia+c2 Y12 e Yim-1 Yim
X21 Xop+c1 e X2,m-1 xX2,m Y21 Y22 +c2 o Yo,m-1 Y2,m
L= : : : e : : : : XG0, Yii € O1,Xij, Yij € S1;1# J, 01,02 € Zpr e
Xm-11 Xm-12+C1 0 Xm—im-1+C1 Xmeim Ym-11 Ym-12+C2 0 Ym-im-1TC2 Ym-im

Xm,1 Xim,2 e Xm,m—1 C1 Yma Ymp t Ymm—1 2
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Where S = {xjp', yjp' : xj,yj € Z, and t > ). Observe that |S| = p”. Hence
|L| _ (pr)mz—IPZr _ er (43)

Corollary 4.1. For any finite commutative ring R isomorphic to Z, with r > 3 is an odd number,
w(T(M(m,R))) 2 max{(p')*" =, (¢ )" " (p )" = p). (4.4)
Proof. Using inequality (4.1) and equation (4.2), then we conclude the result. m]
Corollary 4.2. For any finite commutative ring R isomorphic to Zy with r > 2 is an even number,
(T (M(m,R))) = max{(p")" = p, (p")" P = p*"). (4.5)
Proof. Using inequality (4.1) and equation (4.3), then we conclude the result. m]
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