Estimation of Nucleation Parameters Using a Linear Optimal Control Problem
Main Article Content
Abstract
In this paper, we consider a Becker-Doring-type mathematical interaction model between Aβ monomers and Aβ proto-oligomers, which play an important role in Alzheimer’s disease, with a given initial condition, but where the nucleation parameter is unknown. All of this work revolves around estimating the nucleation rate, which is not accessible experimentally. This estimation is made using techniques related to solving optimal control problems. We then propose a necessary and sufficient condition to ensure the existence and uniqueness of the solution, which should make it possible to estimate this parameter.
Article Details
References
- I.S. Ciuperca, M. Dumont, A. Lakmeche, P. Mazzocco, L. Pujo-Menjouet, et al., Alzheimer's Disease and Prion: An in Vitro Mathematical Model, Discret. Contin. Dyn. Syst. - B 24 (2019), 5225–5260. https://doi.org/10.3934/dcdsb.2019057.
- J. Hardy, D.J. Selkoe, The Amyloid Hypothesis of Alzheimer's Disease: Progress and Problems on the Road to Therapeutics, Science 297 (2002), 353–356. https://doi.org/10.1126/science.1072994.
- T. Umeda, T. Tomiyama, N. Sakama, S. Tanaka, M.P. Lambert, et al., Intraneuronal Amyloid $beta$ Oligomers Cause Cell Death via Endoplasmic Reticulum Stress, Endosomal/Lysosomal Leakage, and Mitochondrial Dysfunction in Vivo, J. Neurosci. Res. 89 (2011), 1031–1042. https://doi.org/10.1002/jnr.22640.
- R.H. Takahashi, T. Nagao, G.K. Gouras, Plaque Formation and the Intraneuronal Accumulation of $beta$‐Amyloid in Alzheimer's Disease, Pathol. Int. 67 (2017), 185–193. https://doi.org/10.1111/pin.12520.
- C. Hughes, M.L. Choi, J. Yi, S. Kim, A. Drews, et al., Beta Amyloid Aggregates Induce Sensitised TLR4 Signalling Causing Long-Term Potentiation Deficit and Rat Neuronal Cell Death, Commun. Biol. 3 (2020), 79. https://doi.org/10.1038/s42003-020-0792-9.
- D.R. Brown, Oligomeric Alpha‐synuclein and Its Role in Neuronal Death, IUBMB Life 62 (2010), 334–339. https://doi.org/10.1002/iub.316.
- H. Banks, M. Doumic, C. Kruse, S. Prigent, H. Rezaei, Information Content in Data Sets for a Nucleated-Polymerization Model, J. Biol. Dyn. 9 (2015), 172–197. https://doi.org/10.1080/17513758.2015.1050465.
- J.A.D. Wattis, A Becker-Döring Model of Competitive Nucleation, J. Phys.: Math. Gen. 32 (1999), 8755–8784. https://doi.org/10.1088/0305-4470/32/49/315.
- M. Slemrod, The Becker-Döring Equations, Birkhäuser Boston, 2000. https://doi.org/10.1007/978-1-4612-0513-5_5.
- C. Gueye, S.I. Ciuperca, L. Pujo-Menjouet, L.M. Tine, Q-Well-Posedness of an A$beta$-Protein Polymerization Model, Math. Model. Nat. Phenom. 19 (2024), 19. https://doi.org/10.1051/mmnp/2023028.
- I.S. Ciuperca, Cours de Contrôle Optimal, 'Ecole d'Ing'enieurs Polytech Lyon, Fili`ere Mod'elisation Math'ematique. MAM5A, Polytech Lyon, 2022–2023.
- R. Bellman, Dynamic Programming, Princeton University Press, 1957.
- Pierre Weiss, 'El'ement d'Analyse et d'Optimisation Convexe, Universit'e de Toulouse, 2015.
- M. Bergounioux, Optimisation et Contr^ole des Syst`emes Lin'eaires, Dunod, Paris, 2001.
- M. Eigen, Prionics or the Kinetic Basis of Prion Diseases, Biophys. Chem. 63 (1996), A1–A18. https://doi.org/10.1016/s0301-4622(96)02250-8.
- J.D. Harper, P.T. Lansbury, MODELS OF AMYLOID SEEDING IN ALZHEIMER'S DISEASE AND SCRAPIE: Mechanistic Truths and Physiological Consequences of the Time-Dependent Solubility of Amyloid Proteins, Annu. Rev. Biochem. 66 (1997), 385–407. https://doi.org/10.1146/annurev.biochem.66.1.385.
- M.A. Nowak, D.C. Krakauer, A. Klug, R.M. May, Prion Infection Dynamics, Integr. Biol.: Issues, News, Rev. 1 (1998), 3–15. https://doi.org/10.1002/(sici)1520-6602(1998)1:1<3::aid-inbi2>3.3.co;2-0.
- M.L. Greer, L. Pujo-Menjouet, G.F. Webb, A Mathematical Analysis of the Dynamics of Prion Proliferation, J. Theor. Biol. 242 (2006), 598–606. https://doi.org/10.1016/j.jtbi.2006.04.010.
- F. Matthäus, Diffusion Versus Network Models as Descriptions for the Spread of Prion Diseases in the Brain, J. Theor. Biol. 240 (2006), 104–113. https://doi.org/10.1016/j.jtbi.2005.08.030.
- M.P.H. Stumpf, D.C. Krakauer, Mapping the Parameters of Prion-Induced Neuropathology, Proc. Natl. Acad. Sci. 97 (2000), 10573–10577. https://doi.org/10.1073/pnas.180317097.
- M. Helal, A. Igel-Egalon, A. Lakmeche, P. Mazzocco, A. Perrillat-Mercerot, et al., Stability Analysis of a Steady State of a Model Describing Alzheimer’s Disease and Interactions with Prion Proteins, J. Math. Biol. 78 (2018), 57–81. https://doi.org/10.1007/s00285-018-1267-1.
- E. Trélat, Contrôle Optimal: Théorie et Applications, Laboratoire Jacques-Louis Lions, CNRS & Université Pierre et Marie Curie, https://www.ljll.fr/~trelat/fichiers/livreopt.pdf.
- F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Springer, 2013. https://doi.org/10.1007/978-1-4471-4820-3.
- L.S. Pontryagin, V.G. Boltyanski, R.V. Gamkrelidze, E.F. Mischenko, The Mathematical Theory of Optimal Processes, Interscience Publishers, New York, 1962.