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Abstract. In today’s interconnected world, ensuring secure and efficient communication is of critical importance.
Traditional cryptographic techniques often encounter challenges such as high computational costs and vulnerabilities
to emerging attack strategies. This study proposes a novel encryption framework thatleverages the structural properties
of homogeneous and non-homogeneous caterpillar graphs to enhance the processes of encrypting and decrypting textual
information. Plaintext characters are first mapped to numerical values based on their positions in the English alphabet,
after which number-theoretic operations are applied to generate ciphertext. The encrypted values are embedded within
caterpillar graph structures, where vertex assignments and coloring methods introduce additional layers of complexity.
This integration not only increases resistance to brute-force and quantum-based attacks but also improves visualization
and segmentation of encrypted blocks. Furthermore, efficient graph traversal algorithms are incorporated to optimize
computational performance. The proposed framework significantly strengthens cryptographic security by combining

graph theory, number theory, and coloring techniques, offering a scalable solution to modern cybersecurity challenges.

1. INTRODUCTION

The proliferation of Internet usage across various social sectors has forced internet service
providers to adapt their offerings to facilitate remote access for professionals, collaborators, and
general users. Although this pervasive connectivity yields substantial advantages, it concurrently
introduces a host of security vulnerabilities. Information security concerns have been an intrinsic
part of computing since its inception, and unauthorized system access continues to be a paramount
issue for IT specialists. These challenges are compounded when users access websites from

geographically dispersed locations. For instance, downloading media files, often perceived as a
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low-risk endeavor, can expose sensitive information to potential security risks [1]. This underscores
the critical role of computational algorithms in identifying and mitigating threats. Upon detecting
a potential risk, the system may proactively block downloads to preserve data integrity and
completeness; the prevalence of computer viruses exacerbates these security challenges. Similarly,
transactions conducted over information networks are susceptible to interception by malicious
agents.

Cryptography plays a crucial role in the field of cryptology, involving the methods and prin-
ciples that ensure the safe exchange of information. The word cryptology comes from the Greek
terms "kriptos," meaning hidden, and "logos," meaning study. This discipline is generally split
into two main areas: cryptography, which deals with creating secure communication methods,
and cryptanalysis, which is dedicated to deciphering and analyzing these secure messages [2]. Al-
though cryptography focuses on constructing secure communication systems, cryptanalysis aims
to breach these systems by exploiting vulnerabilities [3] and [4]. Historically, cryptography has
evolved from simple ciphers, such as the Caesar cipher, to complex machines employed during
World War 1I, significantly influencing Alan Turing’s groundbreaking work in codebreaking [5].
Building on these historical foundations, modern cryptography has evolved into a sophisticated
tield that relies on mathematical principles and algorithms. It employs encryption and decryption
to secure communication channels. Encryption transforms plaintext into ciphertext, rendering
it unintelligible to the unauthorized parties. Decryption reverses this process by restoring the
original plain text. Beyond these fundamental operations, modern cryptography prioritizes con-
fidentiality, integrity, authentication, and nonrepudiation to safeguard information in the digital
age [6]. Cryptographic algorithms are categorized into two primary types: symmetric key cryptog-
raphy and public key (asymmetric) cryptography. Symmetric-key cryptography, while efficient,
faces challenges in securely distributing and managing the shared keys. Prominent examples
include the Data Encryption Standard (DES) and Advanced Encryption Standard (AES). By con-
trast, public-key cryptography employs a pair of keys: a public key for encryption and a private
key for decryption. This approach addresses key distribution issues but often sacrifices perfor-
mance [7]. As digital communication and online transactions proliferate, the demand for robust
security solutions has increased. Graph theory, a branch of mathematics, has emerged as a pow-
erful tool for enhancing cryptographic systems. By leveraging graph structures, cryptographers
can design more complex and resilient algorithms, thereby increasing the difficulty for attackers
to compromise sensitive information [8], [9], [10]. A strong foundation in graph theory is cru-
cial for developing and analyzing cryptographic protocols and ensuring the confidentiality and
integrity of digital communications [11]. Graph theory, a fundamental area of discrete mathemat-
ics, studies the properties of graphs, which are mathematical structures comprising of vertices

and edges. Graphs are versatile tools used to model the relationships between objects in various
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domains including electrical, transportation, and social networks. They offer a systematic ap-
proach to problem-solving and have been instrumental in the development of numerous software
applications that facilitate communication and complex technical processes [12].

This study proposes a novel encryption technique that leverages the unique structures of ho-
mogeneous and non-homogeneous caterpillar graphs. We exploited this structural variation to
generate complex key patterns. A shared secret key, derived from the specific structure of a ho-
mogeneous and nonhomogeneous caterpillar graph, is used to guide the encryption process. The
remainder of this paper is organized as follows. Section 2 reviews the related work. Section 3
provides the preliminaries. Section 4 details the proposed encryption method. Section 5 provides
a practical example. Section 6 presents an analysis of this security scheme. Section 7 presents the

Results and Discussion. Finally, Section 8 concludes the research work.

