Enhanced Multiclass Android Malware Detection Using a Modified Dwarf Mongoose Algorithm

Main Article Content

Rawan D. Alabdallat, Mosleh M. Abualhaj, Ahmad Abu-Shareha

Abstract

The Android operating system has the most market share due to its easy handling and numerous advantages to Android users, which have attracted malicious actors. Android malware detection (AMD) systems based on machine learning (ML) are progressively being developed. However, these systems frequently struggle with high-dimensional datasets, increasing computation time, and lower accuracy. This study proposes a novel method for identifying malware in Android applications that employs a modified Dwarf Mongoose Optimization Algorithm (DMOA) for feature selection. The modified DMOA uses adaptive strategies, including crossover and mutation, to explore the search space more effectively, avoiding local optima and revealing higher-quality feature subsets that increase detection performance. The proposed modified DMOA model is trained and evaluated using the CICAndMal2017 dataset. The results show that it significantly outperforms existing techniques, achieving an accuracy of 100%.

Article Details

References

  1. P. Agrawal, H.F. Abutarboush, T. Ganesh, A.W. Mohamed, Metaheuristic Algorithms on Feature Selection: A Survey of One Decade of Research (2009-2019), IEEE Access 9 (2021), 26766-26791. https://doi.org/10.1109/access.2021.3056407.
  2. A. Sabbah, A. Taweel, S. Zein, Android Malware Detection: A Literature Review, in: Communications in Computer and Information Science, Springer, Singapore, 2023: pp. 263-278. https://doi.org/10.1007/978-981-99-0272-9_18.
  3. F. Nawshin, R. Gad, D. Unal, A.K. Al-Ali, P.N. Suganthan, Malware Detection for Mobile Computing Using Secure and Privacy-Preserving Machine Learning Approaches: A Comprehensive Survey, Comput. Electr. Eng. 117 (2024), 109233. https://doi.org/10.1016/j.compeleceng.2024.109233.
  4. R.K. Varma P, S.K.R. Mallidi, S. Jhansi K, P. Latha D, Bat Optimization Algorithm for Wrapper‐based Feature Selection and Performance Improvement of Android Malware Detection, IET Netw. 10 (2021), 131-140. https://doi.org/10.1049/ntw2.12022.
  5. N. Honest, A Survey on Feature Selection Techniques, GIS Sci. J. 7 (2020), 353–358.
  6. O.A. Akinola, J.O. Agushaka, A.E. Ezugwu, Binary Dwarf Mongoose Optimizer for Solving High-Dimensional Feature Selection Problems, PLOS ONE 17 (2022), e0274850. https://doi.org/10.1371/journal.pone.0274850.
  7. P.S. Game, V. Vaze, E. M, Bio-inspired Optimization: Metaheuristic Algorithms for Optimization, arXiv:2003.11637 (2020). https://doi.org/10.48550/arXiv.2003.11637.
  8. J. El Abdelkhalki, M.B. Ahmed, B.A. Abdelhakim, Image Malware Detection Using Deep Learning, Int. J. Commun. Netw. Inf. Secur. 12 (2022), 180-189. https://doi.org/10.17762/ijcnis.v12i2.4600.
  9. S.K. Sahay, A. Sharma, H. Rathore, Evolution of Malware and Its Detection Techniques, in: Advances in Intelligent Systems and Computing, Springer Singapore, Singapore, 2019: pp. 139-150. https://doi.org/10.1007/978-981-13-7166-0_14.
  10. M.N. Alenezi, H.K. Alabdulrazzaq, A.A. Alshaher, M.M. Alkharang, Evolution of Malware Threats and Techniques: A Review, Int. J. Commun. Netw. Inf. Secur. 12 (2022), 326-337. https://doi.org/10.17762/ijcnis.v12i3.4723.
  11. O. Aslan, R. Samet, A Comprehensive Review on Malware Detection Approaches, IEEE Access 8 (2020), 6249-6271. https://doi.org/10.1109/access.2019.2963724.
  12. V.N. Uzel, Detecting Android Malware by Using Fuzzy Set-Based Weighting Method and Firefly Optimization Algorithm, Master’s Thesis, Hacettepe University, 2022.
