
Int. J. Anal. Appl. (2025), 23:248

Received Aug. 13, 2025

2020 Mathematics Subject Classification. 68T05.

Key words and phrases. android malware detection; dwarf mongoose optimization algorithm; feature selection.

https://doi.org/10.28924/2291-8639-23-2025-248 © 2025 the author(s)

ISSN: 2291-8639

1

Enhanced Multiclass Android Malware Detection Using a Modified Dwarf Mongoose

Algorithm

Rawan D. Alabdallat1,*, Mosleh M. Abualhaj1, Ahmad Abu-Shareha2

1Department of Networks and Cybersecurity, Al-Ahliyya Amman University, Amman, Jordan

2Department of Data Science and Artificial Intelligence, Al-Ahliyya Amman University, Amman, Jordan

*Corresponding author: alabdallatrawan80@gmail.com

ABSTRACT. The Android operating system has the most market share due to its easy handling and numerous advantages

to Android users, which have attracted malicious actors. Android malware detection (AMD) systems based on machine

learning (ML) are progressively being developed. However, these systems frequently struggle with high-dimensional

datasets, increasing computation time, and lower accuracy. This study proposes a novel method for identifying

malware in Android applications that employs a modified Dwarf Mongoose Optimization Algorithm (DMOA) for

feature selection. The modified DMOA uses adaptive strategies, including crossover and mutation, to explore the

search space more effectively, avoiding local optima and revealing higher-quality feature subsets that increase

detection performance. The proposed modified DMOA model is trained and evaluated using the CICAndMal2017

dataset. The results show that it significantly outperforms existing techniques, achieving an accuracy of 100%.

1. Introduction

Malware attacks pose a risk to the security of Android systems for all users and

organizations; hence, effective detection methods should be developed [1]. AMD is an essential

challenge for smartphone platforms because of the exponential increase in users for Android

applications [2]. Recent research has focused on the use of ML methods for application behavior

prediction and malware detection [3]. However, ML methods function poorly in malware

detection for large-dimensional datasets, which can increase the computation time and lead to

imprecise results [4]. Feature selection techniques are used to extract important features and

eliminate unwanted data[5]. Nevertheless, these techniques often yield false positive or negative

results [6]. Moreover, given the changing nature of malware and the emergence of new types,

https://doi.org/10.28924/2291-8639-23-2025-248

2 Int. J. Anal. Appl. (2025), 23:248

some features have become irrelevant, necessitating continuous adaptation and the integration

of new techniques. Another challenge is that traditional optimization algorithms can be trapped

in local optima, especially when dealing with the complex search space typical of malware

detection datasets. In such cases, irrelevant feature subsets are selected, which fail to improve

detection accuracy [7]. An advanced optimization technique that can help search for the best

solution and improve the performance of AMD systems without falling into local optima must

be developed. This study deploys a modified version of the Dwarf Mongoose Optimization

Algorithm (DMOA) to optimize feature selection for AMD. The goal is to improve classification

accuracy and reduce computation time when working with high-dimensional datasets. Based on

the CICAndMal2017 dataset, this study focuses on generating, applying, and evaluating the

proposed methodology.

Margins, column widths, line spacing, and type styles are The remaining sections of this

paper is organized as follows: Section 2 covers the background of the study. Section 3 presents

the proposed model. Section 4 provides the implementation process and analyzes the results.

Section 5 concludes the findings and presents recommendations for future research.

2. Background

2.1 Malware

The term malware stands for “malicious software”. Malware consists unauthorized

programs designed by hackers or cyber criminals to perform dangerous activities. These

malicious tools are designed for information theft, bypassing the devices’ protection, and

unauthorized access to a personal computer. The target device can be harmed, corrupting its data

or even affecting the functionalities of the applications installed on the computer [8]. In addition,

one of the main goals of adversaries is to turn the device into a zombie or slave as part of a botnet,

which can be used in future attacks.

The first generation of malware is known as static malware and consists of several types

identified by means of infection. Viruses hook on executable code and replicate the same as other

programs do, and worms reproduce to extend the attack to more computers. Trojans present

other valuable facilities that are unconventional features of trojan horses. Other types of first-

generation malware include spyware, rootkits, crimeware, and adware. Even though these types

of malware exhibit various types of malicious behavior, their architecture does not change and

remains similar [9]. Second-generation malware or dynamic malware act differently, as they

change after every infection to generate more versions of themselves but possess an exact

destructive nature. This generation can be further divided on the basis of how it conceals itself to

prevent identification of its signature: encrypted, oligomorphic, polymorphic, or

metamorphic[10].Encrypted malware is malware that uses encryption to hide the actual code for

malicious activity inside the general design of a program, which then takes malware out of

Int. J. Anal. Appl. (2025), 23:248 3

detection via host system platform techniques[11]. Oligomorphic malware uses two keys for each

set of encryption and decryption on its payload. Encryption keys may frequently be replaced;

thus, they are typically applied to obfuscate detection more than is the case with other individual

kinds of encryption [12].Polymorphic malware employs individual keys for encryption and

decryption, as depicted in oligomorphic keys. However, the decoder is even more difficult to

detect, as several copies of it can be included inside an encrypted payload. Furthermore,

multilevel encryption can be applied, which makes polymorphic malware much more

challenging to identify than oligomorphic malware [9].Metamorphic malware differs from

encrypted malware in that it does not use encryption. Instead, dynamic code modification, in

which the code is replaced with a new one each time the program runs through its cycle, is used.

This situation results in a new type of signature for every version of the malware, something that

is almost impossible to identify easily [11].

2.2 Android Structure

Android, an operating system created by Google and based on the Linux kernel, is used

in various devices, from smart phones to automobiles. Android apparatuses have touchscreens

and are operated via swipe and tap, which makes them user friendly. Android is an open-source

operating system, which means that developers can handle it by implementing their

modifications via the Android Open-Source project. This flexibility has enabled Android to be

the leading competitor to Apple’s iOS [13]. The centroid is composed of four distinct layers: the

application layer, framework layer, middle tier, and kernel layer [14] (Fig.1).

Fig.1: Android architecture [15].

4 Int. J. Anal. Appl. (2025), 23:248

2.2.1 Application Layer: The main components at this layer are the API framework, which works

as Android’s development platform, and the fundamental mechanism of the whole system. The

application layer comprises daily use applications such as call logs, calendars, and many others,

which are built and programmed in Java. This layer also involves collecting basic application

packages such as e-mail clients and maps, browsers, and contacts [14].