2. RELATED WORK

Our work is shaped by recent advancements in graph-theoretic cryptography, particularly those
exploring the intersection of structural graph properties and symmetric encryption. This section
reviews the key contributions that have influenced the development of our proposed caterpillar
graph-based encryption scheme.

Ali et al. [13] proposed a set of innovative symmetric encryption schemes that leverage special
graph structures—including corona graphs, star graphs, and complete bipartite graphs—combined
with algebraic properties to enhance secure message transmission. Their framework addresses
the increasing need for non-standard encryption algorithms to counter traditional attack models
in secure digital communication. Ajeena et al. [14] introduced a symmetric encryption method
that utilizes the corona graph (CG). Their approach constructs a CG by linking each vertex of a
base graph to two new vertices. Ciphertexts are then generated through the random mapping of
plaintext letters onto this structure, resulting in distinct graph configurations that are transmitted
securely. Shathir et al. [15] proposed a symmetric encryption scheme based on a triple-vertex path
(TVP) graph. This method encodes plaintext messages within TVP configurations, leveraging
their structural characteristics to strengthen the encryption security and increase the ciphertext
complexity.

Kumar et al. [16] explored the use of balanced bipartite trees combined with labeling techniques,
such as harmonic, graceful, sequential, and felicitous labeling, for encryption and decryption.
Their study emphasized how equal vertex distribution across bipartite partitions supports secure
graph-structured encoding. Ni et al. [17] introduced a graph-theoretic encryption model that
integrates algebraic operations with specialized graphs, such as corona, bipartite, and star graphs.
Their framework relies on shared secret keys and algebraic transformations to establish secure
communication between the parties. Beaula et al. [18] proposed a symmetric encryption technique
that used a combination of path and double-vertex graphs. Their method integrates shared

key usage with computational graph structures to improve the unpredictability and security of
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encrypted text. Akl [19] formulated an encryption strategy that incorporated three sequentially
constructed graphs. These graphs are created via atypical mapping functions, which are considered
to replicate trapdoor one-way functions, possibly providing some resistance to attacks aimed at
decrypting information.

Kaur et al. [20] introduced an innovative technique for encryption and decryption that leverages
the adjacency matrix of a graph. This method, which utilizes a “double-transposition column”
approach, offers numerous advantages over more straightforward algorithms.

Sabharwal et al. [21] introduced a hybrid encryption approach that integrates graph-theoretic
cryptography with steganographic techniques. In this method, information is encrypted using
association schemes defined on finite abelian groups and then hidden within a cover image chosen
at random, enhancing both security and data concealment.

Ranasinghe et al. [22] introduced a symmetric encryption scheme based on snake vertex labeling
over the super magic covering wheel graphs. By combining graph labeling with an enhanced shift
cipher and a secret key pair (k, ), their scheme provides strong resistance against impersonation
and replay attacks.

Despite these advancements in graph-based symmetric encryption, existing schemes often rely
on rigid graph structures, such as fixed-size corona or bipartite graphs, and lack flexibility in
encoding messages of varying lengths. Additionally, they under utilize structural and visual ob-
fuscation strategies like vertex coloring, which can significantly enhance security. To the best of our
knowledge, no prior work has leveraged both homogeneous and non-homogeneous caterpillar
graphs in a unified framework for encryption, particularly with integrated color-block mapping
and modular inverse operations. This gap motivates the present study, which proposes a light-
weight, dual-mode encryption framework capable of achieving semantic security while being

adaptable to resource-constrained applications.

3. MATHEMATICAL PRELIMINARIES

3.1. Graph-Theoretic Concepts.

3.1.1. Graph. A graph G is a triple consisting of a vertex set V(G), an edge set E(G), and a relation
that associates with each edge two vertices (not necessarily distinct), called its endpoints.

3.1.2. Caterpillar Graph. A caterpillar graph is a tree graph with a central path (spine) and leaf
nodes branching off from the spine. Alternatively, it is a tree in which all vertices are within

distance one of a central path.

3.1.3. Homogeneous and Non-Homogeneous Caterpillar Graphs. A homogeneous caterpillar is a tree
in which each vertex on the spine has an equal number of leaves. In contrast, a non-homogeneous

caterpillar allows varying numbers of leaves per spine vertex, increasing structural diversity.



Int. J. Anal. Appl. (2025), 23:312 5

3.1.4. Graph Coloring. Graph coloring is a method of assigning labels, traditionally called “colors,"
to elements of a graph subject to certain constraints—most commonly, ensuring no two adjacent

vertices share the same color.

3.1.5. Block Coloring. Block coloring is a variant of graph coloring in which vertices are grouped
into blocks, and each block is assigned a unique color. Unlike traditional coloring, block coloring
does not enforce adjacency constraints but follows application-specific rules, such as encryption

mappings.
3.2. Cryptographic Elements.

3.2.1. English Alphabet Values (EAVs). Each English letter, both uppercase and lowercase, is as-
signed a unique numeric value according to its position in the alphabet: A -1, B—2, ..., Z —
26. This mapping serves as the basis for converting plaintext characters into their numerical

equivalents for encryption.