  13. N. Ekanayake, Android Operating System, 2018. https://www.researchgate.net/publication/325257105.
  14. Y. Chen, Research on Android Architecture and Application Development, J. Phys.: Conf. Ser. 1992 (2021), 022168. https://doi.org/10.1088/1742-6596/1992/2/022168.
  15. A. Subramanian, Exploring the Layers: A Deep Dive into Android OS Architecture, 2023. https://medium.com/@ayyappansubramanian77/exploring-the-layers-a-deep-dive-into-android-os-architecture-31a2cd7a4036.
  16. M. Jaiswal, Android the Mobile Operating System and Architecture, Int. J. Creative Res. Thoughts 6 (2018), 514-525.
  17. L. Meijin, F. Zhiyang, W. Junfeng, C. Luyu, Z. Qi, et al., A Systematic Overview of Android Malware Detection, Appl. Artif. Intell. 36 (2021), 2007327. https://doi.org/10.1080/08839514.2021.2007327.
  18. F.A. Almarshad, M. Zakariah, G.A. Gashgari, E.A. Aldakheel, A.I.A. Alzahrani, Detection of Android Malware Using Machine Learning and Siamese Shot Learning Technique for Security, IEEE Access 11 (2023), 127697-127714. https://doi.org/10.1109/access.2023.3331739.
  19. B. Mahesh, Machine Learning Algorithms - A Review, Int. J. Sci. Res. 9 (2020), 381-386. https://doi.org/10.21275/art20203995.
  20. N. Chowdhury, A. Haque, H. Soliman, M.S. Hossen, T. Fatima, et al., Android Malware Detection Using Machine Learning: A Review, in: Lecture Notes in Networks and Systems, Springer, Cham, 2024, pp. 507-522. https://doi.org/10.1007/978-3-031-47715-7_35.
  21. P. Agrawal, B. Trivedi, Machine Learning Classifiers for Android Malware Detection, in: Advances in Intelligent Systems and Computing, Springer, Singapore, 2020, pp. 311-322. https://doi.org/10.1007/978-981-15-5616-6_22.
  22. J.O. Agushaka, A.E. Ezugwu, L. Abualigah, Dwarf Mongoose Optimization Algorithm, Comput. Methods Appl. Mech. Eng. 391 (2022), 114570. https://doi.org/10.1016/j.cma.2022.114570.
  23. G. Moustafa, A.M. El-Rifaie, I.H. Smaili, A. Ginidi, A.M. Shaheen, et al., An Enhanced Dwarf Mongoose Optimization Algorithm for Solving Engineering Problems, Mathematics 11 (2023), 3297. https://doi.org/10.3390/math11153297.
  24. S. Fu, H. Huang, C. Ma, J. Wei, Y. Li, et al., Improved Dwarf Mongoose Optimization Algorithm Using Novel Nonlinear Control and Exploration Strategies, Expert Syst. Appl. 233 (2023), 120904. https://doi.org/10.1016/j.eswa.2023.120904.
  25. F. Taher, O. AlFandi, M. Al-kfairy, H. Al Hamadi, S. Alrabaee, DroidDetectMW: A Hybrid Intelligent Model for Android Malware Detection, Appl. Sci. 13 (2023), 7720. https://doi.org/10.3390/app13137720.
  26. G. Aldehim, M.A. Arasi, M. Khalid, S.S. Aljameel, R. Marzouk, et al., Gauss-mapping Black Widow Optimization with Deep Extreme Learning Machine for Android Malware Classification Model, IEEE Access 11 (2023), 87062-87070. https://doi.org/10.1109/access.2023.3285289.
  27. S.K. Smmarwar, G.P. Gupta, S. Kumar, P. Kumar, An Optimized and Efficient Android Malware Detection Framework for Future Sustainable Computing, Sustain. Energy Technol. Assessments 54 (2022), 102852. https://doi.org/10.1016/j.seta.2022.102852.
  28. University of New Brunswick (UNB), Android malware dataset (CIC-AndMal2017), https://www.unb.ca/cic/datasets/andmal2017.html, Accessed: Oct. 26, 2024.
  29. A.H. Lashkari, A.F.A. Kadir, L. Taheri, A.A. Ghorbani, Toward Developing a Systematic Approach to Generate Benchmark Android Malware Datasets and Classification, in: 2018 International Carnahan Conference on Security Technology (ICCST), IEEE, 2018, pp. 1-7. https://doi.org/10.1109/CCST.2018.8585560.