2.2.2 Framework Layer: The framework layer offers the basic functionality that can be used to

run applications. This layer facilitates important tasks such as application-to-application

communication via content providers, voice call handling via the telephony manager, and

identifying the device’s location via the location manager. Without this layer, the applications

cannot address each other, invoke calls, or access many standards, such as locational standards

[12].

2.2.3 Middle Tier: The middle tier comprises libraries and the runtime environment found in the

Android system. Most of these applications are in C++ and serve as the basis for several system

elements. The middle tier mainly serves the application framework in delivering services to

developers. Some of the components are SQLite for managing the database system, the open

graphics library for managing the graphical user interface system, and the WebKit for controlling

the web browsing system. The core library consists of the core Android API, which is mandatory

for application development, and the basic Java API [14].

2.2.4 Linux Kernel Layer: The Linux kernel (version 2.6) is at the base of the architecture and is

enhanced by approximately 115 patches. This kernel offers basic system functions such as control

of processes, memory, and devices and the support of peripherals, including cameras and

keyboards. This layer performs media operations and handles various device drivers to handle

external devices [16].

The most susceptible layer is the application layer, which hosts a multitude of applications

that are added by users. This layer is vulnerable to malware attacks because it is open source, and

users can download the applications from a third-party provider. Some of these applications can

be attacked by poorly built security features that enable malware to exploit loopholes or adjust

user privileges. Therefore, the large number of applications that can be installed on the Android

operating system and the extent to which their security differs make the platform highly

susceptible to malware.

2.3 Malware Detection Methods

Malware detection methods are typically divided into three main parts: signature-based,

behavior-based, and heuristic-based detection. These are classified into static, dynamic, and

hybrid methods. Signature-based detection is pattern-oriented and uses a malware signature

library containing unique features for each known Android malware. These signatures include

file names, content strings, or bytes known or generated by individuals or machines. Evaluations

Int. J. Anal. Appl. (2025), 23:248 5

check whether the Android sample matches any signatures in the repository. This approach is

popular due to its speed and efficiency. Most documented Android malware can be correctly

identified. However, updating the signature library is labor intensive, and it only works against

already observed malware [17].Heuristic-based detection applies ML and data mining to learn

executable file behavior. Features such as API calls, CFGs, N-grams, and OpCodes are used [12].

It helps detect new and unknown threats but may lead to more false positives[17]. Behavior-based

detection is widely used as it can detect unknown malware by analyzing behavioral patterns.

These methods use ML and DL techniques to adapt and detect emerging Android threats. Since

large data is analyzed, the false positive rate can be high, and detection may take longer[18]. Static

analysis examines code without execution, helping prevent future harm, but cannot detect

unknown malware. It is common in AMD due to its simplicity and speed. Dynamic analysis

detects malware by monitoring activity post-execution, usually in a virtual environment for

safety. Hybrid analysis combines both methods—first evaluating code signatures, then observing

behavior during execution.

2.4 Machine Learning

ML is the process through which a machine is trained to process data efficiently. In some

cases, meaningful insights may be difficult to obtain after reviewing data; this is where machine

learning becomes useful. As a result of the increase in large datasets, the need for machine

learning has also increased. ML has proven to be extremely useful in extracting valuable

information. Therefore, many industries use ML to extract knowledge from data without human

intervention[19]. Researchers have used supervised learning, unsupervised learning, and DL to

detect Android malware. Supervised learning models are widely used in AMD; they learn from

labeled training data and models to separate malicious Android applications from legitimate ones

[20]. ML classifiers are an essential part of malware detection techniques, particularly in securing

Android devices[21]. The following ML classifiers can be used for AMD:

2.4.1 Decision tree (DT) : is a nonparametric supervised learning technique used for classification

and regression. The purpose is to provide a framework for predicting the value of a target variable

via basic decision rules derived from data features.

2.4.2 Random Forest (RF): This classifier combines decision trees generated from subsets of a

dataset and makes the final decision on the basis of the most popular choice among these trees.

One of the advantages of RF is its ability to work efficiently with datasets and accurately estimate

information while addressing imbalances in data errors and pinpointing crucial features for

analysis.

2.4.3 XGBoost: This optimized distributed gradient boosting library is highly efficient, adaptable,

and portable. This tool employs ML methods within the gradient boosting framework and offers

parallel tree boosting, thereby solving numerous data science issues rapidly and accurately.

6 Int. J. Anal. Appl. (2025), 23:248

2.4.4 K-Nearest Neighbors(KNN): KNN is an ML algorithm that can handle both classification

and regression. This technique is performed by classifying a data point according to the

prevailing class among its K neighbors in the feature space by using metrics such as the Euclidean

distance for measurement purposes. Owing to the simplicity and interpretability of this

technique, it has been applied across a wide range of areas.

2.5 Dwarf Mongoose Optimization Algorithm

The DMOA is a type of stochastic, population-based metaheuristic algorithm introduced

by [22]. The DMOA works by adopting a sequence of structured phases that mimic the feeding

and social behaviors of these mongooses. Below is a step-by-step breakdown of the DMOA

process:

Step 1: Initialization. As outlined in Equation (1.1), the DMO initiates its process by

generating a candidate population of mongooses. The candidates are randomly created within

the lower and upper bounds (LB and UB) specific to the problem considered.

𝑋 = [

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑑−1 𝑥1,𝑑

𝑥2,1 𝑥2,2 ⋯ 𝑥2,𝑑−1 𝑥2,𝑑

⋮ ⋮ 𝑥𝑖,𝑗 ⋮ ⋮
𝑥𝑛,1 𝑥𝑛,2 ⋯ 𝑥𝑛,𝑑−1 𝑥𝑛,𝑑

], (1.1)

where X represents the current set of candidate solutions generated randomly, as

described in Equation (1.2). 𝑥i,j refers to the position of the 𝑗th dimension of the 𝑖th candidate; 𝑛

denotes the population size; and 𝑑 indicates the problem’s dimensionality.The generation of

candidate positions is expressed as

𝑥𝑖,𝑗 = unifrnd(VarMin, VarMax, VarSize), (1.2)

where unifrnd produces a random number that follows a uniform distribution. 𝑉𝑎𝑟𝑀𝑖𝑛

and 𝑉𝑎𝑟𝑀𝑎𝑥 define the lower and upper bounds, respectively, and 𝑉𝑎𝑟𝑆𝑖𝑧𝑒 corresponds to the

dimensionality of the problem. Throughout each iteration, the best solution found is taken as the

best solution obtained thus far.

Step 2: Alpha Group. The alpha female (α) oversees the family unit and is selected

according to Equation (1.3).