3.2.2. Modular Arithmetic: This includes operations such as modular addition and modular inver-
sion. For a prime number p > 26, the modular inverse of a (where gcd(a,p) = 1) is an integer a™*

satisfying: a-a~! =1 (mod p)

3.2.3. Color Mapping Rule. Each encrypted block is assigned a unique color based on a reversible
mapping function known to both sender and receiver, used for secure graph segmentation during

encryption and decryption.

3.3. Color Assignment Rule. The Color Assignment Rule consists of two key components: palette
selection and the block—color mapping function.

Palette Selection: In the palette selection phase, a global set of C colors is predefined, with
C = 100 recommended for practical cryptographic applications. From this global palette =
{c1,¢2,...,¢ccl, a subset of k active colors Pactive = {Ca1,Ca2, - - ., Cax} is selected corresponding to the
number of plaintext blocks. Maximum perceptual separation among these colors is ensured using
standard color-difference metrics such as CIEDE2000 or HSL thresholding, minimizing ambiguity
and enhancing security.

Block—-Color Mapping Function: The mapping function deterministically assigns each plaintext
block m; a color ¢; € Pactive through areversible function f. This ensures that each block is associated
with a unique color, while incorporating both the graph structure and the secret prime number to
enhance security.

Implementation Formula: The mapping function f is implemented as:

ci = f(mj, pos;, p) = [i X pos; Xp + Z CijJ mod C (3.1)
j=1

where:

e iistheblockindex (i=1,2,...,k),
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e pos, is the position of the first vertex of block 7 in the caterpillar graph,
e pis the shared secret prime number,
° Z;i:l cij is the sum of all ciphertext values in block i,

e Cis the size of the color palette.

Security Properties: By combining deterministic assignment, reversibility, and cryptographic
enhancement through the secret prime p and graph structure dependency, the color assignment
contributes both to the uniqueness of ciphertext representation and to resistance against frequency
and structural attacks.

Conflict Resolution: Since the direct application of f may result in collisions (two blocks
mapping to the same color), a collision-handling strategy is employed. Specifically, linear probing
is used: if the calculated color index is already assigned, the index is incremented modulo C until
a free color is found. This guarantees a one-to-one mapping between blocks and active colors,
ensuring reversibility while keeping the expected resolution cost negligible due to the large palette

size relative to the number of blocks.

4. PrRoPOSED METHODOLOGY

This paper presents a novel cryptographic framework designed to improve data security in
public networks by ensuring data integrity, confidentiality, and privacy. The core of the tech-
nique employs a unique graph structure, namely homogeneous and non-homogeneous caterpillar
graphs, which serve as shared secret keys for secure communication.Caterpillar graphs are se-
lected due to their favorable structural and cryptographic properties. Their backbone-based spine
supports efficient encoding and decoding with linear complexity, while flexible leg arrangements
introduce significant combinatorial variability. Non-homogeneous variants further enhance secu-
rity by increasing irregularity, thereby improving resistance to pattern-based attacks. Compared
to other graph classes such as general trees, bipartite graphs, or Hamiltonian paths, caterpillar
graphs offer an effective balance between computational efficiency and key space complexity,
making them suitable for secure and scalable cryptographic applications.

In the proposed method, plaintext characters are first converted into numerical values us-
ing number-theoretic transformations. These numerical values are then encrypted and mapped
onto the vertices of the caterpillar graph. At this stage, the Color Assignment Rule (defined in
Section 3.3) is applied: each plaintext block is assigned a unique color selected from the active
palette. This block-wise coloring not only enables clear differentiation and structured mapping of
ciphertext blocks but also enhances security by introducing an additional obfuscation layer that
complicates frequency analysis and structural prediction attacks. The color assignment is guided
by the shared secret prime key p, ensuring that the mapping remains reversible during decryption
while strengthening confidentiality. Only authorized senders and receivers, possessing the secret
prime key and graph structure, can correctly decode the ciphertext. The complete encryption

workflow is illustrated in Fig.1.
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Ficure 1. Workflow of the proposed encryption scheme.

4.1. Secure Data transfer using Homogeneous Caterpillar Graph. Consider a plaintext message
M which is English word or sentence. The message consists of 26 or fewer letters from the English
alphabet. Each letter is assigned a unique numerical value based on its Position in the English
alphabet, known as English Alphabet Values (EAVs), where A — 1, B — 2, ..., Z— 26. This
numerical assignment serves as the foundation for converting the plaintext into its corresponding
numerical representation. Plaintext M is divided into blocks denoted asM = m; = (my,my, ..., my),
where n is the total number of blocks. Each block m; represents a subset of the plaintext message,
containing a fixed number(length) of r letters, labeled as m;1, mp, ..., m;,. To increase encryption
complexity, the blocks are distinguished by color assignment rule. Once the blocks are formed,

each letter within the block is converted into its corresponding numerical equivalent by applying
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EAVs, denoted as #m;. To further strengthen the encryption process, the numerical values in each
block are adjusted by adding the total number of blocks 1 to each letter’s numerical value,resulting
in the following equation:

“m;+n  (mod 26) = (a11,412,...,01r),
my +n (mod 26) = (a21,a22, - ,ﬂzr),

“ms+n (mod 26) = (az1,4a32,...,a3:),

“my+n  (mod 26) = (ay1,an2,. .., 0nr).