  30. M. Abuthawabeh, K. Mahmoud, Enhanced Android Malware Detection and Family Classification, Using Conversation-Level Network Traffic Features, Int. Arab. J. Inf. Technol. 17 (2020), 607-614. https://doi.org/10.34028/iajit/17/4a/4.
  31. J. Barrera-García, F. Cisternas-Caneo, B. Crawford, M. Gómez Sánchez, R. Soto, Feature Selection Problem and Metaheuristics: A Systematic Literature Review About Its Formulation, Evaluation and Applications, Biomimetics 9 (2023), 9. https://doi.org/10.3390/biomimetics9010009.
  32. M. Elaziz, A. Ewees, M. Al-qaness, S. Alshathri, R. Ibrahim, Feature Selection for High Dimensional Datasets Based on Quantum-Based Dwarf Mongoose Optimization, Mathematics 10 (2022), 4565. https://doi.org/10.3390/math10234565.
  33. M.M. Abualhaj, S. Al-Khatib, M.O. Hiari, Q.Y. Shambour, Enhancing Spam Detection Using Hybrid of Harris Hawks and Firefly Optimization Algorithms, J. Soft Comput. Data Min. 5 (2024), 161–174. https://doi.org/10.30880/jscdm.2024.05.02.012.
  34. M.M. Abualhaj, Spam Feature Selection Using Firefly Metaheuristic Algorithm, J. Appl. Data Sci. 5 (2024), 1692-1700. https://doi.org/10.47738/jads.v5i4.336.
  35. M.M. Abualhaj, A.A. Abu-Shareha, S. Nabil Alkhatib, Q.Y. Shambour, A.M. Alsaaidah, Detecting Spam Using Harris Hawks Optimizer as a Feature Selection Algorithm, Bull. Electr. Eng. Inform. 14 (2025), 2361-2369. https://doi.org/10.11591/eei.v14i3.9198.
  36. Y. Sanjalawe, S. Fraihat, S. Al-E’Mari, M. Abualhaj, S. Makhadmeh, et al., A Review of 6g and Ai Convergence: Enhancing Communication Networks with Artificial Intelligence, IEEE Open J. Commun. Soc. 6 (2025), 2308-2355. https://doi.org/10.1109/ojcoms.2025.3553302.
  37. Y. Sanjalawe, S. Fraihat, M. Abualhaj, S.R. Al-E’Mari, E. Alzubi, Hybrid Deep Learning for Human Fall Detection: A Synergistic Approach Using Yolov8 and Time-Space Transformers, IEEE Access 13 (2025), 41336-41366. https://doi.org/10.1109/access.2025.3547914.
  38. Y. Sanjalawe, S. Al-E’mari, S. Fraihat, M. Abualhaj, E. Alzubi, A Deep Learning-Driven Multi-Layered Steganographic Approach for Enhanced Data Security, Sci. Rep. 15 (2025), 4761. https://doi.org/10.1038/s41598-025-89189-5.
  39. M.M. Abualhaj, Q.Y. Shambour, A.A. Abu-Shareha, S.N. Al-Khatib, A. Amer, Enhancing Malware Detection Through Self-Union Feature Selection Using Gray Wolf Optimizer, Indones. J. Electr. Eng. Comput. Sci. 37 (2025), 197-205. https://doi.org/10.11591/ijeecs.v37.i1.pp197-205.
  40. S. Fraihat, Q. Shambour, M.A. Al-Betar, S.N. Makhadmeh, Variational Autoencoders-Based Algorithm for Multi-Criteria Recommendation Systems, Algorithms 17 (2024), 561. https://doi.org/10.3390/a17120561.
  41. Q. Shambour, Artificial Intelligence Techniques for Early Autism Detection in Toddlers: A Comparative Analysis, J. Appl. Data Sci. 5 (2024), 1754-1764. https://doi.org/10.47738/jads.v5i4.353.
  42. M. MADI, F. JARGHON, Y. FAZEA, O. ALMOMANI, A. SAAIDAH, Comparative Analysis of Classification Techniques for Network Fault Management, Turk. J. Electr. Eng. Comput. Sci. 28 (2020), 1442-1457. https://doi.org/10.3906/elk-1907-84.
  43. A. Hamdan Mohammad, T. Alwada’n, O. Almomani, S. Smadi, N. ElOmari, Bio-inspired Hybrid Feature Selection Model for Intrusion Detection, Comput. Mater. Contin. 73 (2022), 133-150. https://doi.org/10.32604/cmc.2022.027475.
  44. A. Almomani, I. Akour, A. M. Manasrah, O. Almomani, M. Alauthman, et al., Ensemble-based Approach for Efficient Intrusion Detection in Network Traffic, Intell. Autom. Soft Comput. 37 (2023), 2499-2517. https://doi.org/10.32604/iasc.2023.039687.