𝛼 =
𝑓𝑖𝑡𝑖

∑  𝑛
𝑖=1  𝑓𝑖𝑡𝑖

, (1.3)

where fit represents the fitness value of an individual mongoose (solution) in the

population that measures how well a solution satisfies the optimization problem’s objective. iter

(i) denotes the current iteration or step in the optimization process. n−bsn denotes the number of

mongooses in the alpha group, where bs represents the number of babysitters. The term “peep”

refers to the sound made by the alpha female, which helps guide the family in the right direction.

The position of the sleeping mound is influenced by the abundant food source and is given

by

Int. J. Anal. Appl. (2025), 23:248 7

𝑋𝑖+1 = 𝑋𝑖 + 𝑝ℎ𝑖 ∗ peep , (1.4)

where phi is a random number uniformly distributed within the range [−1,1]. After each

iteration, the sleeping mound is assessed as follows:

𝑠𝑚𝑖 =
 fit 𝑖+1 − fit 𝑖

max{| 𝑓𝑖𝑡 𝑖+1, 𝑓𝑖𝑡 𝑖|}
. (1.5)

The average value is calculated when a sleeping mound is located as follows:

𝜑 =
∑𝑖=1

𝑛  𝑆𝑚𝑖

𝑛
. (1.6)

Once the criteria for exchanging babysitters are met, the algorithm transitions to the

scouting phase. The sleeping mound is subsequently evaluated on the basis of the availability of

food sources.

Step 3: Scout Group. The scout group actively searches for the next sleeping mound to

facilitate exploration, as mongooses typically do not return to previous sleeping mounds. In the

DMOA, foraging and scouting occur simultaneously. The farther the family forages are, the

greater the chance of discovering the next sleeping mound. , as simulated by the following:

𝑋𝑖+1 = {
𝑋𝑖 − 𝐶𝐹 ∗ 𝜑 ∗ rand ∗ [𝑋𝑖 − 𝑀⃗⃗] if 𝜑𝑖+1 > 𝜑𝑖

𝑋𝑖 + CF* 𝜑 ∗ rand ∗ [𝑋𝑖 − 𝑀⃗⃗] else
 ,

where rand is a random number in the range [0,1], and 𝐶𝐹 is defined as follows:

𝐶𝐹 = (1 −
 iter

 Maxiter
)
(2⋅

 iter

 Maxiter
)

, (1.7)

where 𝐶𝐹 regulates the collective-volatile movement of the mongoose group, which

decreases linearly as the number of iterations (iter) progresses. 𝑀 represents the vector that guides

the mongooses toward a new sleeping mound and is calculated as follows:

𝑀 = ∑ 

𝑛

𝑖=1

(𝑋𝑖 − 𝑠𝑚𝑖)

𝑋𝑖
. (1.8)

Step 4: Babysitters Group.The babysitter group manages and cares for young dwarf

mongooses. The remaining mongooses handle daily foraging tasks until the criteria for

exchanging babysitters are met.

Step 5: Termination. The termination of the DMO algorithm is governed by specific

criteria, which typically include limiting the number of generations (iterations). Algorithm 1

provides the pseudocode for the standard DMOA.

The DMOA offers several key advantages relevant to AMD. The DMO efficiently selects

features and, therefore, is highly fit for the dimensionality reduction of large datasets, such as

those employed in ML and malware detection systems [23]. Additionally, it assists in avoiding

local optima, which is typical in most optimization problems. This task is accomplished using an

effective search space [23]. Moreover, the DMOA generally converges faster than other

8 Int. J. Anal. Appl. (2025), 23:248

metaheuristic algorithms do. Fast convergence is advantageous when working on high-

dimensional datasets, as the computation time becomes an issue [6]. Furthermore, the DMOA is

flexible and dynamic, which enables it to address changing data and differing objective functions.

Therefore, this scheme is suitable for complex multidimensional problems[24]. The efficiency,

adaptability, and robust search make the DMOA an ideal choice for improving existing AMD

systems. Compared with traditional Android malware systems, the DMOA optimizes feature

relevance and model performance, enabling accurate and timely threat detection.

Algorithm 1: Dwarf Mongoose Optimization

Initialize DMO parameters: (peep)

Initialize the mongoose population of size N

Initialize bs (number of babysitters)

Set N ← N − bs

Set L

For (iter = 1 to max_iter) do

 Compute fitness for current population

 Set C (based on current fitness values)

 Find α using Eq. (3)

 Find 𝑋𝑖+1using Eq.(4)

 Assess the new fitness of solution

 Assess sm using Eq. (5)

 Compute φ using Eq. (6)

 Compute 𝑀⃗⃗ using Eq.(7)

 Exchange babysitters if C ≥ L

 Initialize bs position

 Compute fitness 𝑓𝑖𝑡 𝑖≤ α

 Simulate the scout mongoose’s next position

Update best solution found so far

End for

Return best solution

2.6 Current Metaheuristic Methods in AMD

Recent advancements in dimensionality reduction techniques have significantly

improved the detection and classification of AMD using ML algorithms. Several studies have

explored the combination of nature-inspired metaheuristics and ML methods for Android

malware detection. Taher et al. [25] introduced a hybrid model, DroidDetectMW, for Android

malware detection and classification, which uses an enhanced artificial neural network (ANN)

optimized by an Enhanced Hybrid Honeybee Optimization (EHHO) algorithm. The EHHO

integrates surprise-pounce strategies and quasireflection-based learning to improve both

exploration and exploitation phases. Feature selection was performed using metaheuristic

optimization algorithms, such as Moth Flame Optimization (MFO) and enhanced Moth Flame

Int. J. Anal. Appl. (2025), 23:248 9

Optimization (EMFO). The detection phase utilized ML algorithms like RF and Support Vector

Machines (SVM) to classify Android app behaviors. Experimentation on the CICAndMal2017

dataset showed significant improvements in precision, recall, and classification accuracy,

achieving 98.1% accuracy in binary malware classification and 96.9% in malware category

classification. Aldehim et al.[26] proposed the GBWODL-AMC method, which combines Gauss-

mapping black widow optimization (GBWO) for feature selection and deep learning for Android

malware classification. The method used the Deep Extreme Learning Machine (DELM) model for

classification and Ant Lion Optimization (ALO) to optimize model parameters. Testing on the

CICAndMal2017 dataset revealed that the GBWODL-AMC approach outperformed other

malware detection methods, achieving 98.59% accuracy in binary classification and 98.50% in

multiclass classification. Smmarwar et al. [27] introduced OEL-AMD, using the Black Widow

Optimization (BGWO) algorithm for feature selection. The optimal features were then used for

training various benchmark classification algorithms. The method was evaluated on the

CICInvesAndMal2019 dataset, yielding a best classification accuracy of 96.95% for binary

classification using static features and 83.49% for multiclass classification using dynamic features.