The sender uses a shared secret key p, which is the prime number greater than 26 (p > 26).
To compute the ciphertext C for the colored block elements, the sender calculates the modular
multiplicative inverse of each numerical element with respect to p. The resulting ciphertext is
represented as C = (ci,¢2,...,¢4) , where each block ¢; is given by ¢; = (c11,¢12,...,¢17),62 =
(c21,620,-+.,C2),¢3 = (€31,€32,++-,C3¢),---,Cn = (Cy1,Cn2, ...Cnr). The encryption is performed by
computing the modular multiplicative inverse for each numerical value in the block as follows:

a1 = (a1)™ (mod p),

cp = (app)™! (mod p),
13 = (a13)”" (mod p),
cor = (@)™t (mod p).

Thus, the ciphertext C is represented as a homogeneous caterpillar graph, where each block is
randomly colored using block coloring to further obfuscate the plaintext structure. This encrypted
message is then transmitted to the receiver, as illustrated in fig 2.

Upon receiving the homogeneous caterpillar graph, the receiver identifies the colored vertices
and reconstructs ciphertext blocks cy, ¢, ...,c,. Using the shared secret key p, the receiver then
calculates the modular inverses of the elements c;; for each block. This process mathematically
expressed as (Ci]')_l (mod P) = a;;, where i=1,2,...,n and j=1,2,...,r. Once the values g;; are
obtained,the receiver computes the original adjusted values by subtracting n(the total number of
blocks) and applying modulo 26.

This step is represented as, a;; —n (mod 26) = #m; for i=1,2,...n. Finally, using the English
Alphabet values(EAVs), the receiver converts the numerical values *m; back into their correspond-
ing letters m;, thereby reconstructing the original plaintext message M. This process ensures that
only the intended receiver,with knowledge of the shared secret key, can successfully decode the

encrypted message.
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Ficure 2. Homogeneous Caterpillar Graph: Each spine vertex has uniform leg
distribution per block. Colors encode ciphertext blocks. Dotted lines indicate

continuation of nodes.

4.2. Secure Data Transfer Using Non-Homogeneous Caterpillar Graph. Consider a plaintext
message M, which is an English word or sentence consisting of 26 or fewer letters from the English
alphabet. Each letter is assigned a unique numerical value based on its positions in the English
alphabet, known as English Alphabet Values(EAVs), where A — 1, B — 2, ..., Z— 26. This
numerical assignment serves as the foundation for converting the plaintext into its corresponding
numerical representation. Plaintext M is divided into blocks denoted as M = m; = (my,my, ..., my),
where n is the total number of blocks. Each block m; represents a subset of the plaintext message,
containing a different numbers(lengths) of 7,s,t...[ letters, labeled as m;, mp, ..., My,..., my.
To increase encryption complexity, the blocks are distinguished by color assignment rule. Once
the blocks are formed, each letter within the block is converted into its corresponding numerical
equivalent by applying EAVs, denoted as #m;. To further strengthen the encryption process, the
numerical values in each block are adjusted by adding the total number of blocks 7 to each letter’s

numerical value, resulting in the following equation:
smy +n (mod 26) = (a11,a12, - - .,a17)
*My + 1N (mod 26) = (ﬂ21,1122, .. ,(125)

*M3 +n (mod 26) = (a31,a32, .. ,(13t)

smy +n  (mod 26) = (an,an2,---,a4)
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The sender uses a shared secret key, which is a prime number p > 26. The ciphertext C for
the colored block elements is computed using the modular multiplicative inverse of the ele-
ments with respect to p, resulting in C = (c1,¢c2,...,¢,), where each block is represented as
1 = (011,612,---,C1r),C2 = (021,622,---,C25),C3 = (C31,032,---,C3t),---,cn = (Cnl,an,----an)- The
calculations are carried out as follows.

Cc11 = (ﬂll)_l (mod p)

c12 = (a12)”" (mod p)
-1

C13 = (a13) (mod p)

e = (a)™ (mod p)

Thus, ciphertext C is then represented as a nonhomogeneous caterpillar graph with random block

coloring assigned to each block. The sender transmits this graph to the receiver, as shown in fig 3.

C12 __C13 C1r C32 (33 C3t

C11 /g\o C31

(O  Block 1 (Red)
O Block 2 (Blue)

Block 3 (Green)

@) Block n (Purple)

Ficure 3. Non-Homogeneous Caterpillar Graph used as a shared secret key, where
each block is represented by a distinct color. Dotted lines indicate continuation of

nodes.

