A Lightweight Symmetric Encryption Framework Using Homogeneous and Non-Homogeneous Caterpillar Graphs
Main Article Content
Abstract
In today’s interconnected world, ensuring secure and efficient communication is of critical importance. Traditional cryptographic techniques often encounter challenges such as high computational costs and vulnerabilities to emerging attack strategies. This study proposes a novel encryption framework that leverages the structural properties of homogeneous and non-homogeneous caterpillar graphs to enhance the processes of encrypting and decrypting textual information. Plaintext characters are first mapped to numerical values based on their positions in the English alphabet, after which number-theoretic operations are applied to generate ciphertext. The encrypted values are embedded within caterpillar graph structures, where vertex assignments and coloring methods introduce additional layers of complexity. This integration not only increases resistance to brute-force and quantum-based attacks but also improves visualization and segmentation of encrypted blocks. Furthermore, efficient graph traversal algorithms are incorporated to optimize computational performance. The proposed framework significantly strengthens cryptographic security by combining graph theory, number theory, and coloring techniques, offering a scalable solution to modern cybersecurity challenges.
Article Details
References
- A. Singh, A New Approach to Enhance Avalanche Effect in Aes to Improve Computer Security, J. Inf. Technol. Softw. Eng. 05 (2015), 1. https://doi.org/10.4172/2165-7866.1000143.
- A. Abboud, Protecting Documents Using Visual Cryptography, Int. J. Eng. Res. Gen. Sci. 3 (2015), 464–470.
- A.I. Khamg, A.R. Ramli, Implementation and Evaluation of New Cryptography Algorithm for E-mail Applications, Int. J. Comput. Internet Manag. 17 (2009), 34–39.
- T. Kivinen, J. Snyder, Signature Authentication in the Internet Key Exchange Version 2 (IKEv2), RFC Editor, 2015. https://doi.org/10.17487/rfc7427.
- J. Sanchez, R. Correa, H. Buenano, S. Arias, H. Gomez, Encryption Techniques: A Theoretical Overview and Future Proposals, in: 2016 Third International Conference on eDemocracy & eGovernment (ICEDEG), IEEE, 2016, pp. 60-64. https://doi.org/10.1109/icedeg.2016.7461697.
- A.A. Soofi, I. Riaz, U. Rasheed, An Enhanced Vigenere Cipher For Data Security, Int. J. Sci. Technol. Res. 5 (2016), 141–145.
- W. Etaiwi, Encryption Algorithm Using Graph Theory, J. Sci. Res. Rep. 3 (2014), 2519–2527. https://doi.org/10.9734/jsrr/2014/11804.
- M. Yamuna, M. Gogia, A. Sikka, M.J.H. Khan, Encryption Using Graph Theory and Linear Algebra, Int. J. Comput. Appl. 5 (2012), 102–107.
- M. Yamuna, K. Karthika, Data Transfer Using Bipartite Graphs, Int. J. Adv. Res. Sci. Eng. 4 (2015), 128–131.
- P. Priyadarsini, A Survey on Some Applications of Graph Theory in Cryptography, J. Discret. Math. Sci. Cryptogr. 18 (2015), 209–217. https://doi.org/10.1080/09720529.2013.878819.
- W. Stallings, Cryptography and Network Security: Principles and Practice, Pearson, 2014.
- K. Bekkaoui, S. Ziti, F. Omary, Data Security: A New Symmetric Cryptosystem Based on Graph Theory, Int. J. Adv. Comput. Sci. Appl. 12 (2021), 742–750. https://doi.org/10.14569/ijacsa.2021.0120982.
- N. Ali, A. Sadiqa, M.A. Shahzad, M. Imran Qureshi, H.M.A. Siddiqui, et al., Secure Communication in the Digital Age: A New Paradigm with Graph-Based Encryption Algorithms, Front. Comput. Sci. 6 (2024), 1454094. https://doi.org/10.3389/fcomp.2024.1454094.
- R.K.K. Ajeena, F.A. Abdullatif, S.M. Aboud, The Corona Graph for Symmetric Encryption Schemes, in: 2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT), IEEE, 2023, pp. 1-5. https://doi.org/10.1109/icecct56650.2023.10179762.
- M.K. Shathir, G.E. Arif, R.K.K. Ajeena, More Secure on the Symmetric Encryption Schemes Based on Triple Vertex Path Graph, J. Discret. Math. Sci. Cryptogr. 26 (2023), 1175–1182. https://doi.org/10.47974/jdmsc-1564.
- D.K. Gurjar, A. Krishnaa, Balanced Bipartite Trees in Cryptography, Indian J. Sci. Res. 12 (2022), 35–40. https://doi.org/10.32606/ijsr.v12.i2.00005.
- B. Ni, R. Qazi, S.U. Rehman, G. Farid, Some Graph-Based Encryption Schemes, J. Math. 2021 (2021), 6614172. https://doi.org/10.1155/2021/6614172.
- C. Beaula, P. Venugopal, Encryption Using Double Vertex Graph and Matrices, Solid State Technol. 64 (2021), 2486–2493.
- S.G. Akl, The Graph Is the Message: Design and Analysis of an Unconventional Cryptographic Function, in: From Parallel to Emergent Computing, CRC Press, 2019.
- D.G. Kaur, D.N. Tripathi, Applying Graph Theory to Secure Data by Cryptography, Int. J. Linguist. Comput. Appl. 8 (2021), 1–3. https://doi.org/10.30726/ijlca/v8.i1.2020.81001.
- A. Sabharwal, P. Yadav, K. Kumar, Graph Crypto‐Stego System for Securing Graph Data Using Association Schemes, J. Appl. Math. 2024 (2024), 2084342. https://doi.org/10.1155/2024/2084342.
- P. Ranasinghe, R. Bandara, A. Athapaththtu, Symmetric Encryption Using Snake Graphs and Supermagic Covering, J. Natl. Sci. Found. Sri Lanka 52 (2025), 435–440. https://doi.org/10.4038/jnsfsr.v52i4.12196.
- W. Stallings, Cryptography and Network Security: Principles and Practice, Pearson, 2017.
- N. Koblitz, A Course in Number Theory and Cryptography, Springer, 1994.
- P.W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, SIAM Rev. 41 (1999), 303–332. https://doi.org/10.1137/s0036144598347011.
- L.K. Grover, A Fast Quantum Mechanical Algorithm for Database Search, in: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing - STOC '96, ACM Press, New York, 1996, pp. 212-219. https://doi.org/10.1145/237814.237866.
- D.J. Bernstein, T. Lange, Post-Quantum Cryptography, Nature 549 (2017), 188–194. https://doi.org/10.1038/nature23461.
- M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York, 1979.
- C.E. Shannon, A Mathematical Theory of Communication, Bell Syst. Tech. J. 27 (1948), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.
- A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996.
- D.J. Bernstein, Cache-Timing Attacks on AES, University of Illinois at Chicago, 2005.