Despite the success of these methods, challenges remain, particularly in reducing redundant

information while maintaining high accuracy. For instance, while the GBWODL-AMC method

shows high accuracy, it increases system complexity due to the combination of GBWO for feature

selection, DELM for classification, and ALO for optimization, resulting in high computational

costs and longer processing times. This makes the approach less suitable for real-time

applications. Furthermore, although metaheuristic optimization techniques are widely used,

there has been limited research on feature selection for AMD using the DMOA.

3. Methodology

This section covers the dataset, preprocessing steps, and a comparison between the

original and modified DMOA algorithms.

3.1 Dataset

This study utilizes the CICAndMal2017 (Android malware dataset) developed by the

Canadian Center for Cybersecurity at the University of New Brunswick [28]. The dataset is

divided into two main categories: benign applications and malware. It consists of 10,854 samples,

with 6,500 benign (59.9%) and 4,354 malware (40.1%) samples. The malware samples are further

classified into four primary families. The four subtypes of malware (Ransomware, Adware,

Scareware, and SMSmalware) form 42 different attack types[29].

• Adware is software that is designed to display unwanted advertisements to increase clicks

and views. It comprises 104 applications, including the Ewind, Selfmite, and Gooligan

families.

10 Int. J. Anal. Appl. (2025), 23:248

• Ransomware is a malicious application that seeks to prevent access to computer resources. It

comprises 101 applications for Android devices, such as Charger, Jisut, Koler, and

WannaLocker.

• Scareware is malware that compels users to purchase unnecessary and potentially malware

applications. It comprises 102 applications, such as AndroidDefender, FakeAV, and FakeApp.

• SMSmalware is an unauthorized call or text message sent to others without the mobile

owner’s permission [30]. It consists of 99 applications, including Ji Fake, Bean Bot, Nandrobox,

Fake Mart, Fake Notify, and SMS sniffer families.

The dataset's features include fundamental information about the behavior of malicious

and benign applications, as well as precise network traffic flow characteristics in mobile devices.

These features are critical for understanding how different malware kinds interact with network

protocols and how to differentiate them based on network activity.

3.2 Proposed Methodology

The DMOA incorporates multiple classification algorithms for Android malware

detection on the basis of the CICAndMal2017 dataset. The CICAndMal2017 dataset includes over

80 features, some of which may be irrelevant; thus, it might negatively impact model

performance. This issue is addressed by integrating feature selection to identify the most relevant

features for use as inputs for various classification algorithms. Figure 2 shows the main phases of

the proposed model.

Fig 2: Proposed model.

Int. J. Anal. Appl. (2025), 23:248 11

Data preprocessing is an essential step in the proposed model. The process includes two main

steps: data transformation and data normalization.

3.2.1 Data Transformation

Data transformation is an essential stage in the preprocessing of ML models; it acts as an

encoder, converting the given labels into categorical values. In multiclass classification, label

encoding assigns a numerical integer to every class. In this manner, the model can differentiate

between various forms of malware. Table 1 shows the label encoding mapping for multiclass

classification in the CICAndMal2017 dataset.

Table 1: Label Encoding Mapping

Original Label Encoded Label

Benign 0

Adware 1

Ransomware 2

SMS malware 3

Scareware 4

3.2.2 Normalization

In this study, the goal of normalization is to ensure that each feature has an equal impact on

the model’s performance, especially when the features have different units or ranges. For the

CICAndMal2017 dataset, normalization was achieved through min-max scaling. This process

centers the data around 0 and scales it to have a unit variance. The min-max scaling formula used

is:

X𝑛𝑜𝑟𝑚 =
X − XMin

XMax − XMin
, (3.1)

Where X_norm is the normalized value, X is the original value, XMin is the minimum value, and

XMax is the maximum value within the feature column. This scaling method was applied to 83

features in the dataset.

3.2.3 Oversampling

 The total number of samples for each class of malware in the CICAndMal2017 varies

significantly, causing an imbalance in the classification process. ML models trained on

imbalanced data tend to favor classes with larger sample sizes, which may result in erroneous

predictions for dominating classes. The resulting bias also results in unrealistically high accuracy

and misclassification of underrepresented classes, rendering the model worthless on the test set,

particularly for rare malware classes. Biases can be avoided through oversampling, which

involves creating an equal number of samples for each type. This work replicates samples from

underrepresented classes to provide a balanced dataset and improve model effectiveness.

12 Int. J. Anal. Appl. (2025), 23:248

3.2.4 Feature Selection

With many potential features from the dataset used in this work, the appropriate feature must

be selected. Feature selection is the operation of choosing the most relevant features from a high-

dimensional dataset to utilize in a ML model. Choosing the most relevant features improves

model performance [31]. Figure 3 shows a simplified illustration of the feature selection process.

The selection process selects only relevant features and discards irrelevant features, thus

increasing the effectiveness of our assessment process.

Fig 3: Simple representation for feature selection.

The DMOA is effective for feature selection, particularly when used with high-dimensional

datasets [32], and it is suitable for AMD. Because of its adaptive search capabilities, the DMOA is

effective at feature selection and other optimization tasks. However, the DMOA, like many other

optimization approaches, presents limitations in terms of convergence to local optima. This study

improves the DMOA's performance by using adaptive mechanisms such as crossover operations

and mutation processes. These enhancements allow the system to adjust and optimize itself,

examining alternatives more thoroughly for better results. These improvements also assist the

system diversify its search process, allowing the algorithm to avoid local optima and reveal

superior feature subsets. Algorithm 2 illustrates the pseudocode for the proposed modified

DMOA.

Adding crossover and mutation functions to the DMOA increases the exploration of the

feature space, thereby improving the exploration capabilities of the DMOA and helping the

algorithm avoid local optima. The addition of these operators increases the diversity within the

solution population. In malware detection, this step is crucial because the feature space is often

complex and high-dimensional. Crossover enables a set of successful feature combinations to be

Int. J. Anal. Appl. (2025), 23:248 13

explored, and mutation helps to avoid keeping the algorithm fixed by allowing the exploration

of new relevant features. This dynamic approach may enhance the detection capabilities.

Algorithm 2: Proposed modified DMOA.