Upon receiving the non-homogeneous caterpillar graph, the receiver begins by identifying the
colored vertices, which assists in reconstructing the ciphertextblocks ¢y, ¢y, . . ., ¢,. For each element
cij within these blocks, the receiver computes its modular inverse relative to the shared secret prime
number p, thereby retrieving a;;. To reverse the initial block shift applied during encryption, the
receiver subtracts the total number of blocks (n) from each value 4;; and computes the modulo 26
result. This produces *m; fori = 1,2,...n. By applying the English Alphabet Values (EAVs), each
numerical value #m; is converted back into its corresponding letter. Finally, the receiver assembles

the blocks to reconstruct the original plaintext message, M = (mj,my,...,m;). This approach
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ensures a secure and structured encryption mechanism by leveraging the properties of modular

arithmetic and graph-based transformations.

5. PracTicAL ExAMPLE

5.1. Example of Homogeneous caterpillar graph. Suppose M is a plain text message that is given
by the sentence "Practice makes perfect" . Using English alphabet values (EAVs), we converted
the letters of the plaintext into numbers A — 1, B — 2, ..., Z— 26. English Alphabet values
conversion of the plaintext is "Practice makes perfect"isP — 16, r - 18, ¢ — 3,t—>20,i » 9,c —
3,e—»5m—13,a—>1,k—>1l,e>5s—19,p—16e—5r—18,f—>6,e »5c—3,t— 20,

Here we divided into 4 number of colored blocks M = (my,my, m3,ms4), such that
my = Pract = (16,18,1,3,20)
my = icema = (9,3,5,13,1)
m3 = kespe = (11,5,19,16,5)
my = rfect = (18,6,5,3,20)

As there are 4 blocks, the numbers within these blocks are modified by adding 4 to them through
a shift cipher, specifically.

(16,18,1,3,20) +4 (mod 26) = (20,22,5,7,24) = a
(9,3,5,13,1) +4 (mod 26) = (13,7,9,17,5) = a,
(11,5,19,16,5) +4 (mod 26) = (15,9,23,20,9) = a3
(18,6,5,3,20) + 4 (mod 26) = (22,10,9,7,24) = a4

Now sender then uses the shared secret key, which is a prime number p = 29, where 29 > 26.
The ciphertext C = (c1, ¢, ¢3,¢4), where ¢1 = (c11,¢12,€13,C14,€15), €2 = (€21, €22, €23,€24,C25), €3 =

(31,32, €33, C34,¢35) and ¢4 = (41, Can, €43, Ca4, C45). The calculations were performed as follows:
20)7, (227, (5)7L (7)1, (24)7")  (mod 29) = (5,4,6,25,5)

13)°L )™, 9,177 6)™Y  (mod 29) = (9,25,13,12,6)
,(23)71,(20)7%,(9)7Y)  (mod 29) = (2,13,4,15,13)

22)7L,(10)7L, (9)7, (7)7L (24)7Y)  (mod 29) = (4,3,13,25,26)

.. The ciphertext values are represented as vertices in a caterpillar graph with colored vertices
assigned to each block using color assignment rule, as illustrated in fig 4, and are then transmitted to
the recipient. The recipient receives a homogeneous caterpillar graph and extracts the vertices from
the colored blocks c1, ¢, ¢3, c4. The extract colored blocks are (5,4,6,25,5), (9,25,13,12,6), (2,13,4,15,13)

and (4,3,13,25,26). The receiver calculates the modular inverse of each ciphertext element ¢;;
i=1,2,3,4 and j=1,2,3,4,5. The receiver knows the shared secret key p = 29 to calculate the inverse
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Ficure4. Homogeneous caterpillar graph with block coloring. The legend indicates

ciphertext blocks.

numbers of ¢1, ¢, c3, ¢4 as follows

1y (mod 29) = (20,22,5,7,24)

6)!) (mod 29) = (13,7,9,17,5)

471, (15)7, (13)™1)  (mod 29) = (15,9,23,20,9)
) (26)7!)  (mod 29) = (22,10,9,7,24)

Given that the plaintext consists of 4 blocks, the receiver subtracts 4 from each block using

modulo 26. The calculations are performed as follows.

(20,22,5,7,24) -4 (mod 26) = (16,18,1,3,20) = a
(13,7,9,17,5) -4 (mod 26) = (9,3,5,13,1) = a
(15,9,23,20,9) =4 (mod 26) = (11,5,19,16,5) = a3
(22,10,9,7,24) -4 (mod 26) = (18,6,5,3,20) = a4

Finally the numerical values are converted back to their correspond letters.

(16,18,1,3,20) — (P,r,a,c,t)

(9,3,5,13,1) — (i,c,e,m,a)
(11,5,19,16,5) — (k,¢,5,p,e)
(18,6,5,3,20) — (r, f,e,c,t)

.. The rearranged sentence is "Practice makes perfect".