Initialize a population P of n_pop individuals (binary vectors)

Evaluate the fitness of each individual in P using fitness_function

Set Best_solution as the individual with the highest fitness in P

 For iter = 1 to n_iter do

Step 1: Alpha Selection:

 Identify Alpha = best individual in current P

Step2: Crossover Phase:

For each individual iii in P:

 Randomly select two parents p1 and p2 from P.

 Perform a single-point crossover operation on p1 and p2 to generate a child ccc.

 With probability mutation_rate, mutate the bits in ccc by flipping randomly selected bits.

 Add ccc to the new population P_new.

End For

Step 3:Scout Phase:

With probability scout_rate, add a new random individual to P_new

 Step 4: Evaluate fitness of all individuals in P_new

Step 5: Update Best_solution if any individual in P_new has higher fitness

 Step 6: Replace P with P_new

 End For

Return Best_solution

3.2.5 Classification

The classification stage is vital in the AMD model, distinguishing between benign and

malicious network activity. After selecting the most relevant features, machine learning classifiers

are trained on labeled data to detect malware patterns and tested on unseen data to assess

performance. Multiple classifiers—DT, RF, KNN, and XGBoost—were used to enhance detection

accuracy. Each offers unique strengths: DTs provide interpretability, RF improves accuracy and

prevents overfitting, KNN detects subtle differences in malware, and XGBoost handles complex

datasets through gradient boosting.

4. Implementation and results

This section provides the implementation process and analyzes the results of implementing the

model using different ML algorithms, comparing them to other metaheuristic algorithm models.

4.1 Implementation Environment

The study was carried out on a Windows platform using the VSC IDE, which includes a

comprehensive set of tools for building, verifying, and debugging code. Anaconda is a Python

package that contains a variety of prominent data science and machine learning libraries that are

easily integrated with VSC. Python's most recent version (V3.12) was selected for model

14 Int. J. Anal. Appl. (2025), 23:248

implementation and evaluation due to its broad ML support and the availability of numerous data

analysis packages. The proposed model was implemented using a high-performance computer.

4.2 Implementation Operations

The development of the proposed modified DMOA model includes several significant stages,

each of which contributed to the development of an effective and reliable system. The

implementation started with the collection of the CICAndMal2017 dataset from the Canadian

Institute for Cybersecurity website. The first step in data preprocessing involves transforming

categorical values (e.g., “BENIGN”, “ADWARE”, and “SMS MALWARE”) into numerical

representations via the LabelEncoder from the sklearn.preprocessing module. For multiclass

classification, the LabelEncoder fit_transform() method analyzes the unique class labels and

assigns each one a unique integer (e.g., “BENIGN” becomes 0, and “ADWARE” becomes 1). This

transformation ensures that the target variable is in a numerical format that ML algorithms can

process. The encoded labels are used for model training and evaluation. The second stage of

preprocessing starts with data normalization via the min–max scaler from the

(sklearn.preprocessing) ML library to scale the features with large numerical values into the range

of [0, 1]. With this scheme, the ML algorithms and DMOA perform better because they assume

that all the features are on the same scale. After the transformation and normalization phases are

completed, oversampling (the third stage) begins. This step involves the use of

RandomOverSampler to balance the dataset by increasing the number of samples in the minority

class. This scheme ensures that the ML model does not bias toward the majority class, thereby

improving the model’s ability to generalize across all classes.

After that, the modified DMOA was applied to select the most relevant features based on a

fitness function that considers accuracy and the number of selected features. The fitness function

was defined to calculate the error rate , considering both the prediction accuracy and the number

of selected features .A lower fitness value (error rate) indicates a better feature subset. As a result,

forty-eight features were selected from 83 features.

4.3 Evaluation Metrics

The proposed model was assessed using various evaluation metrics commonly applied in

research to evaluate the performance of AMD. The following metrics provide insights into how

well the model can classify data, its correctness, and its efficiency in classifying malware:

• Accuracy is expressed as the ratio of correct detections (TP and TN) to the total number of

detections (N), where N = (TP+TN+FP+FN). It determines the model’s overall correctness in

detecting benign and malware instances.

• Precision is the ratio of the correct TP to the total number of predicted positives (TP+FP). It

represents the model’s ability to identify positive instances accurately.

Int. J. Anal. Appl. (2025), 23:248 15

• Recall is the ratio of the accurate TP for a given class divided by the class’s total sample size.

Recall refers to the model’s ability to determine exactly benign classes that the model can

correctly identify.

• F1 score is a balancing measure of a model’s precision and recall. This indicator is especially

important when dealing with inconsistent datasets in which one class may be

underrepresented.

• Convergence Time: This metric refers to the speed with which the model is trained. Evaluating

the model via these various metrics provides an extensive overview of its effectiveness and

correctness in predicting malware and benign instances.

• Confusion matrix (CM): This metric is a table that is frequently used to gain insight into the

performance of a model (TP, FP, FN, or TN) across all classes of the dataset.

4.4 Results

The proposed model was evaluated using ML algorithms. The algorithms used are DT, RF,

KNN, and XGBoost. The RF classifier demonstrates exceptional performance in classifying

malware families within the AMD dataset, achieving nearly perfect metrics across the board. With

an accuracy of 1.00 and precision and an F1 score of 0.999882, the RF model effectively

distinguishes between various malware classes with minimal errors. This precise performance is

indicative of the ability of the RF classifier to perform complex multiclass classification in a rather

robust manner, especially for various malware types. Figure 4 shows the CM for the RF classifier

in multiclass classification of malware families.

Fig 4: RF classifier CM multiclass classification

16 Int. J. Anal. Appl. (2025), 23:248

The DT classifier results indicate exceptional performance across all the metrics. The DT

achieved an accuracy of 1.000, correctly classifying all instances without any errors. The classifier

also measured precision and an F1 score of 0.999961, indicating a near-perfect balance between

precision and recall. Figure 5 shows the confusion matrix results for the DT classifier in the

multiclass classification of malware families. The DT classifier successfully classified nearly all

malware classes with a single misclassification, showing a remarkable alignment between the

actual and predicted labels. This finding proves the ability of the DT classifier to distinguish

between various malware families with minimal error.

Fig 5: DT classifier CM multiclass classification

XGBoost performed exceptionally well, nearing perfect accuracy, precision, and F1 scores,

although its convergence time was greater than those of DT and RF. KNN had the lowest accuracy

and took the longest to converge, suggesting that it may be less effective for this task than the other

classifiers are. Overall, DT and RF were the most efficient and accurate classifiers in this

evaluation. Table 2 provide a comprehensive summary of all the classifiers employed in the

modified DMOA model for multiclass classification in terms of average accuracy, precision, F1

score and convergence time.