5.2. Example of Non-Homogeneous caterpillar graph. Suppose M is a plaintext message that is

given by the sentence "I like to eat pizza". Here we divide into 5 blocks M = (my, my, ms, my, ms),
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such that

my = I,my = like, m3 = to, my = eat, ms = pizza

. Using the EAVs, the plaintext message blocks m;, where i = 1, 2, 3,4,5 can be transformed into

numerical values in the following way:

m=1=9

my = like = (12,9,11,5)

mg = to = (20,15)

my = eat = (5,1,20)

ms = pizza = (16,9,26,26,1)

As there are 5 blocks, the numbers within these blocks are modified by adding 5 to them through
a shift cipher, specifically.

9+5 (mod26)=14=ua
(12,9,11,5) +5 (mod 26) = (17,14,16,10) = a,
(20,15) +5 (mod 26) = (25,20) = as
(5,1,20) +5 (mod 26) = (10,6,25) = as
(16,9,26,26,1) +5 (mod 26) = (21,14,5,5,6) = as

Now, sender takes the shared secret key which is a prime number p = 31, where 31 > 26.
The ciphertext C = (c1,¢2,c3,¢4,¢5), where ¢; = (c11), c2 = (c21,€22,€23,¢24), €3 = (€31,C32), €4 =

(41, ¢4, c43) and c5 = (c51, €52, €53, €54, C55). The calculations are carried out as follows.

cp = (14)™!  (mod 31) =20

= ((17)"%(14)7, (16)7%,(10)™)  (mod 31) = (11,20,2,28)

3= ((25)7%,(20)™")  (mod 31) = (5,14)

cs = ((10)74,(6)7,(25)7Y)  (mod 31) = (28,26,5)

cs = (217 (14)7L (5)7L (5)7L, (6)™Y)  (mod 31) = (3,20,25,15,26)

.. The ciphertext values are subsequently designated as vertices in a caterpillar graph with colored
vertices assigned to each block, as illustrated in fig 5, and are then transmitted to the recipient.
The recipient receives the caterpillar graph and first forms blocks of the ciphertext based on
the colored vertices of the caterpillar graph. So the first block is 20, second is (11,20,2,28),third is
(5,14),fourth is (28,26,5) and fifth is (3,20,25,15,26). The receiver knows the shared secret key p = 31
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Ficure 5. Non-homogeneous caterpillar graph with block-wise color encoding

to calculate the inverse numbers of ¢y, ¢o, ¢3, ¢4, c5 as follows:

20)"!  (mod 31) = 14

(1171, (20071, (2)7%,(28)™")  (mod 31) = (17,14, 16, 10)
(571, (14)™")  (mod 31) = (25,20)
(
(

28)7%,(26)7,(5)™!) (mod 31) = (10,6,25)
3)7L, (20078, (25)71, (25)71,(26)71)  (mod 31) = (21,14,5,5,6)

= (
(
(
(
(

Given that the plaintext consists of 5 blocks, the receiver subtracts 5 from each block using modulo

26. The calculations are performed as follows.

14-5 (mod 26) = (9) =a; =an
(17,14,16,10) -5 (mod 26) = (12,9,11,5) = a»
(25,20) -5 (mod 26) = (20,15) = a3
(10,6,25) -5 (mod 26) = (5,1,20) = a4
(21,14,5,5,6) =5 (mod 26) = (16,9,26,26,1) = as
.. The corresponding EAV’s are
(9) (1)
(12,9,11,5) — (1,i,k, e)
(20,15) — (t,0)
(5,1,20) — (e,a,t)
(16,9,26,26,1) — (p,i,z,z,a)

.. The recovered original plaintext is "I like to eat pizza"
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6. SECURITY SCHEME

The proposed encryption techniques utilizing both homogeneous and nonhomogeneous Cater-
pillar Graphs offer enhanced security compared with conventional encryption methods. In these
techniques, ciphertext is represented in the form of homogeneous and nonhomogeneous Cater-
pillar Graphs. The security of this approach is based on the random generation of these graphs,
making it significantly challenging for an attacker to decrypt ciphertext. To successfully retrieve
the plaintext, an attacker must not only comprehend the structure of the Caterpillar Graph, but
also accurately identify its vertices.

In Scenario I, the construction of a homogeneous Caterpillar Graph required the selection of a
subset of vertices from a given set. The number of possible configurations for selecting v vertices

from n total nodes can be determined by using the following combination formula:

n!
oo = vl(n—0)!

where v is the number of vertices in the homogeneous Caterpillar Graphs. Whenn =26 and v =
20, the total number of combinations can be determined by the following formula:

26!
2602 = —————— = 230230
2 = 201(26 - 20)!

Among these 230,230 potential configurations, only one corresponds to the correct key, thereby
highlighting the strength of this encryption scheme. To further enhance security, a color-based
encoding scheme was introduced. Colors are a fundamental aspect of human visual perception
and are created when light reflects off objects and enters the eye. Although humans can perceive
approximately 10 million distinct colors for encryption purposes, a limited subset of 100 colors is
considered. For the first encryption case, only four colors are selected from this set of 100, which

follows the combination formula

100!
1000s = ——— 3921225
“ = 1001(100 — 4)!