Table 2: Multiclass Classification Results

Classifier Accuracy Precision F1-score Time(s)

RF 1.000000 0.999882 0.999882 1330.01

DT 1.000000 0.999961 0.999961 1109.48

KNN 0.995216 0.984838 0.984219 3223.30

XGBoost 0.999882 0.999765 0.999764 1928.08

Int. J. Anal. Appl. (2025), 23:248 17

The results for the original DMOA and the proposed modified DMOA are compared. The

proposed modified DMOA improves accuracy across some ML algorithms in malware family

multiclass classification. The RF and DT classifiers have the highest accuracy of 1.00, increasing

from 0.9467 and 0.9025, respectively, when the original DMOA is used. XGBoost improves to

0.9999 from 0.9500. KNN increases to 0.9952 from 0.9696. Figure 6 shows the accuracy comparison

between the proposed modified DMOA and the original DMOA in multiclass classification.

Fig 6: Accuracy comparison

The proposed modified DMOA demonstrates constant improvements in precision for the ML

algorithms in multiclass classification. The RF improves to 0.9999 from 0.9063 in the original

DMOA. DT increases to 1.00 from 0.9290, XGBoost increases to 0.9998 from 0.9455, and KNN

increases to 0.9848 from 0.9561. Figure 7 shows the precision comparison between the proposed

modified DMOA and the original DMOA in multiclass classification.

Fig 7: Presision comparison

18 Int. J. Anal. Appl. (2025), 23:248

The proposed modified DMOA yields improvements in the F1 score for the RF, DT, XGBoost,

and KNN classifiers in multiclass classification. The RF achieves an F1 score of 0.9999, improving

from 0. 8832. Furthermore, the DT improves to 1.00 from 0.8978, XGBoost increases to 0.9998 from

0.9438, and the KNN improves to 0.9842 from 0.9512. Figure 8 shows the F1 score comparison

between the proposed modified DMOA and the original DMOA in multiclass classification

Fig 8: F1 score comparison

The convergence time comparison highlights the enhanced efficiency of the proposed modified

DMOA across all classifiers (Figure 9.). The DT experienced a substantial reduction in convergence

time, decreasing by 52.83 s from 1162.31 s in the original DMOA to 1109.48 s in the modified

DMOA. The KNN classifier showed a significant improvement, with the convergence time

reduced from 5071.01 to 3223.30 s, reflecting a reduction of 1847.71 s. For XGBoost, the convergence

time decreased from 2292.97 to 1928.08 s, a reduction of 364.89 s. These results underscore the

efficiency gains achieved by the modified DMOA and its superior performance in multiclass

classification tasks.

Fig 9: Convergence time comparison

Int. J. Anal. Appl. (2025), 23:248 19

The modified DMOA model was evaluated against other studies that used the CICAndMal2017

dataset. It outperforms all the compared models in multiclass classification. RF has an overall

accuracy of 100%, surpassing the GBWO model of Aldehim et al. [26], with a score of 98.50%, and

the MVO and EMFO models of Taher et al.[25], with a score of 96.9%. Figure 10 shows an accuracy

comparison between the proposed modified DMOA and other models in the multiclass

classification of malware. The results further confirm the superior performance of the proposed

model, particularly when the DT and RF classifiers are used. This finding reinforces the

effectiveness of the modified DMOA in handling multiclass classification tasks, further

demonstrating its ability to achieve higher accuracy than existing approaches.

Fig 10: Accuracy comparison between the proposed modified DMOA and other models

5. Conclusion

 This study introduced a modified DMOA to enhance AMD through improved feature

selection. By addressing the limitations of traditional ML methods and existing optimization

algorithms—such as poor performance on high-dimensional data and vulnerability to local

optima—the proposed model integrates adaptive strategies like crossover and mutation to expand

search capabilities and boost classification accuracy. Using the CICAndMal2017 dataset, the model

was tested across multiple classifiers, including DT, RF, KNN, and XGBoost. The results show the

effectiveness of the proposed model. The modified DMOA significantly outperforms the original

version and several state-of-the-art models in terms of accuracy, precision, F1 score, and

convergence time. DT and RF achieved 100% accuracy, highlighting the model's capability to

distinguish between different malware types accurately. Overall, the modified DMOA model

proves to be a robust and reliable approach for AMD. Its ability to maintain high performance

across diverse evaluation metrics and classifiers underscores its adaptability and efficiency. Future

20 Int. J. Anal. Appl. (2025), 23:248

work may enhance the model's scalability and test its performance on other complex and evolving

malware datasets to ensure continued relevance in real-world applications.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.

References

[1] P. Agrawal, H.F. Abutarboush, T. Ganesh, A.W. Mohamed, Metaheuristic Algorithms on Feature

Selection: A Survey of One Decade of Research (2009-2019), IEEE Access 9 (2021), 26766-26791.

https://doi.org/10.1109/access.2021.3056407.

[2] A. Sabbah, A. Taweel, S. Zein, Android Malware Detection: A Literature Review, in: Communications

in Computer and Information Science, Springer, Singapore, 2023: pp. 263-278.

https://doi.org/10.1007/978-981-99-0272-9_18.

[3] F. Nawshin, R. Gad, D. Unal, A.K. Al-Ali, P.N. Suganthan, Malware Detection for Mobile Computing

Using Secure and Privacy-Preserving Machine Learning Approaches: A Comprehensive Survey,

Comput. Electr. Eng. 117 (2024), 109233. https://doi.org/10.1016/j.compeleceng.2024.109233.

[4] R.K. Varma P, S.K.R. Mallidi, S. Jhansi K, P. Latha D, Bat Optimization Algorithm for Wrapper‐based

Feature Selection and Performance Improvement of Android Malware Detection, IET Netw. 10 (2021),

131-140. https://doi.org/10.1049/ntw2.12022.

[5] N. Honest, A Survey on Feature Selection Techniques, GIS Sci. J. 7 (2020), 353–358.

[6] O.A. Akinola, J.O. Agushaka, A.E. Ezugwu, Binary Dwarf Mongoose Optimizer for Solving High-

Dimensional Feature Selection Problems, PLOS ONE 17 (2022), e0274850.

https://doi.org/10.1371/journal.pone.0274850.

[7] P.S. Game, V. Vaze, E. M, Bio-inspired Optimization: Metaheuristic Algorithms for Optimization,

arXiv:2003.11637 (2020). https://doi.org/10.48550/arXiv.2003.11637.

[8] J. El Abdelkhalki, M.B. Ahmed, B.A. Abdelhakim, Image Malware Detection Using Deep Learning, Int.

J. Commun. Netw. Inf. Secur. 12 (2022), 180-189. https://doi.org/10.17762/ijcnis.v12i2.4600.

[9] S.K. Sahay, A. Sharma, H. Rathore, Evolution of Malware and Its Detection Techniques, in: Advances

in Intelligent Systems and Computing, Springer Singapore, Singapore, 2019: pp. 139-150.

https://doi.org/10.1007/978-981-13-7166-0_14.

[10] M.N. Alenezi, H.K. Alabdulrazzaq, A.A. Alshaher, M.M. Alkharang, Evolution of Malware Threats

and Techniques: A Review, Int. J. Commun. Netw. Inf. Secur. 12 (2022), 326-337.

https://doi.org/10.17762/ijcnis.v12i3.4723.

[11] O. Aslan, R. Samet, A Comprehensive Review on Malware Detection Approaches, IEEE Access 8 (2020),

6249-6271. https://doi.org/10.1109/access.2019.2963724.

[12] V.N. Uzel, Detecting Android Malware by Using Fuzzy Set-Based Weighting Method and Firefly

Optimization Algorithm, Master’s Thesis, Hacettepe University, 2022.

[13] N. Ekanayake, Android Operating System, 2018.

https://www.researchgate.net/publication/325257105.

https://doi.org/10.1109/access.2021.3056407
https://doi.org/10.1007/978-981-99-0272-9_18
https://doi.org/10.1016/j.compeleceng.2024.109233
https://doi.org/10.1049/ntw2.12022
https://doi.org/10.1371/journal.pone.0274850
https://doi.org/10.48550/arXiv.2003.11637
https://doi.org/10.17762/ijcnis.v12i2.4600
https://doi.org/10.1007/978-981-13-7166-0_14
https://doi.org/10.17762/ijcnis.v12i3.4723
https://doi.org/10.1109/access.2019.2963724
https://www.researchgate.net/publication/325257105

Int. J. Anal. Appl. (2025), 23:248 21

[14] Y. Chen, Research on Android Architecture and Application Development, J. Phys.: Conf. Ser. 1992

(2021), 022168. https://doi.org/10.1088/1742-6596/1992/2/022168.

[15] A. Subramanian, Exploring the Layers: A Deep Dive into Android OS Architecture, 2023.

https://medium.com/@ayyappansubramanian77/exploring-the-layers-a-deep-dive-into-android-os-

architecture-31a2cd7a4036.

[16] M. Jaiswal, Android the Mobile Operating System and Architecture, Int. J. Creative Res. Thoughts 6

(2018), 514-525.

[17] L. Meijin, F. Zhiyang, W. Junfeng, C. Luyu, Z. Qi, et al., A Systematic Overview of Android Malware

Detection, Appl. Artif. Intell. 36 (2021), 2007327. https://doi.org/10.1080/08839514.2021.2007327.

[18] F.A. Almarshad, M. Zakariah, G.A. Gashgari, E.A. Aldakheel, A.I.A. Alzahrani, Detection of Android

Malware Using Machine Learning and Siamese Shot Learning Technique for Security, IEEE Access 11

(2023), 127697-127714. https://doi.org/10.1109/access.2023.3331739.

[19] B. Mahesh, Machine Learning Algorithms - A Review, Int. J. Sci. Res. 9 (2020), 381-386.

https://doi.org/10.21275/art20203995.

[20] N. Chowdhury, A. Haque, H. Soliman, M.S. Hossen, T. Fatima, et al., Android Malware Detection

Using Machine Learning: A Review, in: Lecture Notes in Networks and Systems, Springer, Cham, 2024,

pp. 507-522. https://doi.org/10.1007/978-3-031-47715-7_35.

[21] P. Agrawal, B. Trivedi, Machine Learning Classifiers for Android Malware Detection, in: Advances in

Intelligent Systems and Computing, Springer, Singapore, 2020, pp. 311-322.

https://doi.org/10.1007/978-981-15-5616-6_22.

[22] J.O. Agushaka, A.E. Ezugwu, L. Abualigah, Dwarf Mongoose Optimization Algorithm, Comput.

Methods Appl. Mech. Eng. 391 (2022), 114570. https://doi.org/10.1016/j.cma.2022.114570.

[23] G. Moustafa, A.M. El-Rifaie, I.H. Smaili, A. Ginidi, A.M. Shaheen, et al., An Enhanced Dwarf Mongoose

Optimization Algorithm for Solving Engineering Problems, Mathematics 11 (2023), 3297.

https://doi.org/10.3390/math11153297.

[24] S. Fu, H. Huang, C. Ma, J. Wei, Y. Li, et al., Improved Dwarf Mongoose Optimization Algorithm Using

Novel Nonlinear Control and Exploration Strategies, Expert Syst. Appl. 233 (2023), 120904.

https://doi.org/10.1016/j.eswa.2023.120904.

[25] F. Taher, O. AlFandi, M. Al-kfairy, H. Al Hamadi, S. Alrabaee, DroidDetectMW: A Hybrid Intelligent

Model for Android Malware Detection, Appl. Sci. 13 (2023), 7720.

https://doi.org/10.3390/app13137720.

[26] G. Aldehim, M.A. Arasi, M. Khalid, S.S. Aljameel, R. Marzouk, et al., Gauss-mapping Black Widow

Optimization with Deep Extreme Learning Machine for Android Malware Classification Model, IEEE

Access 11 (2023), 87062-87070. https://doi.org/10.1109/access.2023.3285289.

[27] S.K. Smmarwar, G.P. Gupta, S. Kumar, P. Kumar, An Optimized and Efficient Android Malware

Detection Framework for Future Sustainable Computing, Sustain. Energy Technol. Assessments 54

(2022), 102852. https://doi.org/10.1016/j.seta.2022.102852.

[28] University of New Brunswick (UNB), Android malware dataset (CIC-AndMal2017),

https://www.unb.ca/cic/datasets/andmal2017.html, Accessed: Oct. 26, 2024.

https://doi.org/10.1088/1742-6596/1992/2/022168
https://medium.com/@ayyappansubramanian77/exploring-the-layers-a-deep-dive-into-android-os-architecture-31a2cd7a4036
https://medium.com/@ayyappansubramanian77/exploring-the-layers-a-deep-dive-into-android-os-architecture-31a2cd7a4036
https://doi.org/10.1080/08839514.2021.2007327
https://doi.org/10.1109/access.2023.3331739
https://doi.org/10.21275/art20203995
https://doi.org/10.1007/978-3-031-47715-7_35
https://doi.org/10.1007/978-981-15-5616-6_22
https://doi.org/10.1016/j.cma.2022.114570
https://doi.org/10.3390/math11153297
https://doi.org/10.1016/j.eswa.2023.120904
https://doi.org/10.3390/app13137720
https://doi.org/10.1109/access.2023.3285289
https://doi.org/10.1016/j.seta.2022.102852

22 Int. J. Anal. Appl. (2025), 23:248

[29] A.H. Lashkari, A.F.A. Kadir, L. Taheri, A.A. Ghorbani, Toward Developing a Systematic Approach to

Generate Benchmark Android Malware Datasets and Classification, in: 2018 International Carnahan

Conference on Security Technology (ICCST), IEEE, 2018, pp. 1-7.

https://doi.org/10.1109/CCST.2018.8585560.