Thus, the total number of possible encryption configurations incorporating both vertex selection
and color encoding is: 230,230x3,921,225=902,783,631,750 ways. This immense number of possible
encryption schemes renders brute-force attacks computationally infeasible, further reinforcing the
robustness of the proposed encryption technique.

In Scenario 1II, the security of the proposed encryption technique was further reinforced by
modifying the parameters used in the graph-based encryption scheme. Specifically, the nonho-
mogeneous Caterpillar Graph in this scenario was constructed using v=15 vertices selected from a
total of n=26. The number of possible configurations for selecting these nodes can be determined

by using the following combination formula:

26!
26015 = ———— = 7726160
15 = 151026 - 15)!
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Among the 7,726,160 possible configurations, only one corresponds to the correct encryption key,
demonstrating the robustness of the method against brute-force decryption attempts. To further
enhance security, a color-based encoding scheme was introduced, similar to Scenario I, but with
increased complexity. In this case, five colors are selected from a total of 100 available colors, which

follow the combination formula

10005 = ——0% 75087500
® 7 1001(100-5)!

Thus, considering both vertex selection and color encoding, the total number of possible encryp-
tion configurations is. 75,287,520 x 7,726,160 = 58,168,342,552,320. This immense number
of possible encryption schemes makes brute-force attacks virtually impossible, ensuring a high
level of security for encrypted data. The combined complexity of graph-based vertex selection
and color-based encoding significantly strengthens the resilience of encryption techniques against

cryptanalysis.

7. ResuLts aND Discussion

To demonstrate the effectiveness of the proposed lightweight symmetric encryption framework,
a comparative study was performed against existing graph-based cryptographic techniques. The
assessment focused on key security and performance aspects, including structural complexity,
key space size, encryption and decryption time complexity, memory consumption, scalability, re-
sistance to quantum attacks, frequency analysis, brute-force attacks, and practical usability. The
results, summarized in Table 1, show that the proposed caterpillar graph-based scheme provides
improved security due to its large key space, color-based obfuscation, and combinatorial complex-
ity, while maintaining an efficient time complexity of O(nlogn). Compared to other graph-based
models such as general trees, bipartite graphs, Hamiltonian paths, and corona graphs, the cater-
pillar framework achieves an excellent balance between security robustness and computational

efficiency.

7.1. Key Management Strategies. Effective key management is crucial to maintaining the confi-
dentiality and integrity of the proposed encryption system that employs caterpillar graphs. The
security of this method depends on properly managing three key elements: (i) a prime number
p > 26, (ii) the caterpillar graph structure G, and (iii) the block—color mapping function f. This
section presents two main strategies for securely managing these keys while ensuring an efficient
time complexity of O(nlogn). Compared to other graph-based models like general trees, bipartite
graphs, Hamiltonian paths, and corona graphs, the caterpillar graph approach offers an excellent

balance between robust security and computational efficiency.

7.1.1. Key Generation. The secret key K = (p, G, f) is generated by combining three components:
a prime number p, a caterpillar graph G, and a block—color mapping function f. First, a prime

number p > 26 is randomly selected from a secure set of primes. The size of p is chosen to balance
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TasrLe 1. Comparative Analysis: Caterpillar Graph-Based Encryption vs. Other

Graph Models
Criterion Caterpillar General Trees Bipartite Hamiltonian Corona Graphs
Graphs  (Pro- Graphs Paths
posed)
Structural Complex- | High (Spine | Medium (Hier- | Medium (Two- | High (Complete | Very High
ity with  variable | archical branch- | partition sets) path traversal) | (Composite
legs and color | ing) structure)
encoding)
Key Space Size ~ 210 (1) x| ~ 2128 ~ 2140 ~ 2145 ~ 2155
(190) x 21)
Encryption Time O(nlogn) O(nlogn) O(n?) O(n!) O(n?logn)
Decryption Time O(nlogn) O(nlogn) O(n?) o(n?) O(n®logn)
Memory  Require- | Moderate Low Moderate High High
ments
Scalability Excellent Good Moderate Poor Moderate
Quantum Resistance | High Medium Medium Low High
Visual Obfuscation | Excellent (Color | Good Moderate Poor Excellent
coding)
Frequency Analysis | High Medium Medium Low High
Resistance
CPA Resistance High (IND-CPA | Medium Medium Low High
secure under as-
sumptions)
Brute Force Resis- | Excellent Good Good Poor Excellent
tance (Exponential
keyspace)
Implementation Moderate Low Moderate High High
Complexity
Error Propagation Low (Block- | Medium Medium High Low
wise  contain-
ment)
Parallel Processing | Excellent Good Good Poor Moderate
Support
Storage Efficiency Good Excellent Good Poor Moderate
Adaptability High (Homoge- | Medium Medium Low High
neous and Non-
Homogeneous
modes)
Cryptanalysis Resis- | High Medium Medium Low High
tance
Real-World Applica- | High Medium Medium Low Medium

bility
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computational efficiency with resistance to brute-force attacks, ensuring both practicality and se-
curity. Then, the caterpillar graph G is constructed either homogeneously or non-homogeneously.
Random variations in the spine length and leg distribution introduce structural diversity, making
each graph correspond to a unique key space. This variability increases the unpredictability of the
secret key. Finally, the block—color mapping function f assigns a unique color to each block from
the palette . This assignment depends on both the vertex position and the prime p, creating a
reversible mapping that enhances security. This method further protects against frequency and
structural attacks, as ciphertext blocks cannot be easily correlated without knowledge of the shared

prime and mapping function.

7.1.2. Key Exchange Protocol. For secure communication, both the sender and receiver need to
share the secret key K = (p, G, f). The prime number p can be safely exchanged using a standard
symmetric key exchange method, such as Diffie-Hellman or its post-quantum alternatives. The
caterpillar graph structure G and the mapping function f are either shared beforehand via a
trusted channel or sent encrypted along with p. To prevent replay attacks and guarantee forward
secrecy, the secret key K should be periodically updated by regenerating p, G, and f after a set
session duration. This approach, combining secure key generation with a dependable exchange
protocol, ensures that the proposed system upholds confidentiality, authenticity, and resilience
against attacks.

7.1.3. Resistance Against Man-in-the-Middle (MITM) Attacks. A major risk to key exchange proto-
cols is the man-in-the-middle (MITM) attack, in which an attacker intercepts and may modify
the communication between the sender and receiver. To prevent this, the proposed framework
incorporates mutual authentication, requiring both parties to confirm each other’s identities before
creating a shared key. Techniques such as digital signatures or hash-based message authentication
codes (HMACsS) can be used to link exchanged values to the participants’ identities, preventing
attackers from impersonating legitimate users. This authentication layer ensures that even if the
communication channel is compromised, an attacker cannot insert or alter keys without being
detected.

7.1.4. Resistance Against Side-Channel Attacks. Side-channel attacks exploit unintended informa-
tion leaks that occur during encryption or decryption, such as differences in timing, power con-
sumption, or electromagnetic emissions. The suggested framework incorporates several defenses
against these threats. First, critical operations are performed in constant time to prevent timing-
based leaks. Second, the sequence of computations is randomized, and masking methods are
applied to hide intermediate values, lowering the chances of successful power analysis and elec-
tromagnetic attacks. These safeguards make it computationally infeasible for an attacker with
physical access to the cryptographic device to obtain sensitive information about the secret key or

internal state.
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7.1.5. Limitations and Considerations. While our comparative analysis demonstrates the effective-
ness of the proposed framework, it is important to acknowledge certain limitations. Although
the proposed caterpillar graph-based encryption framework offers notable benefits in security
and computational efficiency, several limitations should be recognized. The system currently
supports only the 26-letter English alphabet, restricting its use in multilingual environments re-
quiring Unicode and extended character sets. The security approach relies on managing three
separate components (prime p, graph structure G, and color mapping function f), making key
distribution more complex than traditional single-key systems. Graph structure complexity in-
creases memory usage, communication bandwidth demands, and creates scalability challenges
for large datasets or resource-constrained environments. Practical implementations may be sus-
ceptible to side-channel attacks including timing analysis of modular inverse computations and
power analysis during graph construction. The color assignment method faces potential collisions
due to fixed palette limitations and color space inconsistencies across display devices. Addition-
ally, the framework lacks industry standardization and certification protocols, limiting enterprise
adoption. Implementation challenges include computational overhead from extended Euclidean
algorithms, platform compatibility issues, and integration difficulties with existing cryptographic
systems. Despite these limitations, the framework remains valuable for research, educational ap-
plications, and specialized visual encryption scenarios, though production deployment requires
addressing these considerations while preserving core advantages in combinatorial security and

visual obfuscation.

8. CONCLUSION

This paper introduces an innovative cryptographic framework that utilizes the structural char-
acteristics of both homogeneous and non-homogeneous Caterpillar Graphs, combined with color-
based encoding, to improve encryption security and computational efficiency. The method embeds
ciphertext within graph structures, employing vertex selection and color assignment to create sub-
stantial combinatorial complexity, making decryption without prior knowledge computationally
impractical. The randomness involved in graph construction, vertex choice, and color encoding,
along with the extensive range of possible encryption configurations, provides strong protection
against brute-force and quantum attacks. By integrating graph theory, combinatorial mathematics,
and color-based encoding, the approach further strengthens cryptographic security. Both theo-
retical analysis and experimental results demonstrate the scheme’s effectiveness in securing data
transmission while maintaining computational efficiency. Its flexibility allows for customization
through adjustments in graph parameters and encoding methods, making it suitable for secure
communications, financial transactions, and cloud data protection. Future work may focus on
optimizing the encryption process for resource-limited devices such as IoT gadgets and wireless
sensor networks, as well as expanding its application to various data types including images

and audio. Moreover, combining this technique with post-quantum cryptographic protocols and
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hybrid encryption models could improve resilience against emerging cyber threats. By advanc-
ing graph-based cryptography integrated with color-based encoding, this study contributes to
the development of secure, scalable, and efficient encryption solutions designed for the evolving

cybersecurity environment.
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