[30] M. Abuthawabeh, K. Mahmoud, Enhanced Android Malware Detection and Family Classification,

Using Conversation-Level Network Traffic Features, Int. Arab. J. Inf. Technol. 17 (2020), 607-614.

https://doi.org/10.34028/iajit/17/4a/4.

[31] J. Barrera-García, F. Cisternas-Caneo, B. Crawford, M. Gómez Sánchez, R. Soto, Feature Selection

Problem and Metaheuristics: A Systematic Literature Review About Its Formulation, Evaluation and

Applications, Biomimetics 9 (2023), 9. https://doi.org/10.3390/biomimetics9010009.

[32] M. Elaziz, A. Ewees, M. Al-qaness, S. Alshathri, R. Ibrahim, Feature Selection for High Dimensional

Datasets Based on Quantum-Based Dwarf Mongoose Optimization, Mathematics 10 (2022), 4565.

https://doi.org/10.3390/math10234565.

[33] M.M. Abualhaj, S. Al-Khatib, M.O. Hiari, Q.Y. Shambour, Enhancing Spam Detection Using Hybrid

of Harris Hawks and Firefly Optimization Algorithms, J. Soft Comput. Data Min. 5 (2024), 161–174.

https://doi.org/10.30880/jscdm.2024.05.02.012.

[34] M.M. Abualhaj, Spam Feature Selection Using Firefly Metaheuristic Algorithm, J. Appl. Data Sci. 5

(2024), 1692-1700. https://doi.org/10.47738/jads.v5i4.336.

[35] M.M. Abualhaj, A.A. Abu-Shareha, S. Nabil Alkhatib, Q.Y. Shambour, A.M. Alsaaidah, Detecting Spam

Using Harris Hawks Optimizer as a Feature Selection Algorithm, Bull. Electr. Eng. Inform. 14 (2025),

2361-2369. https://doi.org/10.11591/eei.v14i3.9198.

[36] Y. Sanjalawe, S. Fraihat, S. Al-E’Mari, M. Abualhaj, S. Makhadmeh, et al., A Review of 6g and Ai

Convergence: Enhancing Communication Networks with Artificial Intelligence, IEEE Open J.

Commun. Soc. 6 (2025), 2308-2355. https://doi.org/10.1109/ojcoms.2025.3553302.

[37] Y. Sanjalawe, S. Fraihat, M. Abualhaj, S.R. Al-E’Mari, E. Alzubi, Hybrid Deep Learning for Human Fall

Detection: A Synergistic Approach Using Yolov8 and Time-Space Transformers, IEEE Access 13 (2025),

41336-41366. https://doi.org/10.1109/access.2025.3547914.

[38] Y. Sanjalawe, S. Al-E’mari, S. Fraihat, M. Abualhaj, E. Alzubi, A Deep Learning-Driven Multi-Layered

Steganographic Approach for Enhanced Data Security, Sci. Rep. 15 (2025), 4761.

https://doi.org/10.1038/s41598-025-89189-5.

[39] M.M. Abualhaj, Q.Y. Shambour, A.A. Abu-Shareha, S.N. Al-Khatib, A. Amer, Enhancing Malware

Detection Through Self-Union Feature Selection Using Gray Wolf Optimizer, Indones. J. Electr. Eng.

Comput. Sci. 37 (2025), 197-205. https://doi.org/10.11591/ijeecs.v37.i1.pp197-205.

[40] S. Fraihat, Q. Shambour, M.A. Al-Betar, S.N. Makhadmeh, Variational Autoencoders-Based Algorithm

for Multi-Criteria Recommendation Systems, Algorithms 17 (2024), 561.

https://doi.org/10.3390/a17120561.

[41] Q. Shambour, Artificial Intelligence Techniques for Early Autism Detection in Toddlers: A

Comparative Analysis, J. Appl. Data Sci. 5 (2024), 1754-1764. https://doi.org/10.47738/jads.v5i4.353.

https://doi.org/10.1109/CCST.2018.8585560
https://doi.org/10.34028/iajit/17/4a/4
https://doi.org/10.3390/biomimetics9010009
https://doi.org/10.3390/math10234565
https://doi.org/10.30880/jscdm.2024.05.02.012
https://doi.org/10.47738/jads.v5i4.336
https://doi.org/10.11591/eei.v14i3.9198
https://doi.org/10.1109/ojcoms.2025.3553302
https://doi.org/10.1109/access.2025.3547914
https://doi.org/10.1038/s41598-025-89189-5
https://doi.org/10.11591/ijeecs.v37.i1.pp197-205
https://doi.org/10.3390/a17120561
https://doi.org/10.47738/jads.v5i4.353

Int. J. Anal. Appl. (2025), 23:248 23

[42] M. MADI, F. JARGHON, Y. FAZEA, O. ALMOMANI, A. SAAIDAH, Comparative Analysis of

Classification Techniques for Network Fault Management, Turk. J. Electr. Eng. Comput. Sci. 28 (2020),

1442-1457. https://doi.org/10.3906/elk-1907-84.

[43] A. Hamdan Mohammad, T. Alwada’n, O. Almomani, S. Smadi, N. ElOmari, Bio-inspired Hybrid

Feature Selection Model for Intrusion Detection, Comput. Mater. Contin. 73 (2022), 133-150.

https://doi.org/10.32604/cmc.2022.027475.

[44] A. Almomani, I. Akour, A. M. Manasrah, O. Almomani, M. Alauthman, et al., Ensemble-based

Approach for Efficient Intrusion Detection in Network Traffic, Intell. Autom. Soft Comput. 37 (2023),

2499-2517. https://doi.org/10.32604/iasc.2023.039687.

https://doi.org/10.3906/elk-1907-84
https://doi.org/10.32604/cmc.2022.027475
https://doi.org/10.32604/iasc.2023.039687

